Supplementary information

Electrochemistry enabled multicomponent cascade annulation and functionalization reaction to enable C(sp³)-H trifluoromethylation

Yuxin Ding,^a Hao Zhang,^a Dingyuan Lou,^a Kaiwen Huang,^a Yuan Shi,^a Hongmei Luo,^a Changjun Zhang^{*a} and Yuanyuan Xie^{*abc}

^a College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China

^b Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou, China

^c Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education; Key Laboratory of Pharmaceutical Engineering of Zhejiang Province

SUPPORTING INFORMATION

Table of contents	
1.Experimental Section	S3
2.Optimization of reaction conditions	S4
3. HRMS for O ¹⁸ labeling experiments	S6
4.Data of compounds	S7
5.Copies of all NMR spectra	§14
6. The Computational Calculations	

1.Experimental Section

All reagents and solvents were used from commercial sources unless otherwise stated. All raw materials are obtained from commercial sources. All experiments were conducted in the air. All the reactions were monitored by thin-layer chromatography (TLC). TLC was performed on pre-coated silica gel plates (Qingdao Haiyang Chemical Co., Ltd, China). Column chromatography was performed on silica gel (240-400 mesh) with petroleum ether and ethyl acetate as eluent. ¹H and ¹³C NMR (400 and 100 MHz) spectra were recorded on a Bruker Avance 400 MHz using CDCl₃ and DMSO- d_6 as solvent with tetramethylsilane as the internal standard. Melting points are determined using an WRS-1B apparatus and are uncorrected. High resolution mass spectra were obtained with the Q-TOF-Premier mass spectrometer. Reactions were monitored by TLC and visualized with ultraviolet light.

General Procedure (4a as an example)

2-Aminoacetophenone (40.5 mg, 0.3 mmol), *p*-Tolyl isocyanate (43.9 mg, 0.33 mmol), Togni II reagent (114 mg, 0.36 mmol) and Bu_4NBF_4 (237 mg, 0.3 mmol) were added to a solution of THF/H₂O (5 mL/1 mL), the reaction mixture was proceeded under a constant current of 3 mA in an undivided cell equipped with a graphite felt anode and a Ni plate cathode at 50 °C for 3 h. The reaction was monitored by TLC. Once the reaction was completed, the reaction mixture was treated with H₂O (15.0 mL) and DCM (8.0 mL). The organic and aqueous layers were then separated, and the aqueous layer was extracted with DCM (3 x 8 mL). The combined organic extracts were dried (Na₂SO₄), then the solvent was removed under reduced pressure and the remaining residue was purified by column chromatography. Compound **4aa** (234 mg, 71% yield) was obtained as a white solid.

Cyclic voltammetry studies The cyclic voltammograms experiments were conducted in a Schlenk tube that contained the

substance dissolved in a 0.1 M solution of tetrabutylammonium tetrafluoroborate in acetonitrile. A glassy carbon electrode working electrode, a platinum wire counter electrode and an Ag/Ag^+ reference electrode were used. The reference electrode was stored in silver nitrate solution for activation before use. The relevant parameters were controlled by an electrochemical workstation CHI600E.

2.Optimization of reaction conditions.

2-Aminoacetophenone (1a, 40.5 mg, 0.3 mmol), *p*-Tolyl isocyanate (2a, 43.9 mg, 0.33 mmol), trifluoromethylation reagent (0.36 mmol), electrolyte and additive dissolved in the solvent were added to an undivided cell equipped with electrode. The samples were reacted with the respective current for the mentioned time. The reaction was monitored by TLC. Once the reaction was completed, the reaction mixture was treated with H₂O (15.0 mL) and DCM (8.0 mL). The organic and aqueous layers were then separated, and the aqueous layer was extracted with DCM (3 x 8 mL). The combined organic extracts were dried (Na₂SO₄), then the solvent was removed under reduced pressure and the remaining residue was purified by column chromatography. The yield of **4a** was the isolated yield.

CE

	0 1a NH ₂ +	2a	NCO + "CF ₃ " sour	rce A/C add	C, electrolyte, current litive, solvent, temp.	•			
Entry	"CF ₃ " source	A/C	electrolyte	current	solvent	additive	Time (h)	temp. (°C)	Yield (%) ^a
1	CF ₃ SO ₂ Na	C/Pt	Bu ₄ NPF ₆	5 mA	MeCN/H ₂ O(1:1)	-	3.5	50	<5
2	Togni	C/Pt	Bu ₄ NPF ₆	5 mA	MeCN/H ₂ O(1:1)	-	3.5	50	13
3	TMSCF ₃	C/Pt	Bu ₄ NPF ₆	5 mA	MeCN/H ₂ O(1:1)	-	3.5	50	N.D.
4	Togni	C/Ni	Bu ₄ NPF ₆	5 mA	MeCN/H ₂ O(1:1)	-	3.5	50	32
5	Togni	C/C	Bu ₄ NPF ₆	5 mA	MeCN/H ₂ O(1:1)	-	3.5	50	<5
6	Togni	Pt/Pt	Bu ₄ NPF ₆	5 mA	MeCN/H ₂ O(1:1)	-	3.5	50	<5
7	Togni	C/Ni	Bu ₄ NPF ₆	5 mA	Dioxane/H ₂ O(1:1)	-	3.5	50	N.D.
8	Togni	C/Ni	Bu ₄ NPF ₆	5 mA	THF/H ₂ O(1:1)	-	3.5	50	45
9	Togni	C/Ni	Bu ₄ NPF ₆	5 mA	Acetone/H ₂ O(1:1)	-	3.5	50	25
10	Togni	C/Ni	Bu ₄ NPF ₆	5 mA	EtOH/H ₂ O(1:1)	-	3.5	50	<10
11	Togni	C/Ni	$\mathrm{Bu}_4\mathrm{NPF}_6$	5 mA	DMF/H ₂ O(1:1)	-	3.5	50	<10
12	Togni	C/Ni	$\mathrm{Bu}_4\mathrm{NPF}_6$	5 mA	MeCN	-	3.5	50	N.D.
13	Togni	C/Ni	$\mathrm{Bu}_4\mathrm{NBF}_4$	5 mA	THF/H ₂ O(1:1)	-	3.5	50	67
14	Togni	C/Ni	TBAB	5 mA	THF/H ₂ O(1:1)	-	3.5	50	36
15	Togni	C/Ni	LiClO ₄	5 mA	THF/H ₂ O(1:1)	-	3.5	50	57
16	Togni	C/Ni	Et ₄ NClO ₄	5 mA	THF/H ₂ O(1:1)	-	3.5	50	64
17	Togni	C/Ni	Bu ₄ NBF ₄	3 mA	THF/H ₂ O(1:1)	-	3.5	50	69
18	Togni	C/Ni	Bu ₄ NBF ₄	7 mA	THF/H ₂ O(1:1)	-	3.5	50	62

