SUPPORTING INFORMATION

Electrochemical synthesis of CN-substituted imidazo[1,5-a]pyridines via cascade process using $\mathrm{NH}_{4} \mathrm{SCN}$ as both electrolyte and non-trivial cyanating agent

Sergei S. Grishin, ${ }^{\text {a,b }}$ Olga M. Mulina, ${ }^{a}$ Vera A. Vil', *a Alexander O. Terent'ev* ${ }^{*, b}$

${ }^{\text {a N N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, } 47 \text { Leninsky }}$
Prospect, Moscow, 119991, Russian Federation. E-mail: alterex@yandex.ru, terentev@ioc.ac.ru
${ }^{\mathrm{b}}$ D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, Moscow, 125047, Russian Federation.
Table of content
General materials and methods S2
Synthesis of starting compounds S2
Electrochemical cell S2
Determination of water content in distilled DMSO using Volumetric Karl Fischer titration. S3
Experimental Procedures for Scheme 3 S4
Experimental Procedures for Table 1 S4
Experimental Procedure for Table 1, entry 1-3 S4
Experimental Procedure for Table 1, entries 4-6 S5
Experimental Procedure for Table 1, entry 12 S5
Experimental Procedure for Table 1, entries 13-17 S5
Experimental Procedure for Table 1, entry 18 S6
General Experimental Procedure for Scheme 4. S8
Experimental Procedure for Scale-Up Electrosynthesis. S17
Experimental Procedures for Scheme 5 S17
Experimental Procedures for Scheme 6 S20
Experimental procedures for electrolysis of the starting substrates under optimal conditions with
$\mathrm{NH}_{4} \mathrm{OAc}$ or $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$. S21
CV-study S22
Bioassay of fungicidal activity S24
X-ray study S25
References S32
NMR spectra of the synthesized compounds S33
HRMS spectra of the synthesized compounds S88

General materials and methods

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker AVANCE II 300 spectrometer (300.13 and 75.48 MHz , respectively) in $\mathrm{CDCl}_{3}, \mathrm{DMSO}-\mathrm{d}_{6}$, and $\mathrm{CD}_{3} \mathrm{CN}$. Chemical shifts were reported in parts per million (ppm), and the residual solvent peak was used as an internal reference: ${ }^{1} \mathrm{H}$ $\left(\mathrm{CDCl}_{3} \delta=7.26 \mathrm{ppm}\right),{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3} \delta=77.16 \mathrm{ppm}\right) ;{ }^{1} \mathrm{H}\left(\mathrm{DMSO}-d_{6} \delta=2.50 \mathrm{ppm}\right),{ }^{13} \mathrm{C}\left(\mathrm{DMSO}-d_{6}\right.$ $\delta=39.52 \mathrm{ppm}) ;{ }^{1} \mathrm{H}\left(\mathrm{CD}_{3} \mathrm{CN} \delta=1.94 \mathrm{ppm}\right),{ }^{13} \mathrm{C}\left(\mathrm{CD}_{3} \mathrm{CN} \delta=1.32 \mathrm{ppm}\right)$. Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), sept (septet), m (multiplet).

High resolution mass spectra (HR-MS) were measured on a Bruker micrOTOF II instrument using electrospray ionization (ESI). The measurements were performed in a positive ion mode (interface capillary voltage - 4500 V); mass range from $\mathrm{m} / \mathrm{z} 50$ to $\mathrm{m} / \mathrm{z} 3000$ Da; external calibration with Electrospray Calibrant Solution (Fluka). A syringe injection was used for all acetonitrile solutions (flow rate $3 \mu \mathrm{~L} / \mathrm{min}$). Nitrogen was applied as a dry gas; interface temperature was set at $180^{\circ} \mathrm{C}$.

The TLC analysis was carried out on standard silica gel chromatography plates (DCFertigfolien ALUGRAM ${ }^{\mathrm{R}}$ Xtra SIL G / UV_{254}). Column chromatography was performed using silica gel (0.040-0.060 mm, 60 A).

DMSO was distilled according to a standard procedure under $\mathrm{CaH}_{2} . \mathrm{NH}_{4} \mathrm{SCN}$ was dried under reduced pressure at $60{ }^{\circ} \mathrm{C}$. DMF, DMA, $\mathrm{CH}_{3} \mathrm{CN}, p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$, pyridine, $\mathrm{KI}, \mathrm{Cs}_{2} \mathrm{CO}_{3}$, NaHCO_{3}, DMAP, DBU, 2,6-lutidine, 2-pycoline, pyrazine, $\mathrm{NH}_{4} \mathrm{OAc} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{KSCN}, \mathrm{NaSCN}$ were purchased from commercial sources and were used as is.

Synthesis of starting compounds

Aldehydes 1a-d and amines $\mathbf{2 a - 2 r}$ were obtained from commercial suppliers and used without further purification. Imidazo[1,5-a]pyridine $7{ }^{1}$ and N-benzyl-1-(pyridin-2-yl)methanimine 8^{2} were prepared according to the literature procedures.