Table 1. Optimization of reaction conditions^a

19	Togni	C/Ni	$\mathrm{Bu}_4\mathrm{NBF}_4$	10 mA	THF/H ₂ O(1:1)	-	3.5	50	58
20	Togni	C/Ni	$\mathrm{Bu}_4\mathrm{NBF}_4$	15 mA	THF/H ₂ O(1:1)	-	3.5	50	43
21	Togni	C/Ni	$\mathrm{Bu}_4\mathrm{NBF}_4$	5 mA	THF/H ₂ O(1:1)	-	3.5	30	64
22	Togni	C/Ni	$\mathrm{Bu}_4\mathrm{NBF}_4$	5 mA	THF/H ₂ O(1:1)	-	3.5	70	67
23	Togni	C/Ni	$\mathrm{Bu}_4\mathrm{NBF}_4$	3 mA	THF/H ₂ O(1:1)	-	1.5	50	43
24	Togni	C/Ni	$\mathrm{Bu}_4\mathrm{NBF}_4$	3 mA	THF/H ₂ O(1:1)	-	2.5	50	62
25	Togni	C/Ni	$\mathrm{Bu}_4\mathrm{NBF}_4$	3 mA	THF/H ₂ O(1:1)	-	3.5	50	69 ^ь
26	Togni	C/Ni	Bu_4NBF_4	3 mA	THF/H ₂ O(1:1)	-	4.5	50	46
	•				2 ()				
27	Togni	C/Ni	Bu ₄ NBF ₄	3 mA	THF/H ₂ O(1:1)	NaOH	3.5	50	Trace
27	Togni Togni	C/Ni C/Ni	Bu ₄ NBF ₄ Bu ₄ NBF ₄	3 mA 5 mA	THF/H ₂ O(1:1) THF/H ₂ O(2:1)	NaOH -	3.5 3.5	50 70	Trace 69
27 28 29	Togni Togni Togni	C/Ni C/Ni C/Ni	Bu ₄ NBF ₄ Bu ₄ NBF ₄ Bu ₄ NBF ₄ (0.1 eq.)	3 mA 5 mA 5 mA	THF/H ₂ O(1:1) THF/H ₂ O(2:1) THF/H ₂ O(5:1)	NaOH -	3.5 3.5 3.5	50 70 70	Trace 69 32
27 28 29 30	Togni Togni Togni Togni	C/Ni C/Ni C/Ni C/Ni	Bu ₄ NBF ₄ Bu ₄ NBF ₄ Bu ₄ NBF ₄ (0.1 eq.) Bu ₄ NBF ₄ (0.5 eq.)	3 mA 5 mA 5 mA 5 mA	THF/H ₂ O(1:1) THF/H ₂ O(2:1) THF/H ₂ O(5:1) THF/H ₂ O(5:1)	NaOH - -	3.5 3.5 3.5 3.5	50 70 70 70 70	Trace 69 32 44
27 28 29 30 31	Togni Togni Togni Togni Togni	C/Ni C/Ni C/Ni C/Ni C/Ni	Bu ₄ NBF ₄ Bu ₄ NBF ₄ Bu ₄ NBF ₄ (0.1 eq.) Bu ₄ NBF ₄ (0.5 eq.) Bu ₄ NBF ₄ (1.5 eq.)	3 mA 5 mA 5 mA 5 mA 5 mA	THF/H ₂ O(1:1) THF/H ₂ O(2:1) THF/H ₂ O(5:1) THF/H ₂ O(5:1) THF/H ₂ O(5:1)	NaOH - - -	3.5 3.5 3.5 3.5 3.5 3.5	50 70 70 70 70 70	Trace 69 32 44 68
27 28 29 30 31 32	Togni Togni Togni Togni Togni Togni	C/Ni C/Ni C/Ni C/Ni C/Ni C/Ni	Bu ₄ NBF ₄ Bu ₄ NBF ₄ Bu ₄ NBF ₄ (0.1 eq.) Bu ₄ NBF ₄ (0.5 eq.) Bu ₄ NBF ₄ (1.5 eq.) Bu ₄ NBF ₄ (2 eq.)	3 mA 5 mA 5 mA 5 mA 5 mA 5 mA	THF/H ₂ O(1:1) THF/H ₂ O(2:1) THF/H ₂ O(5:1) THF/H ₂ O(5:1) THF/H ₂ O(5:1) THF/H ₂ O(5:1)	NaOH - - - - -	3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	50 70 70 70 70 70 70 70 70 70 70	Trace 69 32 44 68 71

Reaction conditions: 1a (0.3 mmol), 2a (0.33 mmol), 3a (0.36 mmol), electrolyte (0.6 mmol) and
solvent (6 mL) in an undivided cell at the indicated reaction conditions.
^a Isolated yield ^b N ₂ atmosphere

3. HRMS for O¹⁸ labeling experiments

Fig. S1. HRMS for O¹⁸ labeling experiments.

4.Data of compounds

4-hydroxy-3-(*p*-tolyl)-4-(2,2,2-trifluoroethyl)-3,4-dihydroquinazolin-2(1H)-one (4aa): White solid; mp 211.7-218.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.00 (s, 1H), 8.66 (d, *J* = 8.6 Hz, 1H), 7.70 (d, *J* = 8.1 Hz, 1H), 7.58 (t, *J* = 8.0 Hz, 1H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.15 (d, *J* = 7.9 Hz, 2H), 7.05 (t, *J* = 7.9 Hz, 1H), 6.74 (s, 1H), 3.84 (q, *J* = 9.8 Hz, 2H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 193.89, 152.65, 143.38, 138.96, 136.28, 135.08, 131.48(q, *J* = 285 Hz), 130.64, 129.69, 121.09, 120.93, 120.60, 114.41, 43.02(q, *J* = 28 Hz), 20.86. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.05. HRMS (ESI): calcd. for C₁₇H₁₆F₃N₂O₂ [M+H]⁺ 337.1158; found 337.1155.

3-(4-fluorophenyl)-4-hydroxy-4-(2,2,2-trifluoroethyl)-3,4-dihydroquinazolin-2(1H)-one (4ab): White solid; mp 225.6-232.0 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.58 (s, 1H), 9.94 (s, 1H), 8.46 – 8.40 (m, 1H), 8.01 – 7.98 (m, 1H), 7.65 – 7.59 (m, 1H), 7.56 – 7.50 (m, 2H), 7.17 – 7.09 (m, 3H), 4.49 (q, *J* = 10.7 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 195.22, 158.02 (d, *J* = 238 Hz), 152.76, 142.09, 136.37 (d, *J* = 3.0 Hz), 135.50, 132.12, 129.73, 125.51 (q, *J* = 275 Hz), 121.47, 120.83 (d, *J* = 8.0 Hz), 120.63, 115.74 (d, *J* = 22 Hz), 43.06 (q, *J* = 27 Hz).¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -60.88, -120.91. HRMS (ESI): calcd. for C₁₆H₁₃F₄N₂O₂ [M+H]⁺ 341.0908; found 341.0905.

3-(4-chlorophenyl)-4-hydroxy-4-(2,2,2-trifluoroethyl)-3,4-dihydroquinazolin-2(1*H***)-one (4ac): White solid; mp 196.2-198.1 °C; ¹H NMR (400 MHz, DMSO-***d***₆) \delta 10.61 (s, 1H), 10.05 (s, 1H), 8.41 (dd,** *J* **= 8.6, 1.2 Hz, 1H), 8.01 (dd,** *J* **= 8.1, 1.6 Hz, 1H), 7.63 (ddd,** *J* **= 8.7, 7.3, 1.6 Hz, 1H), 7.59 – 7.53 (m, 2H), 7.39 – 7.31 (m, 2H), 7.14 (ddd,** *J* **= 8.2, 7.2, 1.2 Hz, 1H), 4.50 (q,** *J* **= 10.7 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) \delta 193.41, 152.62, 141.88, 139.08, 135.50, 132.12, 129.08, 126.25, 125.51 (q,** *J* **= 275 Hz), 121.63, 120.70, 120.57, 115.65, 43.07 (q,** *J* **= 25 Hz).¹⁹F NMR (376 MHz, DMSO-***d***₆) \delta -60.87. HRMS (ESI): calcd. for C₁₆H₁₃ClF₃N₂O₂ [M+H]⁺ 357.0612; found 357.0617.**

3-(4-bromophenyl)-4-hydroxy-4-(2,2,2-trifluoroethyl)-3,4-dihydroquinazolin-2(1H)-one (4ad): White solid; mp 215.8-220.2 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 10.60 (s, 1H), 10.05 (s, 1H), 8.41 (d, J = 8.6 Hz, 1H), 8.00 (d, J = 8.1 Hz, 1H), 7.62 (t, J = 8.0 Hz, 1H), 7.53 – 7.43 (m, 4H), 7.13 (t, J = 7.7 Hz, 1H), 4.49 (q, J = 10.6 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 195.21, 152.59, 141.86, 139.51, 135.50, 132.11, 131.97, 128.29 (q, J = 287 Hz), 121.64, 121.59, 120.98, 120.71, 114.18, 43.07 (q, J = 26 Hz). ¹⁹F NMR (376 MHz, DMSO- d_6) δ -60.89. HRMS (ESI): calcd. for C₁₆H₁₃BrF₃N₂O₂ [M+H]⁺ 401.0107; found 401.0110.