Electrochemical cell

Glassy carbon and platinum plates from Russian commercial suppliers were used as electrodes (glassy carbon: SU-2000: TU 1916-027-27208846-01; platinum grade: AISI 304): The reactions were performed in a common chemical tube.

Before all electrochemical reactions, the electrodes were put into 5 M solution of KOH and this mixture was electrolyzed for 10 minutes at $j=200 \mathrm{~mA} / \mathrm{cm}^{2}$. After that, the polarity of electrodes was changed and the mixture was electrolyzed under these conditions again. Then the electrodes were washed with running water and then with acetone. All these procedures help to clean the electrodes from the impurities from the previous electrolysis.
The detailed electrochemical equipment was presented in our previous study. ${ }^{3}$

Determination of water content in distilled DMSO using Volumetric Karl Fischer titration.

Determination of water content in dimethyl sulfoxide (volumetric titration) was carried out accordance with the Pharmacopoeia of the Eurasian Economic Union, OFS.2.1.5.12 "Water: determination by a semi-micro method. Method A.
Reagents: solvent based on methanol ("Aqua M®-Solvent", TU2638-001-33699038-115-09 or of similar quality), K. Fischer titration reagent "HYDRANAL®-Titrant 2" ("Fluka" 34811 or of similar quality), hydranal Water Standart 10.0 for titration ("Fluka" 34849 or similar quality).
Titer setting (T): A methanol-based solvent was placed in the titration vessel and 1.0 ml of Hydranal Water Standart 10.0 was taken using disposable syringe. The syringe with water was weighted and injected into the titration cell. Then the syringe was weighted again and the mass of a sample Hydranal Water Standart was calculated based on the difference in the measuring results. Titration was carried out to the end point of titration. Based on results of titration and mass of a sample Hydranal Water Standart, the value of titre ($\mathrm{T}, \mathrm{mg} / \mathrm{ml}$) was calculated according to the formula:

$$
T=\frac{a_{1} \times c_{0}}{V_{1}}
$$

in which V_{1} is the volume of titrant used for titration, mL ;
a_{1} is the mass of a sample of Hydranal Water Standart, in g;
c_{0} is the water content in a sample of Hydranal Water Standart mg / g.
The value of titre was determined as the average value of at least three parallel determinations.
The test solution. Using a disposable syringe 0.5 mL of dimethyl sulfoxide was placed in titration vessels. Titration was carried out to the end point of titration.

Determination of water content in a sample, in percent, was calculated by the formula:

$$
W=\frac{V \times T \times 100}{a \times 1000}
$$

in which V is the volume of titrant used for titration, mL ;
a_{1} is the volume of sample, mL ;
T is a titer, $\mathrm{mg} / \mathrm{mL}$.
According to the described procedure, at least three determinations were carried out. The average values of at least three parallel determinations were taken as the result of the analysis.
distilled DMSO according standard procedure under CaH_{2}

Sample weight, g	Water content in substance, $\%$	Average water content in the substance, \%	S^2	s	RSD,\%
0,6250	0,0210		0,020	$3,33 E-$ 07	0,0006
0,6225	0,0200	2,84			
0,7232	0,0200				

Experimental Procedures for Scheme 3

a) An undivided cell was equipped with a glassy carbon anode $\left(3 \mathrm{~cm}^{2}\right)$ and a platinum plate cathode ($3 \mathrm{~cm}^{2}$) and connected to a DC regulated power supply. The solution of $(E)-\mathrm{N}$-benzyl-1-(pyridin-2-yl)methanimine ($1.0 \mathrm{mmol}, 196 \mathrm{mg}, 1.0 \mathrm{eq}$.$) , \mathrm{NH}_{4} \mathrm{SCN}(2.0 \mathrm{mmol}, 152 \mathrm{mg}, 2.0 \mathrm{eq}$.$) , and$ pyridine ($0.5 \mathrm{mmol}, 39 \mathrm{mg}, 40.0 \mu \mathrm{~L}, 0.5$ eq.) without additives or with $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{mmol}, 18.0 \mu \mathrm{~L}, 1.0$ eq.) in a 10 mL of DMSO was electrolyzed using constant current conditions at $70^{\circ} \mathrm{C}$ under magnetic stirring for 214 min . with $\mathrm{I}=60 \mathrm{~mA}$. After that, the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ $(30 \mathrm{~mL})$ and washed with mixture of PE and ethyl acetate (1:1) ($2 \times 30 \mathrm{~mL}$). Combined organic layer were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure using a rotary evaporator ($15-20 \mathrm{mmHg}$), (bath temperature, ca. $30-40^{\circ} \mathrm{C}$). Product 3a was isolated by chromatography on $\mathrm{SiO}_{2}(\mathrm{PE}: \mathrm{EtOAc}=$ from 8:1 to 2:1).
b) An undivided cell was equipped with a glassy carbon anode $\left(3 \mathrm{~cm}^{2}\right)$ and a platinum plate cathode ($3 \mathrm{~cm}^{2}$) and connected to a DC regulated power supply. The solution of pyridine-2carboxaldehyde 1a ($1.0 \mathrm{mmol}, 107 \mathrm{mg}, 1.0 \mathrm{eq}$.), benzylamine $\mathbf{2 a}(2.0 \mathrm{mmol}, 214 \mathrm{mg}, 2.0 \mathrm{eq}$.$) ,$ $\mathrm{NH}_{4} \mathrm{SCN}(2.0 \mathrm{mmol}, 152 \mathrm{mg}, 2.0 \mathrm{eq}$.), and pyridine ($0.5 \mathrm{mmol}, 39 \mathrm{mg}, 40.0 \mu \mathrm{~L}, 0.5 \mathrm{eq}$.) in a 10 mL DMSO with $3 \AA \mathrm{MS}(1.0 \mathrm{~g})$; without additives or with $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{mmol}, 18.0 \mu \mathrm{~L}, 1.0 \mathrm{eq}$.), (5.0 $\mathrm{mmol}, 90 \mu \mathrm{~L}, 1.0 \mathrm{eq}$.) or ($50.0 \mathrm{mmol}, 900 \mu \mathrm{~L}, 50.0 \mathrm{eq}$.) was electrolyzed using constant current conditions at $70^{\circ} \mathrm{C}$ under magnetic stirring for 214 min . with $\mathrm{I}=60 \mathrm{~mA}$. After that, the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and washed with mixture of PE and ethyl acetate (1:1) $(2 \times 30 \mathrm{~mL})$. Combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure using a rotary evaporator ($15-20 \mathrm{mmHg}$), (bath temperature, ca. $30-40^{\circ} \mathrm{C}$). Product 3a was isolated by chromatography on $\mathrm{SiO}_{2}(\mathrm{PE}: \mathrm{EtOAc}=$ from $8: 1$ to 2:1).

Experimental Procedures for Table 1

Experimental Procedure for Table 1, entry 1-3

An undivided cell was equipped with a glassy carbon anode ($3 \mathrm{~cm}^{2}$) and a platinum plate cathode ($3 \mathrm{~cm}^{2}$) and connected to a DC regulated power supply. The solution of pyridine-2-carboxaldehyde 1a ($1.0 \mathrm{mmol}, 107 \mathrm{mg}, 1.0 \mathrm{eq}$.), benzylamine 2a ($2.0 \mathrm{mmol}, 214 \mathrm{mg}, 2.0 \mathrm{eq}$.), NaSCN, KSCN or $\mathrm{NH}_{4} \mathrm{SCN}$ ($2.0 \mathrm{mmol}, 2.0$ eq.) in 10 mL of DMSO with $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{mmol}, 18.0 \mu \mathrm{~L}, 1.0$ eq.) was electrolyzed using constant current conditions at $70^{\circ} \mathrm{C}$ under magnetic stirring for 214 min . with $\mathrm{I}=60 \mathrm{~mA}$. After that, the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and washed with mixture of PE and ethyl acetate ($1: 1$) ($2 \times 30 \mathrm{~mL}$). Combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure using a rotary evaporator ($15-20 \mathrm{mmHg}$), (bath temperature, ca. $30-40^{\circ} \mathrm{C}$). Product 3a was isolated by chromatography on $\mathrm{SiO}_{2}(\mathrm{PE}: E t O A c=$ from 8:1 to 2:1).

Experimental Procedure for Table 1, entries 4-6

An undivided cell was equipped with a glassy carbon anode ($3 \mathrm{~cm}^{2}$) and a platinum plate cathode ($3 \mathrm{~cm}^{2}$) and connected to a DC regulated power supply. The solution of pyridine-2-carboxaldehyde 1a ($1.0 \mathrm{mmol}, 107 \mathrm{mg}, 1.0$ eq.), benzylamine 2a ($2.0 \mathrm{mmol}, 214 \mathrm{mg}, 2.0 \mathrm{eq}$.), $\mathrm{NH}_{4} \mathrm{SCN}(2.0 \mathrm{mmol}$, 152 mg , 2.0 eq.), and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, DBU or pyridine ($1.0 \mathrm{mmol}, 1.0$ eq.) in 10 mL of DMSO with $\mathrm{H}_{2} \mathrm{O}$ ($1.0 \mathrm{mmol}, 18.0 \mu \mathrm{~L}, 1.0 \mathrm{eq}$.) was electrolyzed using constant current conditions at $70^{\circ} \mathrm{C}$ under magnetic stirring for 214 min . with $\mathrm{I}=60 \mathrm{~mA}$. After that, the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ $(30 \mathrm{~mL})$ and washed with mixture of PE and ethyl acetate (1:1) $(2 \times 30 \mathrm{~mL})$. Combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure using a rotary evaporator ($15-20 \mathrm{mmHg}$), (bath temperature, ca. $30-40{ }^{\circ} \mathrm{C}$). Product 3a was isolated by chromatography on SiO_{2} (PE : EtOAc $=$ from $8: 1$ to $2: 1$).