4-hydroxy-4-(2,2,2-trifluoroethyl)-3-(4-(trifluoromethyl)phenyl)-3,4-dihydroquinazolin-2(1H)one (4ae): White solid; mp 212.9-222.4 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.66 (s, 1H), 10.32 (s, 1H), 8.43 (d, *J* = 8.6 Hz, 1H), 8.05 – 7.99 (m, 1H), 7.73 (t, *J* = 9.0 Hz, 2H), 7.66 (d, *J* = 8.6 Hz, 2H), 7.51 – 7.21 (m, 1H), 7.19 – 7.07 (m, 1H), 4.51 (q, *J* = 10.7 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 195.27, 152.59, 142.73 (q, *J* = 226 Hz), 135.51, 132.13, 126.86, 126.50 (q, *J* = 3 Hz), 125.23 (q, *J* = 222 Hz), 123.65, 122.62 (q, *J* = 31 Hz), 121.89, 121.80, 120.82, 43.08 (q, *J* = 27 Hz). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -60.17, -60.91. HRMS (ESI): calcd. for C₁₇H₁₃F₆N₂O₂ [M+H]⁺ 391.0876; found 391.0870.

methyl 4-(4-hydroxy-2-oxo-4-(2,2,2-trifluoroethyl)-1,4-dihydroquinazolin-3(2H)-yl)benzoate (4af): White solid; mp 191.2-192.0 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.67 (s, 1H), 10.34 (s, 1H), 8.42 (dd, J = 8.6, 1.2 Hz, 1H), 8.02 (dd, J = 8.2, 1.6 Hz, 1H), 7.95 – 7.86 (m, 2H), 7.72 – 7.59 (m, 3H), 7.20 – 7.13 (m, 1H), 4.52 (q, J = 10.7 Hz, 2H), 3.82 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 195.26, 166.38, 152.49, 144.78, 141.57, 135.50, 132.13, 130.81, 125.51 (q, J = 274 Hz), 123.27, 121.89, 121.78, 120.85, 118.21, 52.28, 43.08 (q, J = 26 Hz).¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -60.90. HRMS (ESI): calcd. for C₁₈H₁₆F₃N₂O₄ [M+H]⁺ 381.1057; found 381.1061.

4-hydroxy-3-(m-tolyl)-4-(2,2,2-trifluoroethyl)-3,4-dihydroquinazolin-2(1H)-one (4ah): White solid; mp 196.2-198.1 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.53 (s, 1H), 9.84 (s, 1H), 8.43 – 8.36 (m, 1H), 7.99 (dd, J = 8.1, 1.7 Hz, 1H), 7.61 (ddd, J = 8.7, 7.2, 1.6 Hz, 1H), 7.37 (d, J = 2.1 Hz, 1H), 7.30 (d, J =8.1 Hz, 1H), 7.20 – 7.08 (m, 2H), 6.81 (d, J = 7.4 Hz, 1H), 4.48 (q, J = 10.7 Hz, 2H), 2.28 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 195.08, 152.71, 142.06, 139.98, 138.32, 135.40, 132.05, 129.04, 125.52 (q, J = 276 Hz), 123.43, 121.6, 121.44, 120.75, 119.70, 116.32, 43.07 (q, J = 28 Hz), 21.72.¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -60.87. HRMS (ESI): calcd. for C₁₇H₁₆F₃N₂O₂ [M+H]⁺ 337.1158; found 337.1162.

3-(3-fluorophenyl)-4-hydroxy-4-(2,2,2-trifluoroethyl)-3,4-dihydroquinazolin-2(1H)-one (4ai): White solid; mp 187.1-192.0 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 10.61 (s, 1H), 10.13 (s, 1H), 8.48 – 8.36 (m, 1H), 8.03 – 7.95 (m, 1H), 7.72 – 7.59 (m, 1H), 7.57 – 7.44 (m, 1H), 7.36 – 7.27 (m, 1H), 7.25 – 7.20 (m, 1H), 7.17 – 7.10 (m, 1H), 6.84 – 6.76 (m, 1H), 4.50 (q, J = 10.6 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 195.24, 162.78 (d, J = 240 Hz), 152.61, 141.96 (d, J = 11 Hz), 141.76, 135.50, 132.11, 130.76 (d, J = 10 Hz), 125.50 (q, J = 275 Hz), 121.73, 121.68, 120.77, 114.75 (d, J = 3 Hz), 109.02 (d, J = 21 Hz), 105.73 (d, J = 26 Hz), 43.08 (q, J = 27 Hz). ¹⁹F NMR (376 MHz, DMSO- d_6) δ -60.90, -112.18. HRMS (ESI): calcd. for C₁₆H₁₃F₄N₂O₂ [M+H]⁺ 341.0908; found 341.0912.

3-(3-chlorophenyl)-4-hydroxy-4-(2,2,2-trifluoroethyl)-3,4-dihydroquinazolin-2(1H)-one (4aj): White solid; mp 224.3-227.4 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.61 (s, 1H), 10.13 (s, 1H), 8.40 (d, J = 8.5 Hz, 1H), 8.00 (dd, J = 8.2, 1.5 Hz, 1H), 7.75 (t, J = 2.0 Hz, 1H), 7.63 (ddd, J = 8.6, 7.2, 1.5 Hz, 1H), 7.47 – 7.29 (m, 2H), 7.16 – 7.10 (m, 1H), 7.04 (dt, J = 7.8, 1.5 Hz, 1H), 4.50 (q, J = 10.7 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 195.25, 152.61, 141.69, 141.65, 141.53, 135.49, 133.60, 132.10, 130.86, 125.50 (q, J = 275 Hz), 122.31, 121.77, 120.76, 118.42, 117.40, 43.08 (q, J = 26 Hz).¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -60.89. HRMS (ESI): calcd. for C₁₆H₁₃ClF₃N₂O₂ [M+H]⁺ 357.0612; found 357.0615.

3-(3-bromophenyl)-4-hydroxy-4-(2,2,2-trifluoroethyl)-3,4-dihydroquinazolin-2(1H)-one (4ak): White solid; mp 222.0-225.4 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 10.62 (s, 1H), 10.10 (s, 1H), 8.45 – 8.36 (m, 1H), 8.01 (dd, J = 8.1, 1.6 Hz, 1H), 7.94 – 7.84 (m, 1H), 7.67 – 7.58 (m, 1H), 7.41 (dd, J = 8.2, 1.9 Hz, 1H), 7.25 (t, J = 8.0 Hz, 1H), 7.21 – 7.05 (m, 2H), 4.50 (q, J = 10.7 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 195.28, 152.58, 141.79, 141.74, 135.52, 132.13, 131.17, 125.50 (q, J = 275 Hz), 125.21, 122.12, 121.76, 121.66, 121.28, 120.73, 117.78, 43.08 (q, J = 26 Hz). ¹⁹F NMR (376 MHz, DMSO- d_6) δ -60.89. HRMS (ESI): calcd. for C₁₆H₁₃BrF₃N₂O₂ [M+H]⁺401.0107; found 401.0103.

3-(4-hydroxy-2-oxo-4-(2,2,2-trifluoroethyl)-1,4-dihydroquinazolin-3(2H)-yl)benzonitrile (4al): White solid; mp 218.0-218.7 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.69 (s, 1H), 10.29 (s, 1H), 8.42 (dd, *J* = 8.6, 1.1 Hz, 1H), 8.05 – 7.98 (m, 2H), 7.73 (dt, *J* = 8.4, 1.6 Hz, 1H), 7.65 (ddd, *J* = 8.7, 7.2, 1.5 Hz, 1H), 7.52 (t, *J* = 7.9 Hz, 1H), 7.46 (dt, *J* = 7.7, 1.5 Hz, 1H), 7.19 – 7.14 (m, 1H), 4.52 (q, *J* = 10.7 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 195.37, 152.65, 141.59, 141.00, 135.57, 132.16, 130.68, 126.17, 125.50 (q, *J* = 275 Hz), 123.61, 121.90, 121.69, 121.57, 120.72, 119.34, 112.04, 43.08 (q, *J* = 27 Hz). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -60.90. HRMS (ESI): calcd. for C₁₇H₁₃F₃N₃O₂ [M+H]⁺ 348.0954; found 348.0959.

4-hydroxy-3-(o-tolyl)-4-(2,2,2-trifluoroethyl)-3,4-dihydroquinazolin-2(1H)-one (4am): White solid; mp 212.7-215.1 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 10.48 (s, 1H), 9.11 (s, 1H), 8.30 (dd, J = 8.6, 1.2 Hz, 1H), 7.96 (dd, J = 8.3, 1.5 Hz, 1H), 7.58 (ddd, J = 8.6, 7.2, 1.6 Hz, 1H), 7.44 (dd, J = 8.2, 1.5 Hz, 1H), 7.20 (dd, J = 8.0, 1.7 Hz, 1H), 7.17 – 7.08 (m, 2H), 7.04 (td, J = 7.4, 1.3 Hz, 1H), 4.44 (q, J = 10.7 Hz, 2H), 2.24 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 194.71, 153.43, 141.88, 137.11, 135.16, 131.80, 131.67, 130.78, 125.50 (q, J = 275 Hz), 125.04, 124.89, 122.33, 121.48, 121.11, 43.10 (q, J = 27 Hz), 17.61.¹⁹F NMR (376 MHz, DMSO- d_6) δ -60.86. HRMS (ESI): calcd. for C₁₇H₁₆F₃N₂O₂ [M+H]⁺ 337.1158; found 337.1166.