Experimental Procedure for Table 1, entry 7-11

An undivided cell was equipped with a glassy carbon anode ($3 \mathrm{~cm}^{2}$) and a platinum plate cathode ($3 \mathrm{~cm}^{2}$) and connected to a DC regulated power supply. The solution of pyridine-2-carboxaldehyde 1a ($1.0 \mathrm{mmol}, 107 \mathrm{mg}, 1.0$ eq.), benzylamine 2a ($2.0 \mathrm{mmol}, 214 \mathrm{mg}, 2.0 \mathrm{eq}$.), $\mathrm{NH}_{4} \mathrm{SCN}(2.0 \mathrm{mmol}$, $152 \mathrm{mg}, 2.0 \mathrm{eq}$.), and pyridine ($0.5 \mathrm{mmol}, 39 \mathrm{mg}, 40.0 \mu \mathrm{~L}, 0.5 \mathrm{eq}$.) in a 10 mL DMSO, $\mathrm{CH}_{3} \mathrm{CN}$, DMF, PhCl or $n-\mathrm{BuOH}$ with $\mathrm{H}_{2} \mathrm{O}\left(1.0 \mathrm{mmol}, 18.0 \mu \mathrm{~L}, 1.0\right.$ eq.) (in the case of $\mathrm{PhCl} \mathrm{n}-\mathrm{Bu}_{4} \mathrm{NClO}_{4}$ (3 eq., 3.0 mmol) was added) was electrolyzed using constant current conditions at $70^{\circ} \mathrm{C}$ under magnetic stirring for 214 min . with $\mathrm{I}=60 \mathrm{~mA}$. After that, the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ $(30 \mathrm{~mL})$ and washed with mixture of PE and ethyl acetate (1:1) $(2 \times 30 \mathrm{~mL})$. Combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure using a rotary evaporator ($15-20 \mathrm{mmHg}$), (bath temperature, ca. $30-40{ }^{\circ} \mathrm{C}$). Product 3a was isolated by chromatography on $\mathrm{SiO}_{2}(\mathrm{PE}: E t O A c=$ from 8:1 to 2:1).

Experimental Procedure for Table 1, entry 12

An undivided cell was equipped with a glassy carbon anode ($3 \mathrm{~cm}^{2}$) and a platinum plate cathode $\left(3 \mathrm{~cm}^{2}\right)$. The solution of pyridine-2-carboxaldehyde $\mathbf{1 a}(1.0 \mathrm{mmol}, 107 \mathrm{mg}, 1.0 \mathrm{eq}$.$) , benzylamine$ 2a ($2.0 \mathrm{mmol}, 214 \mathrm{mg}, 2.0 \mathrm{eq}$.), $\mathrm{NH}_{4} \mathrm{SCN}(2.0 \mathrm{mmol}, 152 \mathrm{mg}, 2.0 \mathrm{eq}$.), and pyridine (0.5 mmol , $39 \mathrm{mg}, 40.0 \mu \mathrm{~L}, 0.5 \mathrm{eq}$.) in a 10 mL of DMSO with $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{mmol}, 18.0 \mu \mathrm{~L}, 1.0$ eq.) was stirred for 214 min . After that, the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and washed with mixture of PE and ethyl acetate ($1: 1$) $(2 \times 30 \mathrm{~mL})$. Combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure using a rotary evaporator ($15-20 \mathrm{mmHg}$), (bath temperature, ca. $30-40^{\circ} \mathrm{C}$). Product 3a was not detected.

Experimental Procedure for Table 1, entries 13-17

An undivided cell was equipped with platinum electrodes ($3 \mathrm{~cm}^{2}$) for each electrode (entry 13); a graphite plate anode $\left(3 \mathrm{~cm}^{2}\right)$ and a platinum plate cathode $\left(3 \mathrm{~cm}^{2}\right)$ (entry 14); a glassy carbon anode ($3 \mathrm{~cm}^{2}$) and a nickel foam cathode ($3 \mathrm{~cm}^{2}$) (entry 15); a glassy carbon anode ($3 \mathrm{~cm}^{2}$) and a copper plate cathode ($3 \mathrm{~cm}^{2}$) (entry 16) or a glassy carbon anode ($3 \mathrm{~cm}^{2}$) and stainless steel plate cathode ($3 \mathrm{~cm}^{2}$) (entry 17) and connected to a DC regulated power supply. The solution of
pyridine-2-carboxaldehyde $\mathbf{1 a}$ ($1.0 \mathrm{mmol}, 107 \mathrm{mg}, 1.0 \mathrm{eq}$.$) , benzylamine \mathbf{2 a}$ ($2.0 \mathrm{mmol}, 214 \mathrm{mg}$, 2.0 eq.), $\mathrm{NH}_{4} \mathrm{SCN}$ ($2.0 \mathrm{mmol}, 152 \mathrm{mg}, 2.0$ eq.), and pyridine ($0.5 \mathrm{mmol}, 39 \mathrm{mg}, 40.0 \mu \mathrm{~L}, 0.5 \mathrm{eq}$.) in a 10 mL of DMSO with $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{mmol}, 18.0 \mu \mathrm{~L}, 1.0$ eq.) was electrolyzed using constant current conditions at $70^{\circ} \mathrm{C}$ under magnetic stirring for 214 min . with $\mathrm{I}=60 \mathrm{~mA}$. After that, the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and washed with mixture of PE and ethyl acetate (1:1) $(2 \times 30 \mathrm{~mL})$. Combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure using a rotary evaporator ($15-20 \mathrm{mmHg}$), (bath temperature, ca. $30-40^{\circ} \mathrm{C}$). Product 3a was isolated by chromatography on $\mathrm{SiO}_{2}(\mathrm{PE}: \mathrm{EtOAc}=$ from $8: 1$ to $2: 1$).