3-(2-fluorophenyl)-4-hydroxy-4-(2,2,2-trifluoroethyl)-3,4-dihydroquinazolin-2(1H)-one (4an): White solid; mp 221.4-226.4 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.45 (s, 1H), 9.72 (s, 1H), 8.26 – 8.17 (m, 1H), 7.97 (dd, *J* = 8.1, 1.6 Hz, 1H), 7.94 – 7.81 (m, 1H), 7.68 – 7.56 (m, 1H), 7.29 – 7.19 (m, 1H), 7.18 – 7.11 (m, 2H), 7.11 – 6.98 (m, 1H), 4.45 (q, *J* = 10.7 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 194.51, 153.87 (d, *J* = 242 Hz), 152.97, 141.00, 135.00, 131.67, 127.28 (d, *J* = 11 Hz), 125.50 (q, *J* = 274 Hz), 124.83 (d, *J* = 4 Hz), 124.41 (d, *J* = 7 Hz), 123.62, 123.12, 122.00, 121.68, 115.81 (d, *J* = 19 Hz), 43.17 (q, *J* = 26 Hz). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -60.90, -126.28. HRMS (ESI): calcd. for C₁₇H₁₆F₃N₂O₂ [M+H]⁺ 341.0908; found 341.0905.

3-(2-chlorophenyl)-4-hydroxy-4-(2,2,2-trifluoroethyl)-3,4-dihydroquinazolin-2(1H)-one (4ao): White solid; mp 220.9-223.8 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 10.46 (s, 1H), 9.43 (s, 1H), 8.17 (dd, J = 8.5, 1.2 Hz, 1H), 7.95 (dd, J = 8.0, 1.6 Hz, 1H), 7.79 (dt, J = 8.2, 1.3 Hz, 1H), 7.60 (ddd, J = 8.7, 7.2, 1.6 Hz, 1H), 7.52 – 7.43 (m, 1H), 7.31 (td, J = 7.7, 1.5 Hz, 1H), 7.14 (dtd, J = 9.6, 7.8, 1.4 Hz, 2H), 4.44 (q, J = 10.8 Hz, 2H).¹³C NMR (100 MHz, CDCl₃) δ 194.39, 153.17, 140.74, 135.99, 134.86, 131.47,

129.91, 129.61, 128.62, 127.86, 125.99, 125.56, 125.48 (q, J = 274Hz), 123.71, 122.15, 121.86, 43.15 (q, J = 26 Hz). ¹⁹F NMR (376 MHz, DMSO- d_6) δ -60.89. HRMS (ESI): calcd. for C₁₆H₁₃ClF₃N₂O₂ [M+H]⁺ 357.0612; found 357.0617.

6-fluoro-4-hydroxy-3-(p-tolyl)-4-(2,2,2-trifluoroethyl)-3,4-dihydroquinazolin-2(1H)-one (4at): White solid; mp 217.5-218.1 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.27 (s, 1H), 9.77 (s, 1H), 8.36 (dd, J = 9.4, 5.2 Hz, 1H), 7.85 (dd, J = 9.9, 3.0 Hz, 1H), 7.54 – 7.45 (m, 1H), 7.42 – 7.37 (m, 2H), 7.13 – 7.05 (m, 2H), 4.49 (q, J = 10.6 Hz, 2H), 2.25 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 194.17, 162.39, 156.24 (d, J = 238 Hz), 152.81, 138.26, 137.40, 131.59, 129.61, 125.45 (q, J = 303 Hz), 123.17 (d, J = 7.5 Hz), 122.37 (d, J = 22.5 Hz), 119.22, 117.42 (d, J = 24 Hz), 43.24 (q, J = 36 Hz), 20.82. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -61.02, -121.29. HRMS (ESI): calcd. for C₁₇H₁₅F₄N₂O₂ [M+H]⁺355.1064; found 355.1061.

3-(4-chlorophenyl)-6-fluoro-4-hydroxy-4-(2,2,2-trifluoroethyl)-3,4-dihydroquinazolin-2(1H)-one (4au): White solid; mp 206.3-206.7 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.34 (s, 1H), 10.02 (s, 1H), 8.36 (dd, J = 9.4, 5.2 Hz, 1H), 7.87 (dd, J = 9.9, 3.0 Hz, 1H), 7.57 – 7.51 (m, 3H), 7.36 – 7.33 (m, 2H), 4.50 (q, J = 10.6 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 194.32, 156.38 (d, J = 238 Hz), 152.70, 139.01, 137.93 (d, J = 2 Hz), 129.10, 128.79, 126.27, 125.75 (q, J = 193 Hz), 123.16 (d, J = 7 Hz), 122.43 (d, J = 23 Hz), 120.54, 117.53 (d, J = 23 Hz), 43.28 (q, J = 17 Hz). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -61.03, -120.89. HRMS (ESI): calcd. for C₁₆H₁₂ClF₄N₂O₂ [M+H]⁺ 375.0518 found 375.0521.

6-fluoro-4-hydroxy-3-(m-tolyl)-4-(2,2,2-trifluoroethyl)-3,4-dihydroquinazolin-2(1H)-one (4av): White solid; mp 214.5-216.1 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.28 (s, 1H), 9.81 (s, 1H), 8.36 (dd, J = 9.4, 5.2 Hz, 1H), 7.85 (dd, J = 9.9, 3.0 Hz, 1H), 7.52 (ddd, J = 9.3, 7.8, 3.1 Hz, 1H), 7.35 (d, J = 2.0 Hz, 1H), 7.30 – 7.27 (m, 1H), 7.16 (d, J = 7.8 Hz, 1H), 6.82 (d, J = 7.4 Hz, 1H), 4.49 (q, J = 10.7 Hz, 2H), 2.28 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 194.16, 156.28 (d, J = 238 Hz), 152.79, 139.92, 138.35, 138.14, 129.05, 125.36 (q, J = 275 Hz), 123.46, 123.21 (d, J = 7.5 Hz), 122.35 (d, J = 21 Hz), 119.69, 117.43 (d, J = 24 Hz), 116.31, 43.28 (q, J = 27 Hz), 20.77. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -61.02, -121.18. HRMS (ESI): calcd. for C₁₇H₁₅F₄N₂O₂ [M+H]⁺ 355.1064 found 355.1069.

3-(3-chlorophenyl)-6-fluoro-4-hydroxy-4-(2,2,2-trifluoroethyl)-3,4-dihydroquinazolin-2(1H)-one (4aw): White solid; mp 204.2-204.9 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.35 (s, 1H), 10.09 (s, 1H), 8.36 (dd, *J* = 9.4, 5.2 Hz, 1H), 7.87 (dd, *J* = 9.9, 3.0 Hz, 1H), 7.74 (t, *J* = 2.0 Hz, 1H), 7.58 – 7.50 (m, 1H), 7.38 – 7.28 (m, 2H), 7.05 (dt, *J* = 7.4, 1.8 Hz, 1H), 4.50 (q, *J* = 10.6 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 194.35, 156.46 (d, *J* = 238 Hz), 152.68, 141.58, 137.76 (d, *J* = 2 Hz), 133.61, 130.88, 125.34 (q, *J* = 275 Hz), 123.22 (d, *J* = 8 Hz), 122.53, 122.32, 118.39, 117.55 (d, *J* = 24 Hz), 117.37, 43.29 (q, *J* = 27 Hz). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -61.04, -120.72. HRMS (ESI): calcd. for C₁₆H₁₂ClF₄N₂O₂ [M+H]⁺ 375.0518 found 375.0515.

4-hydroxy-3-(p-tolyl)-4-(2,2,2-trifluoroethyl)-3,4-dihydroquinazoline-2(1H)-thione (6aa): White solid; mp 211.3-214.1 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 10.52 (s, 1H), 9.78 (s, 1H), 8.41 (dd, J = 8.6, 1.2 Hz, 1H), 7.99 (dd, J = 8.2, 1.6 Hz, 1H), 7.61 (ddd, J = 8.6, 7.1, 1.6 Hz, 1H), 7.46 – 7.37 (m, 2H), 7.15 – 7.06 (m, 3H), 4.47 (q, J = 10.7 Hz, 2H), 2.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 195.00, 152.75, 142.18, 137.45, 135.39, 132.03, 131.59, 129.58, 125.56 (q, J = 275 Hz), 121.60, 121.35, 120.73, 119.30, 43.07 (q, J = 26 Hz), 20.82. ¹⁹F NMR (376 MHz, DMSO- d_6) δ -60.86. HRMS (ESI): calcd. for C₁₇H₁₆F₃N₂OS [M+H]⁺ 353.0930; found 353.0935.

3-(4-fluorophenyl)-4-hydroxy-4-(2,2,2-trifluoroethyl)-3,4-dihydroquinazoline-2(1H)-thione (6ab): White solid; mp 219.1-222.2 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.60 (s, 1H), 9.95 (s, 1H), 8.45 – 8.39 (m, 1H), 8.02 – 7.94 (m, 2H), 7.77 – 7.70 (m, 1H), 7.65 – 7.60 (m, 1H), 7.53 – 7.50 (m, 1H), 7.28 – 7.18 (m, 1H), 7.11 (dd, *J* = 6.0, 1.9 Hz, 1H), 4.50 (q, *J* = 10.7 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 195.20, 158.03 (d, *J* = 237 Hz), 152.76, 142.11, 136.37 (d, *J* = 3 Hz), 135.50, 129.73, 129.03, 125.51 (q, *J* = 274 Hz), 121.46, 120.83 (d, *J* = 8 Hz), 120.63, 115.74 (d, *J* = 22 Hz), 43.06 (q, *J* = 25 Hz). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -60.87, -120.89. HRMS (ESI): calcd. for C₁₆H₁₃F₄N₂OS [M+H]⁺ 357.0679; found 357.0677.

3-(4-chlorophenyl)-4-hydroxy-4-(2,2,2-trifluoroethyl)-3,4-dihydroquinazoline-2(1H)-thione (6ac): White solid; mp 212.6-215.0 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 10.61 (s, 1H), 10.05 (s, 1H), 8.42 (dd, J = 8.6, 1.8 Hz, 1H), 8.02 (d, J = 1.5 Hz, 1H), 7.66 – 7.60 (m, 1H), 7.58 – 7.52 (m, 2H), 7.38 – 7.33 (m, 2H), 7.16 – 7.10 (m, 1H), 4.50 (q, J = 10.7 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 195.24, 152.62, 141.88, 139.08, 137.36, 135.51, 132.12, 129.73, 129.09, 125.51 (q, *J* = 274 Hz), 121.63, 121.04, 120.58, 43.07 (q, *J* = 27 Hz). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -60.87. HRMS (ESI): calcd. for C₁₆H₁₃ClF₃N₂OS [M+H]⁺ 373.0384; found 373.0387.

3-(4-bromophenyl)-4-hydroxy-4-(2,2,2-trifluoroethyl)-3,4-dihydroquinazoline-2(1H)-thione (6ad): White solid; mp 215.4-220.2 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.60 (s, 1H), 10.04 (s, 1H), 8.41 (dd, J = 8.5, 1.3 Hz, 1H), 7.97 – 7.94 (m, 1H), 7.67 – 7.58 (m, 2H), 7.48 (d, J = 2.1 Hz, 3H), 7.17 – 7.09 (m, 1H), 4.49 (q, J = 10.7 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 195.24, 152.59, 141.87, 139.51, 135.51, 132.12, 129.73, 129.04, 125.50 (q, J = 273 Hz), 121.64, 120.98, 120.71, 114.19, 43.09 (q, J = 27 Hz). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -60.88. HRMS (ESI): calcd. for C₁₆H₁₃BrF₃N₂OS [M+H]⁺ 416.9879; found 416.9875.

3-(3-fluorophenyl)-4-hydroxy-4-(2,2,2-trifluoroethyl)-3,4-dihydroquinazoline-2(1H)-thione (6ae): White solid; mp 189.9-192.9 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 10.62 (s, 1H), 10.14 (s, 1H), 8.44 – 8.38 (m, 1H), 7.97 – 7.93 (m, 1H), 7.67 – 7.59 (m, 2H), 7.56 – 7.52 (m, 1H), 7.36 – 7.28 (m, 1H), 7.18 – 7.11 (m, 1H), 6.85 – 6.77 (m, 1H), 4.50 (q, *J* = 10.7 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 195.25, 162.77 (d, *J* = 239 Hz), 152.61, 141.95 (d, *J* = 12 Hz), 141.73, 135.51, 133.34, 132.10, 131.20, 130.77 (d, *J* = 9 Hz), 125.50 (q, *J* = 275 Hz), 121.76, 120.78, 114.76 (d, *J* = 2 Hz), 109.04 (d, *J* = 21 Hz), 105.73 (d, *J* = 23 Hz), 43.08 (q, *J* = 26 Hz). ¹⁹F NMR (376 MHz, DMSO- d_6) δ -60.88, -112.16. HRMS (ESI): calcd. for C₁₆H₁₃F₄N₂OS [M+H]⁺ 357.0679; found 353.0677.

3-(3-chlorophenyl)-4-hydroxy-4-(2,2,2-trifluoroethyl)-3,4-dihydroquinazoline-2(1H)-thione (6af): White solid; mp 224.1-227.4 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.60 (s, 1H), 10.10 (s, 1H), 8.40 (d, J = 8.5 Hz, 1H), 7.97 – 7.91 (m, 1H), 7.75 (d, J = 2.1 Hz, 1H), 7.66 – 7.60 (m, 1H), 7.38 (dd, J = 7.6, 2.0 Hz, 1H), 7.32 (t, J = 8.0 Hz, 1H), 7.15 (t, J = 7.6 Hz, 1H), 7.05 (dd, J = 7.7, 2.1 Hz, 1H), 4.49 (q, J = 10.7 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 195.22, 152.60, 141.76, 141.65, 137.34, 135.51, 133.62, 132.89, 132.10, 125.48 (q, J = 275 Hz), 122.31, 121.74, 120.74, 118.45, 117.40, 43.08 (q, J = 26 Hz). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -60.86. HRMS (ESI): calcd. for C₁₆H₁₃ClF₃N₂OS [M+H]⁺ 373.0384; found 373.0388.

4-hydroxy-3-(o-tolyl)-4-(2,2,2-trifluoroethyl)-3,4-dihydroquinazoline-2(1H)-thione (6ag): White solid; mp 221.5-224.1 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.49 (s, 1H), 9.13 (s, 1H), 8.35 – 8.29 (m, 1H), 7.98 (dd, J = 8.1, 1.6 Hz, 1H), 7.64 – 7.55 (m, 1H), 7.46 (dd, J = 8.0, 1.5 Hz, 1H), 7.22 (dd, J = 7.5, 1.6 Hz, 1H), 7.19 – 7.02 (m, 3H), 4.46 (q, J = 10.7 Hz, 2H), 2.26 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.74 (q, J = 2 Hz), 153.42, 141.94, 137.10, 135.19, 131.83, 131.70, 130.78, 126.48, 125.74 (q, J = 275 Hz), 125.07, 124.90, 122.22 (q, J = 2 Hz), 121.44, 121.09, 43.59, 42.83 (q, J = 26 Hz). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -60.87. HRMS (ESI): calcd. for C₁₇H₁₆F₃N₂OS [M+H]⁺ 353.0930; found 353.0933.