Experimental Procedure for Table 1, entry 18

An undivided cell was equipped with a glassy carbon anode ($3 \mathrm{~cm}^{2}$) and a platinum plate cathode $\left(3 \mathrm{~cm}^{2}\right)$ and connected to a DC regulated power supply. The solution of pyridine-2-carboxaldehyde 1a ($1.0 \mathrm{mmol}, 107 \mathrm{mg}, 1.0$ eq.), benzylamine 2a ($2.0 \mathrm{mmol}, 214 \mathrm{mg}, 2.0 \mathrm{eq}$.), $\mathrm{NH}_{4} \mathrm{SCN}(2.0 \mathrm{mmol}$, $152 \mathrm{mg}, 2.0$ eq.), and pyridine ($0.5 \mathrm{mmol}, 39 \mathrm{mg}, 40.0 \mu \mathrm{~L}, 0.5 \mathrm{eq}$.) in a 10 mL of DMSO with $\mathrm{H}_{2} \mathrm{O}$ ($1.0 \mathrm{mmol}, 18.0 \mu \mathrm{~L}, 1.0$ eq.) was electrolyzed using constant current conditions at $70^{\circ} \mathrm{C}$ under magnetic stirring for 214 min . with $\mathrm{I}=60 \mathrm{~mA}$ under an argon atmosphere. After that, the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{ml})$ and washed with mixture of PE and ethyl acetate (1:1) (2×30 mL). Combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure using a rotary evaporator ($15-20 \mathrm{mmHg}$), (bath temperature, ca. $30-40^{\circ} \mathrm{C}$). Product 3 a was isolated by chromatography on $\mathrm{SiO}_{2}(\mathrm{PE}: E t O A c=$ from $8: 1$ to $2: 1)$.

Table S1. Detailed optimization of cyanide-functionalized imidazo[1,5-a]pyridine 3a synthesis from 1a and 2a using thiocyanate salts as the cyanating agent.

				Py (0.5)				
30	Pt/GC	1:2:2	$\mathrm{NH}_{4} \mathrm{SCN}$	$\begin{aligned} & \mathrm{H}_{2} \mathrm{O}(5), \\ & \mathrm{Py}(0.5) \end{aligned}$	DMSO	20	8	57
31	Pt/GC	1:2:2	$\mathrm{NH}_{4} \mathrm{SCN}$	$\begin{gathered} \mathrm{H}_{2} \mathrm{O}(50), \\ \mathrm{Py}(1) \end{gathered}$	DMSO	20	8	42
32	Pt/GC	1:2:2	$\mathrm{NH}_{4} \mathrm{SCN}$	$\begin{aligned} & \mathrm{H}_{2} \mathrm{O}(1), \\ & \mathrm{Py}(0.5) \\ & \hline \end{aligned}$	$\mathrm{CH}_{3} \mathrm{CN}$	20	8	23
33	Pt/GC	1:2:2	$\mathrm{NH}_{4} \mathrm{SCN}$	$\begin{aligned} & \mathrm{H}_{2} \mathrm{O}(1), \\ & \mathrm{Py}(0.5) \\ & \hline \end{aligned}$	DMF	20	8	26
34	Pt/GC	1:2:2	$\mathrm{NH}_{4} \mathrm{SCN}$	$\mathrm{H}_{2} \mathrm{O}(1)$, $\mathrm{Py}(0.5)$, $\mathrm{n}-\mathrm{Bu}_{4} \mathrm{NCIO}_{4}$ (3)	PhCl	20	8	$\begin{gathered} \text { trace } \\ \mathrm{s} \end{gathered}$
35	Pt/GC	1:2:2	$\mathrm{NH}_{4} \mathrm{SCN}$	$\begin{aligned} & \hline \mathrm{H}_{2} \mathrm{O}(1), \\ & \mathrm{Py}(0.5) \\ & \hline \end{aligned}$	$n-\mathrm{BuOH}$	20	8	27
$36^{\text {e }}$	Pt/GC	1:2:2	$\mathrm{NH}_{4} \mathrm{SCN}$	$\begin{aligned} & \mathrm{H}_{2} \mathrm{O}(1), \\ & \mathrm{Py}(0.5) \\ & \hline \end{aligned}$	DMSO	-	-	-
37	Pt/GC	2:1:1	$\mathrm{NH}_{4} \mathrm{SCN}$	$\begin{aligned} & \mathrm{H}_{2} \mathrm{O}(1), \\ & \mathrm{Py}(0.5) \\ & \hline \end{aligned}$	DMSO	20	8	24
38	Pt/Pt	1:2:2	$\mathrm{NH}_{4} \mathrm{SCN}$	$\begin{aligned} & \mathrm{H}_{2} \mathrm{O}(1), \\ & \mathrm{Py}(0.5) \\ & \hline \end{aligned}$	DMSO	20	8	61
39	Pt/C	1:2:2	$\mathrm{NH}_{4} \mathrm{SCN}$	$\begin{aligned} & \mathrm{H}_{2} \mathrm{O}(1), \\ & \mathrm{Py}(0.5) \\ & \hline \end{aligned}$	DMSO	20	8	49
40	$\mathrm{Ni}(\mathrm{f}) / \mathrm{GC}$	1:2:2	$\mathrm{NH}_{4} \mathrm{SCN}$	$\begin{aligned} & \hline \mathrm{H}_{2} \mathrm{O}(1), \\ & \mathrm{Py}(0.5) \\ & \hline \end{aligned}$	DMSO	20	8	43
41	Cu/GC	1:2:2	$\mathrm{NH}_{4} \mathrm{SCN}$	$\begin{aligned} & \hline \mathrm{H}_{2} \mathrm{O}(1), \\ & \mathrm{Py}(0.5) \\ & \hline \end{aligned}$	DMSO	20	8	27
42	SS/GC	1:2:2	$\mathrm{NH}_{4} \mathrm{SCN}$	$\begin{aligned} & \mathrm{H}_{2} \mathrm{O}(1), \\ & \mathrm{Py}(0.5) \end{aligned}$	DMSO	20	8	53
$43^{\text {f }}$	Pt/GC	1:2:2	$\mathrm{NH}_{4} \mathrm{SCN}$	$\begin{aligned} & \mathrm{H}_{2} \mathrm{O}(1), \\ & \mathrm{Pv}(0.5) \end{aligned}$	DMSO	20	8	48