5. Copies of all NMR spectra

¹H NMR (400 MHz, CDCl₃) of 4aa

¹⁹F NMR (376 MHz, CDCl₃) of 4aa

¹H NMR (400 MHz, DMSO- d_6) of **4ab**

¹³C NMR (100 MHz, DMSO-*d*₆) of **4ab**

¹⁹F NMR (376 MHz, DMSO- d_6) of **4ab**

¹H NMR (400 MHz, DMSO- d_6) of 4ac

¹³C NMR (100 MHz, DMSO- d_6) of **4ac**

¹H NMR (400 MHz, DMSO- d_6) of **4ad**

¹³C NMR (100 MHz, DMSO-*d*₆) of **4ad**

¹⁹F NMR (376 MHz, DMSO-d₆) of 4ad

¹³C NMR (100 MHz, DMSO- d_6) of **4ae**

¹⁹F NMR (376 MHz, DMSO-*d*₆) of **4ae**

¹H NMR (400 MHz, DMSO- d_6) of **4af**

¹³C NMR (100 MHz, DMSO- d_6) of **4af**

¹H NMR (400 MHz, DMSO- d_6) of **4ah**

¹⁹F NMR (400 MHz, DMSO- d_6) of **4ah**

¹⁹F NMR (376 MHz, DMSO-*d*₆) of **4ah**

¹H NMR (400 MHz, DMSO- d_6) of **4ai**

¹³C NMR (100 MHz, DMSO-*d*₆) of **4ai**

¹⁹F NMR (376 MHz, DMSO-*d*₆) of **4ai**

¹H NMR (400 MHz, DMSO- d_6) of **4aj**

¹³C NMR (100 MHz, DMSO-*d*₆) of **4aj**

¹H NMR (400 MHz, DMSO- d_6) of **4ak**

S29

 $^{19}\mathrm{F}$ NMR (376 MHz, DMSO- $d_6) of 4aj$

¹³C NMR (100 MHz, DMSO-*d*₆) of **4ak**

¹⁹F NMR (376 MHz, DMSO- d_6) of **4ak**

¹H NMR (400 MHz, DMSO- d_6) of **4al**

$^{13}\mathrm{C}$ NMR (100 MHz, DMSO- $d_6) of 4al$

¹⁹F NMR (376 MHz, DMSO-*d*₆) of **4al**

¹H NMR (400 MHz, DMSO- d_6) of **4am**

¹³C NMR (100 MHz, DMSO-*d*₆) of 4am

¹⁹F NMR (376 MHz, DMSO-*d*₆) of **4am**

¹H NMR (400 MHz, DMSO- d_6) of **4an**

¹³C NMR (100 MHz, DMSO-*d*₆) of **4an**

¹⁹F NMR (376 MHz, DMSO-*d*₆) of **4an**

¹H NMR (400 MHz, DMSO- d_6) of **4ao**

¹³C NMR (100 MHz, DMSO-*d*₆) of **4ao**

¹⁹F NMR (376 MHz, DMSO-*d*₆) of **4ao**

¹H NMR (400 MHz, DMSO- d_6) of **4at**

$^{13}\mathrm{C}$ NMR (150 MHz, DMSO- $d_6) of 4at$

¹H NMR (400 MHz, DMSO- d_6) of **4au**

¹⁹F NMR (378 MHz, DMSO- d_6) of **4at**

¹³C NMR (100 MHz, DMSO-*d*₆) of **4au**

¹⁹F NMR (378 MHz, DMSO- d_6) of 4au

¹H NMR (400 MHz, DMSO-*d*₆) of 4av

$^{13}\mathrm{C}$ NMR (150 MHz, DMSO- $d_6) of 4av$

¹⁹F NMR (378 MHz, DMSO-*d*₆) of **4av**

¹H NMR (400 MHz, DMSO- d_6) of **4aw**

$^{13}\mathrm{C}$ NMR (100 MHz, DMSO- $d_6) of 4aw$

¹⁹F NMR (378 MHz, DMSO-*d*₆) of **4aw**

¹H NMR (400 MHz, DMSO-*d*₆) of **6aa**

¹³C NMR (100 MHz, DMSO- d_6) of **6aa**

¹⁹F NMR (376 MHz, DMSO-*d*₆) of **6aa**

¹H NMR (400 MHz, DMSO-*d*₆) of **6ab**

¹³C NMR (100 MHz, DMSO-*d*₆) of **6ab**

¹⁹F NMR (376 MHz, DMSO-*d*₆) of **6ab**

¹³C NMR (100 MHz, DMSO-*d*₆) of **6ac**

¹H NMR (400 MHz, DMSO- d_6) of **6ad**

¹³C NMR (100 MHz, DMSO-*d*₆) of **6ad**

¹⁹F NMR (376 MHz, DMSO- d_6) of 6ad

¹H NMR (400 MHz, DMSO-*d*₆) of **6ae**

¹⁹F NMR (376 MHz, DMSO-*d*₆) of **6ae**

¹H NMR (400 MHz, DMSO- d_6) of **6af**

¹³C NMR (100 MHz, DMSO- d_6) of **6af**

¹⁹F NMR (376 MHz, DMSO- d_6) of **6af**

¹H NMR (400 MHz, DMSO- d_6) of **6ag**

¹³C NMR (100 MHz, DMSO-*d*₆) of **6ag**

¹⁹F NMR (376 MHz, DMSO-*d*₆) of **6ag**

6. The Computational Calculations

6.1. Computational Details

Density functional theory (DFT) calculations were performed with Gaussian 16. ¹ The geometry of each species was optimized using the B3LYP functional² and the 6-311G(d,p) basis set with the SMD³ solvation model for THF. Frequency calculations were also conducted at the same level of theory to obtain vibrational frequencies to determine the identity of stationary points as intermediates or transition states, as well as obtaining the thermal corrections to enthalpy (H_{correction}) and free energy (G_{correction}) at the temperature of 298 K. All DFT calculations were with an ultrafine integration grid. All structural figures were generated with CYLview⁴. Distances in structural figures are shown in Å and energies are in kcal/mol.

Fig. S2. DFT-computed Gibbs free-energy profiles for benzyl isocyanate^a. ^aValues are in kcal mol⁻¹, obtained at the B3LYP/6-311G (d, p), SMD (THF) level of theory for the

intramolecular cyclization reaction sequence.

la				
С	-1.7478080	0.6324750	-0.9503300	
С	-0.3747320	0.7232540	-0.8524250	
С	0.2446500	1.7972170	-0.1659040	
С	-0.5912570	2.8003440	0.4233040	
С	-1.9908150	2.6644890	0.2992370	
С	-2.5759000	1.6066510	-0.3704940	
Н	-2.1876130	-0.2043460	-1.4828670	
Н	0.2598250	-0.0343390	-1.3015730	
Н	-2.6294370	3.4175070	0.7431200	
Н	-3.6537810	1.5318110	-0.4478440	
С	-0.0122280	3.9557270	1.1352970	
0	1.2053300	4.1125760	1.2513750	
С	-0.9380460	4.9918080	1.7451090	
Н	-1.5993170	4.5432090	2.4916820	
Н	-0.3271690	5.7574940	2.2219600	
Н	-1.5683180	5.4586970	0.9831110	
Ν	1.5967530	1.8365030	-0.0750900	
Н	2.1524490	1.1600230	-0.5733190	
Н	2.0264540	2.6416240	0.3586640	

6.3. Cartesian Coordinates and Energies of Calculated Structures

2a				
С	-1.4830410	0.2484440	0.0204360	
С	-0.1032330	0.3026080	0.2369890	
С	0.6118370	1.4866130	0.0722000	
С	-0.0521240	2.6497960	-0.3170080	
С	-1.4345380	2.6178440	-0.5392930	
С	-2.1317510	1.4287290	-0.3702810	
Н	0.4258090	-0.5948410	0.5401140	
Н	1.6813950	1.5174830	0.2427740	
Н	-1.9513740	3.5219320	-0.8418910	
Н	-3.2029050	1.4171880	-0.5456350	
С	-2.2584370	-1.0330350	0.1981380	
Н	-1.6066700	-1.8525120	0.5075360	
Н	-3.0409670	-0.9201350	0.9554260	
Н	-2.7527080	-1.3285810	-0.7330020	
Ν	0.6922260	3.8265250	-0.4751240	
С	0.5479770	4.9801810	-0.7758600	
0	0.5401720	6.1196050	-1.0503910	

Ι			
С	-0.2292600	0.5643620	-1.6018530
С	-0.9702690	-0.1568460	-0.6501360
С	-2.1498310	0.4359960	-0.1045240
С	-2.5035880	1.7322580	-0.5239570