${ }^{\text {a }}$ General reaction conditions: undivided cell, plate anode / plate cathode ($3 \mathrm{~cm}^{2}$), constant current, 1a $(1.0 \mathrm{mmol}, 107.0 \mathrm{mg}), \mathbf{2 a}(2 \mathrm{mmol}, 214.4 \mathrm{mg}), \mathbf{3 a}(4 \mathrm{mmol})$, solvent $(10.0 \mathrm{~mL}), 70^{\circ} \mathrm{C}$, air atmosphere. ${ }^{b}$ $100^{\circ} \mathrm{C},{ }^{c} 50^{\circ} \mathrm{C},{ }^{d} 20-25^{\circ} \mathrm{C},{ }^{\mathrm{e}}$ without electricity, ${ }^{\mathrm{f}}$ under Ar .

General Experimental Procedure for Scheme 4.

An undivided cell was equipped with a glassy carbon anode ($3 \mathrm{~cm}^{2}$) and a platinum plate cathode $\left(3 \mathrm{~cm}^{2}\right)$ and connected to a DC regulated power supply. The solution of pyridine-2carboxaldehydes 1a-d ($1.0 \mathrm{mmol}, 1.0 \mathrm{eq}$.), amine 2a-r ($2.0 \mathrm{mmol}, 2.0 \mathrm{eq}$.), $\mathrm{NH}_{4} \mathrm{SCN}(2.0 \mathrm{mmol}$, $152 \mathrm{mg}, 2.0$ eq.), and pyridine ($0.5 \mathrm{mmol}, 39 \mathrm{mg}, 40.0 \mu \mathrm{~L}, 0.5 \mathrm{eq}$.) in a 10 mL of DMSO with $\mathrm{H}_{2} \mathrm{O}$ ($1.0 \mathrm{mmol}, 18.0 \mu \mathrm{~L}, 1.0 \mathrm{eq}$.) was electrolyzed using constant current conditions at $70^{\circ} \mathrm{C}$ under magnetic stirring for 214 min . with $\mathrm{I}=60 \mathrm{~mA}$. After that, the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ $(30 \mathrm{~mL})$ and washed with mixture of PE and ethyl acetate (1:1) ($2 \times 30 \mathrm{~mL}$). Combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure using a rotary evaporator ($15-20 \mathrm{mmHg}$), (bath temperature, ca. $30-40^{\circ} \mathrm{C}$). Products $3 \mathrm{a}-\mathrm{q}, 3 \mathrm{~s}-\mathrm{u}$ were isolated by chromatography on $\mathrm{SiO}_{2}(\mathrm{PE}: E t O A c=$ from $8: 1$ to $2: 1)$. Product 3 r was not detected.

3-Phenylimidazo[1,5-a]pyridine-1-carbonitrile, 3a ${ }^{4}$

Yield 63% (138 mg, 0.63 mmol). White solid. $\mathrm{mp}=133-134{ }^{\circ} \mathrm{C}$ (lit. ${ }^{4} \mathrm{mp}=132-133{ }^{\circ} \mathrm{C}$). PE/EtOAc $=$ from $8: 1$ to $2: 1$ as eluent, $\mathrm{R}_{f}=0.18(\mathrm{PE} / \mathrm{EtOAc}=5: 1)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 8.34(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.66(\mathrm{~m}, 3 \mathrm{H}), 7.60-7.44(\mathrm{~m}$, $3 \mathrm{H}), 7.21-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.83(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75.48 MHz, $\left.\mathrm{CDCl}_{3}, ~ \delta\right): 140.1,137.7,130.1,129.4,128.5,128.4,124.7,123.1$, 117.4, 115.5, 115.0, 103.6.

HRMS (ESI-TOF) m/z [M+H] ${ }^{+}$. Calcd for $\left[\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{3}\right]^{+}$: 220.0869. Found: 220.0873.

3-(4-Chlorophenyl)imidazo[1,5-a]pyridine-1-carbonitrile, 3b ${ }^{4}$

Yield 62% ($157 \mathrm{mg}, 0.62 \mathrm{mmol}$). White solid. $\mathrm{mp}=205-206{ }^{\circ} \mathrm{C}$ (lit. ${ }^{4} \mathrm{mp}=204-205{ }^{\circ} \mathrm{C}$). PE/EtOAc $=$ from $5: 1$ to $2: 1$ as eluent, $\mathrm{R}_{f}=0.58(\mathrm{PE} / \mathrm{EtOAc}=2: 1)$.
${ }^{1} \mathrm{H}$ NMR (300.13 MHz, DMSO-d ${ }_{6}$, ס): $8.62(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.10-7.77$ (m, 3H), $7.76-7.49$ $(m, 2 H), 7.49-7.22(m, 1 H), 7.20-6.85(m, 1 H)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75.48 MHz, DMSO- $\left.d_{6}, \delta\right): 138.6,137.6,134.5,130.3,129.2,127.0,126.2,124.3$, $116.5,115.6,115.5,101.6$.

3-(4-Fluorophenyl)imidazo[1,5-a]pyridine-1-carbonitrile, 3c ${ }^{4}$

Yield 56% (132 mg, 0.56 mmol). White solid. $\mathrm{mp}=193-194{ }^{\circ} \mathrm{C}$ (lit. ${ }^{4} \mathrm{mp}=191-193{ }^{\circ} \mathrm{C}$).
PE/EtOAc $=$ from $5: 1$ to $2: 1$ as eluent, $\mathrm{R}_{f}=0.36(\mathrm{PE} / \mathrm{EtOAc}=2: 1)$.
${ }^{1} \mathrm{H}$ NMR (300.13 MHz, DMSO-d ${ }_{6}$, ס): 8.56 (d, J=7.2 Hz, 1H), $7.95-7.80(\mathrm{~m}, 3 \mathrm{H}), 7.49-7.29$ ($\mathrm{m}, 3 \mathrm{H}$), $7.02(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75.48 MHz, DMSO- d_{6}, δ): 164.4 (d, $J=247.8 \mathrm{~Hz}$), 138.8, 137.5, 131.0 (d, $J=8.4$ $\mathrm{Hz}), 126.1,124.6(J=3.3 \mathrm{~Hz}), 124.2,116.4,116.2(\mathrm{~d}, \mathrm{~J}=21.9 \mathrm{~Hz}), 115.6,115.4,101.4$.

3-(4-Methoxyphenyl)imidazo[1,5-a]pyridine-1-carbonitrile, 3d ${ }^{4}$

Yield 55% ($137 \mathrm{mg}, 0.55 \mathrm{mmol}$). White solid. $\mathrm{mp}=131-133^{\circ} \mathrm{C}$ (lit. ${ }^{4} \mathrm{mp}=129-131{ }^{\circ} \mathrm{C}$). PE/EtOAc $=$ from $5: 1$ to $2: 1$ as eluent, $\mathrm{R}_{f}=0.42(\mathrm{PE} / \mathrm{EtOAc}=2: 1)$.
${ }^{1} \mathrm{H}$ NMR (300.13 MHz, DMSO-d,$\left.~ \delta\right): ~ 8.54 ~(d, ~ J=7.2 ~ H z, ~ 1 H), ~ 7.83 ~(d, ~ J=9.1 ~ H z, ~ 1 H), ~ 7.76 ~(d, ~ J ~$ $=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{dd}, J=9.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.86(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75.48 MHz, DMSO-d $\left.{ }_{6}, \delta\right): 160.3,139.7,137.3,130.0,125.8,124.1,120.4,116.4$, 115.8, 115.2, 114.5, 101.1, 55.4.

3-(3-Bromophenyl)imidazo[1,5-a]pyridine-1-carbonitrile, 3e ${ }^{4}$

Yield 44% (131 mg, 0.44 mmol). White solid. $\mathrm{mp}=200-201^{\circ} \mathrm{C}$ (lit. ${ }^{4} \mathrm{mp}=198-200{ }^{\circ} \mathrm{C}$). PE/EtOAc $=$ from $5: 1$ to $2: 1$ as eluent, $\mathrm{R}_{f}=0.30(\mathrm{PE} / \mathrm{EtOAc}=2: 1)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 8.34(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.60$ $(\mathrm{m}, 3 \mathrm{H}), 7.43(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=9.1,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75.48 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right): 138.5,137.9,133.2,131.5,130.9,130.4,127.0,124.9$, $123.5,122.9,117.7,115.4,115.2,104.1$.