С	-1.7533230	2.4371790	-1.4496780	
С	-0.6147120	1.8374160	-1.9909390	
Н	0.6443770	0.1128690	-2.0489900	
Н	-3.3956550	2.1906000	-0.1185410	
Н	-2.0527010	3. 4325240	-1.7548710	
Н	-0.0220720	2.3632860	-2.7314630	
С	-3.0261500	-0.2816930	0.8586420	
0	-2.8637870	-1.4706340	1.1293410	
С	-4.1617660	0.4668440	1.5240050	
Н	-4.6302140	-0.1974010	2.2491270	
Н	-3.8063310	1.3683510	2.0293830	
Н	-4.9106740	0.7732920	0.7878940	
Ν	-0.6054110	-1.4386790	-0.2487180	
Н	-1.3675630	-1.9594230	0.1808060	
С	0.5046390	-2.2221110	-0.5577670	
Ν	1.7377320	-1.6078690	-0.6487550	
Н	2.4328810	-2.2312530	-1.0396330	
С	2.2654100	-0.5048590	0.0721850	
С	3.4134830	0.1162990	-0.4349500	
С	1.7266010	-0.0450780	1.2764870	
С	4.0047750	1.1720830	0.2483960	
Н	3.8414060	-0.2374180	-1.3672400	
С	2.3200940	1.0269770	1.9401450	
Н	0.8541110	-0.5229580	1.7025080	
С	3.4654520	1.6574870	1.4462640	
Н	4.8985220	1.6316420	-0.1620980	
Н	1.8850080	1.3678610	2.8742160	
0	0.3828180	-3.4255530	-0.7290730	
С	4.0925110	2.8270270	2.1638800	
Н	5.1817990	2.7355150	2.2004000	
Н	3.8648330	3.7709170	1.6556470	
Н	3.7240300	2.9077490	3.1889150	
Π				
С	-0.3020180	-0.5436080	0.4122790	
С	0.9780930	-0.0900890	0.8209960	
С	1.1581040	1.1814290	1.3217180	
С	0.0577270	2.0515820	1.3979490	
С	-1.1821940	1.6676680	0.9258170	
С	-1.3812680	0.3843480	0.3767870	
Н	1.8087230	-0.7845040	0.8084400	
Н	2.1328640	1.4980340	1.6718780	
Н	0.1852690	3.0495760	1.8021840	
Н	-2.0096370	2.3692440	0.9264240	
С	-0.5056220	-1.9447510	0.1810010	
Ν	-2.1177760	-1.7797510	-1.5598970	
С	-2.8521880	-0.6469000	-1.4333500	
Ν	-2.5768940	0.1260310	-0.2587370	
Н	-3.2236830	0.9060780	-0.2278090	
0	-3.7549650	-0.2274420	-2.1547340	
0	-1.5681180	-2.5470840	0.7250410	

Н	-2.1851930	-2.5780030	-0.0767480	
С	0.5722310	-2.8407270	-0.3072530	
Н	0.9980720	-3.3796010	0.5490750	
Н	0.1265820	-3.5994300	-0.9567690	
Н	1.3627240	-2.3169680	-0.8410750	
С	-2.0554930	-2.4205800	-2.8045660	
C	-1.9701710	-3, 8232140	-2.8327410	
Ĉ	-1.9897110	-1.7398690	-4.0373590	
Ĉ	-1.8246020	-4.5137350	-4, 0338430	
H	-2,0394150	-4 3714470	-1 8992820	
C.	-1 8411110	-2 4389260	-5 2271220	
Н	-2,0607130	-0.6602490	-4 0544340	
п С	-1 7565800	-3 8393070	-5. 2557500	
н	-1 7687500	-5 5979230	-/ 0177970	
Н	-1 7904440	-1 8850380	-6 1602570	
n C	-1 6135200	-1 5799520	-6 5620650	
С Ц	-0.7740880	-4. 1046750	-7 1407700	
П Ц	-1 4492110	4.1340730	-6 2021100	
11 11	2 5121260	4 4722270	7 1707970	
Π	-2. 0121000	-4. 4732270	-1.1191010	
III				
 	-2 6583300	0 3219700	1 4634160	
C	-1 3354500	0. 2795450	1. 0467470	
C	-0.7866850	1, 3670240	0.3538460	
C	-1 5569810	2 5034950	0.0805200	
C	-2 8873500	2.5054550	0.5070970	
C	-3 4404610	2. 3210890	1 1064360	
U	3.4404010 2.0797200	0 5222500	1. 1904300	
П	-3.0101290	-0.0223090	1.9903900	
П		-0. 0070010	1.2497300	
П	-5. 5099120	5. 3003090 1. 49403E0	0.2914990	
П N	-4. 4731130	1,4840330	1. 3104340	
IN II	0. 0050510	1. 3298280	-0.0724500	
H	1.0858520	0. 5024620	0.1071470	
C	1.2516300	2.4182220	-0.5156090	
0	2. 4521470	2.3368540	-0.7325350	
N	0. 5268140	3. 5919130	-0.6546380	
C	1.2761860	4.7164080	-1.1652660	
С	1.8052380	5.6545930	-0.2807890	
С	1. 4759420	4.8820050	-2.5367120	
С	2.5122550	6.7526140	-0.7636020	
H	1.6589330	5. 5215080	0.7849990	
С	2.1802150	5.9856070	-3.0123370	
Н	1.0943500	4. 1409600	-3.2289840	
С	2.7108060	6.9395200	-2.1365490	
Н	2.9155730	7.4759200	-0.0621290	
Н	2.3260670	6.1018710	-4.0815630	
С	3.5031460	8.1139130	-2.6546070	
Н	3.1528930	8.4279130	-3.6409060	
Н	3.4367230	8.9691810	-1.9779780	
Н	4.5637900	7.8556200	-2.7521450	
С	-0.9587860	3.6288340	-0.7544060	

С	-1.4660640	5.0089620	-0.3252620	
Н	-1.0393040	5.7893290	-0.9572040	
Н	-2.5491700	5.0528820	-0.4333730	
Н	-1.2029750	5.2211640	0.7123340	
0	-1.3752000	3.3641420	-2.1048550	
Н	-1.2305690	4. 1679730	-2.6214570	
IV				
С	-2.0326350	-0.2184310	-0.0135940	
С	-0.6852040	-0.2654030	-0.3932770	
С	0.0658890	0.8997910	-0.4194290	
С	-0.5195770	2.1172210	-0.0608620	
С	-1.8560290	2.1575990	0.3116390	
С	-2.6441930	0.9970890	0.3338830	
Н	-0.2430840	-1.2190230	-0.6610400	
Н	1.1087680	0.8596040	-0.7127980	
Н	0.0657330	3.0290970	-0.0688650	
Н	-2.2930760	3.1055430	0.5972490	
Ν	-2.7853960	-1.3843300	0.0226540	
Н	-2.3483560	-2.2636780	-0.2175870	
С	-4.0811820	-1.4816920	0.4705520	
Ν	-4.6825600	-0.2780480	0.8263360	
С	-6.0469080	-0.3675250	1.2905400	
С	-7.0992310	-0.3775900	0.3766780	
С	-6.3111890	-0.4272530	2.6546300	
С	-8.4108180	-0.4556250	0.8328210	
Н	-6.8878880	-0.3278230	-0.6853930	
С	-7.6289240	-0.5038220	3.1028140	
Н	-5.4891580	-0.4173600	3.3613390	
С	-8.6989840	-0.5200670	2.2028560	
Н	-9.2242220	-0.4687370	0.1142040	
Н	-7.8260980	-0.5556740	4.1685210	
С	-10.1259690	-0.6103970	2.6837230	
Н	-10.7184550	0.2374460	2.3255930	
Н	-10.6091940	-1.5200800	2.3127130	
Н	-10.1782960	-0.6227360	3.7742080	
0	-4.6541920	-2.5561230	0.5446430	
С	-4.0771570	1.0056730	0.7015030	
С	-4.7833450	2.1311400	0.9144880	
Н	-5.8270360	2.1126670	1.1897130	
Н	-4. 3179800	3. 1001300	0.8118560	
<u>2a'</u>	1 1005000	0 1001050	0.0000100	
U U	-1.1885880	-0.1381950	0.2802190	
П	-0.9072320	-1.1898/90	U. 487752U	
П U	-1.0050180	0.0392130	-0. 1842130	
п С	-2.2348000	0.0188320	U. 403733U	
с ц	-0.5401200	U. 1901230 1 0250250	1, 104030U 0 0400620	
н Ц	-0.5605570	1.0009200	U. 940UD3U 9 9197540	
11	0.0000010	0.0113310	2.2121040	

C	1 1594690	0 5010100	0.0107400	
C	1.1534630	0. 5918190	0.9167480	
Н	1.4068710	0. 7979750	-0.1279040	
Н	1.4337390	-0.4431150	1. 1231090	
N	1.9749900	1. 4377610	1.7687340	
C	2. 1202620	2.5910540	2.0515480	
0	2.3630060	3. 6847440	2. 4126400	
Ι'				
С	-0.2775780	0.5888170	-1.6949930	
С	-0.9160450	-0.1271560	-0.6643430	
С	-2.0795430	0.4417390	-0.0565550	
С	-2.5095290	1.7109190	-0.4887930	
С	-1.8569100	2.4112160	-1.4885950	
С	-0.7404490	1.8315520	-2.0957640	
Н	0.5778270	0.1521380	-2.1906650	
Н	-3.3858310	2.1508070	-0.0317890	
Н	-2.2146200	3.3847870	-1.8010170	
Н	-0.2265000	2.3505390	-2.8976790	
С	-2.8635690	-0.2770660	0.9804200	
0	-2.6214080	-1.4417960	1.2947140	
С	-4.0101590	0.4356940	1.6678500	
Н	-4.4056750	-0.2220350	2.4408000	
Н	-3.6863840	1.3766780	2.1199970	
Н	-4.8084400	0.6672040	0.9564940	
Ν	-0.4634960	-1.3699930	-0.2426670	
Н	-1.1668150	-1.8973490	0.2703220	
С	0.5971640	-2.1638130	-0.7139170	
Ν	1.8005580	-1.5491720	-0.9194220	
Н	2.4914530	-2.1956070	-1.2798820	
0	0.4248180	-3.3603390	-0.9027930	
С	2.3498060	-0.4102640	-0.1759300	
Н	2.6918520	0.3551000	-0.8813850	
Н	1.5522770	0.0326330	0.4197460	
С	3.5090530	-0.8268980	0.7348230	
Н	4.2764270	-1.3251860	0.1303700	
Н	3.1467840	-1.5656090	1.4577170	
С	4.1252670	0.3668000	1.4664630	
Н	4.9530670	0.0490070	2.1061470	
Н	4.5158130	1.1076020	0.7613540	
Н	3.3876630	0.8674490	2.1017820	
II'				
С	-0.5293690	-0.6781030	0.0808170	
С	0.6126030	-0.8538080	0.8695310	
С	1.3406890	0.2332390	1.3445810	
С	0.9335560	1. 5286850	1.0275030	
С	-0.1850600	1.7274950	0.2290650	
С	-0.9117800	0.6287890	-0.2433000	
Н	0.9272380	-1.8551230	1.1361000	
Н	2.2146990	0.0693290	1.9641790	

Н	1.4895620	2.3842780	1.3936560	
Н	-0.5017900	2.7300460	-0.0397110	
С	-1.4202750	-1.8500220	-0.2817770	
Ν	-2.3998160	-1.4076610	-1.6299660	
С	-2.6694590	-0.0156850	-1.8820910	
N	-2.0094030	0.8646260	-1.0829240	
Н	-2,2528210	1,8322320	-1.2577240	
0	-3. 4746410	0.3353720	-2.7239970	
0	-2.4852580	-2,0092220	0. 5209510	
H	-3.0635050	-1.7415310	-0.6819590	
C	-0.6657570	-3.1202050	-0.6420450	
H	-0. 2006160	-3,4932670	0. 2738130	
Н	-1 3586500	-3 8912790	-0.9791690	
Н	0 1160710	-2,9655860	-1 3894970	
C	-2,4995630	-2.2643240	-2.8513970	
H	-1 5479850	-2 7821510	-2.9754880	
Н	-2.6412690	-1 6095930	-3 7104980	
C	-3 6564070	-3 2603270	-2 7685140	
Н	-4 5893690	-2 7003940	-2.6462350	
Н	-3 5431690	-3 8843690	-1 8763410	
C	-3 7356370	-4 1423600	-4 0152070	
Н	-4 5750160	-4 8393460	-3 9461350	
Н	-3 8758140	-3 5413130	-4 9192680	
Н	-2 8229180	-4 7329930	-4 1445740	
	2.0223100	1.1023300	1. 1 1 10 10	
ш,				
	-5 01/9090	0 1060340	0.0752620	
C	-4 0839660	1 1286420	-0.0304990	
C	-2 7135110	0.8287190	-0.0598490	
C	-2 2779780	-0.4977970	0.0014300	
C	-3 2323210	-1 5111770	0.1264110	
C	-/ 5920210	-1 2227900	0.1601330	
н	-6.0721850	0.3457980	0.0998610	
н	-4 3997750	2 1654110	-0.0810400	
Н	-2 9012550	-2 5392190	0.2112340	
Н	-5 3153370	-2 0240220	0.2112010 0.2565240	
N	-1 7751140	1 8456360	-0.1347240	
Н	-2 0807930	2 8080870	-0.1123430	
C	-0.4081550	1 6669620	-0.0874150	
0	0 3424460	2 6381850	-0.0487410	
N	0.0432810	0.3711130	-0 1151810	
C	-0.7971080	-0.8485910	-0.0378960	
C	-0.4827380	-1 7689270	-1 2281340	
н	0.5705560	-2 0617780	-1 2201040	
Н	-1 0878740	-2 6753400	-1 17/3030	
н	1. 0010110	2.0100100	1.1110000	
11	-0 6995/90	-1 2597390	-2 $h \times h $	
0	-0.6995490 -0.5261280	-1.2597390 -1.5392390	-2.1686870	
О Н	-0.6995490 -0.5261280 0.1830270	-1.2597390 -1.5392390 -2.1742930	-2.1686870 1.1900460 1.0335610	
O H C	-0. 6995490 -0. 5261280 0. 1830270 1. 5055760	-1.2597390 -1.5392390 -2.1742930 0.2062550	-2. 1686870 1. 1900460 1. 0335610 -0. 0379910	
О Н С н	-0.6995490 -0.5261280 0.1830270 1.5055760 1.8827860	-1. 2597390 -1. 5392390 -2. 1742930 0. 2062550 0. 8939420	-2. 1686870 1. 1900460 1. 0335610 -0. 0379910 0. 7215400	
О Н С Н	-0. 6995490 -0. 5261280 0. 1830270 1. 5055760 1. 8827860 1. 7100010	-1. 2597390 -1. 5392390 -2. 1742930 0. 2062550 0. 8939420 -0. 8030450	-2. 1686870 1. 1900460 1. 0335610 -0. 0379910 0. 7215490 0. 3206700	

С	2.2462910	0.4543670	-1.3569120	
Н	2.0277770	1.4708340	-1.6928250	
Н	1.8698100	-0.2283120	-2.1250640	
С	3.7574690	0.2744910	-1.1963010	
Н	4.2779010	0.4566230	-2.1407150	
Н	4.1634300	0.9706820	-0.4551890	
Н	4.0080990	-0.7408230	-0.8702440	
IV'				
С	2.5319070	0.7426740	-0.2209540	
С	3.8908400	1.0700590	-0.1392440	
С	4.8061770	0.1120560	0.2708560	
С	4.3707680	-1.1715480	0.6117610	
С	3.0218670	-1.4897900	0.5250450	
С	2.0775560	-0.5475260	0.0919050	
Н	4.2112390	2.0742580	-0.3954120	
Н	5.8577730	0.3676790	0.3354180	
Н	5.0804270	-1.9176540	0.9492250	
Н	2.6951300	-2.4822210	0.8081400	
Ν	1.6024410	1.6921540	-0.6203180	
Н	1.9143950	2.6282660	-0.8397900	
С	0.2364020	1.5398110	-0.5569110	
Ν	-0.2169200	0.2747320	-0.2010260	
0	-0.5079480	2.4789270	-0.8038670	
С	0.6367170	-0.8518050	-0.0568630	
С	0.1607370	-2.1118810	-0.0441860	
Н	-0.8881010	-2.3498830	-0.1261160	
Н	0.8397190	-2.9466440	0.0485730	
С	-1.6786230	0.0851650	-0.1725600	
Н	-1.9326330	-0.7375530	-0.8456680	
Н	-2.1084900	0.9933200	-0.5882270	
С	-2.2522080	-0.1660470	1.2280730	
Н	-3.3219850	-0.3647450	1.0973030	
Н	-1.8198340	-1.0747310	1.6562610	
С	-2.0613250	1.0011480	2.1985480	
Н	-2.5209850	0.7778960	3.1658760	
Н	-1.0015860	1.2028170	2.3787330	
Н	-2.5167960	1.9191400	1.8151490	

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang,

M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

- 2. Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. *Phys. Chem. Chem. Phys.*, **2008**, 10(44), 6615–6620.
- (a) Barone, V.; Cossi, M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. *J. Phys. Chem. A*, **1998**, 102(11), 1995–2001. (b) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. *J. Comput. Chem.*, **2003**, 24(6), 669–681.
- 4. Legault, C. Y. CYLview, 1.0b; Universite' de Sherbrooke, 2009; http://www.cylview.org.