3-(3-Chlorophenyl)imidazo[1,5-a]pyridine-1-carbonitrile, 3f

Yield 56% ($142 \mathrm{mg}, 0.56 \mathrm{mmol}$). White solid. $\mathrm{mp}=202-203{ }^{\circ} \mathrm{C}$. PE/EtOAc $=$ from $5: 1$ to $2: 1$ as eluent, $\mathrm{R}_{f}=0.32(\mathrm{PE} / \mathrm{EtOAc}=2: 1)$.
${ }^{1} \mathrm{H}$ NMR (300.13 MHz, DMSO-d ${ }_{6}$, ס): 8.65 (d, J=7.1 Hz, 1H), $7.93-7.78$ (m, 3H), $7.66-7.58$ (m, 2H), $7.44-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.06(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75.48 MHz, DMSO-d $\left.{ }_{6}, ~ \delta\right): 138.2,137.7,133.8,131.0,130.1,129.7,128.2,127.1$, 126.4, 124.4, 116.4, 115.6, 115.5, 101.7.

HRMS (ESI-TOF) m/z [M+H] ${ }^{+}$. Calcd for $\left[\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{CIN}_{3}\right]^{+}: 254.0480$. Found: 254.0487 .

3-(3-Methoxyphenyl)imidazo[1,5-a]pyridine-1-carbonitrile, 3g

Yield 57% ($142 \mathrm{mg}, 0.57 \mathrm{mmol}$). White solid. $\mathrm{mp}=158-160^{\circ} \mathrm{C}$. PE/EtOAc $=$ from 5:1 to $2: 1$ as eluent, $\mathrm{R}_{f}=0.36(\mathrm{PE} / E t O A c=2: 1)$.
${ }^{1} \mathrm{H}$ NMR (300.13 MHz, DMSO- $\left._{6}, \delta\right): 8.63(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, \mathrm{J}$ $=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75.48 MHz, DMSO-d ${ }_{6}$, ס): 159.6, 139.5, 137.6, 130.3, 129.3, 126.1, 124.3, 120.6, 116.4, 115.9, 115.7, 115.4, 113.6, 101.4, 55.3.

HRMS (ESI-TOF) m/z [M+H] ${ }^{+}$. Calcd for [$\left.\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}\right]^{+}$: 250.0975. Found: 250.0982.

3-(2-Chlorophenyl)imidazo[1,5-a]pyridine-1-carbonitrile, 3h

Yield 58% ($147 \mathrm{mg}, 0.58 \mathrm{mmol}$). Yellow solid. $\mathrm{mp}=165-167{ }^{\circ} \mathrm{C}$. PE/EtOAc $=$ from 5:1 to 2:1 as eluent, $\mathrm{R}_{f}=0.42$ ($\mathrm{PE} / \mathrm{EtOAc}=2: 1$).
${ }^{1} \mathrm{H}$ NMR ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 7.72 (t, J = $7.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.60-7.36$ (m, 4H), $7.25-7.13$ (m, $1 \mathrm{H}), 6.84(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75.48 MHz, $\left.\mathrm{CDCl}_{3}, ~ \delta\right): 137.5,137.2,134.2,133.2,131.9,130.2,127.6,127.4$, 125.0, 123.8, 117.0, 115.3, 114.6, 103.1.

HRMS (ESI-TOF) m/z [M+H] ${ }^{+}$. Calcd for $\left[\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{CIN}_{3}\right]^{+}: 254.0480$. Found: 254.0484.

3-(2,4-Dichlorophenyl)imidazo[1,5-a]pyridine-1-carbonitrile, 3i

Yield 49% ($141 \mathrm{mg}, 0.49 \mathrm{mmol}$). White solid. $\mathrm{mp}=165-167^{\circ} \mathrm{C} . \mathrm{PE} / \mathrm{EtOAc}=$ from $5: 1$ to $2: 1$ as eluent, $R_{f}=0.32(P E / E t O A c=5: 1)$.
${ }^{1} \mathrm{H}$ NMR (300.13 MHz, DMSO- $_{6}$, δ): 8.14 (d, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.97-7.88$ (m, 2H), $7.79-7.62$ (m, 2H), 7.41 (dd, J = 9.1, $6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.05 (t, J = $6.7 \mathrm{~Hz}, 1 \mathrm{H}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75.48 MHz, DMSO-d ${ }_{6}$, δ): 137.0, 136.3, 136.1, 134.7, 134.5, 129.7, 128.1, 126.5, 126.1, 124.6, 116.3, 115.4, 115.4, 101.3.

HRMS (ESI-TOF) m/z [M+H] $]^{+}$. Calcd for $\left[\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{~N}_{3}\right]^{+}: 288.0090$. Found: 288.0086.

3-(Furan-2-yl)imidazo[1,5-a]pyridine-1-carbonitrile, 3j ${ }^{4}$

Yield 34% ($71 \mathrm{mg}, 0.34 \mathrm{mmol}$). White solid. $\mathrm{mp}=145-146{ }^{\circ} \mathrm{C}$. (lit. ${ }^{4} \mathrm{mp}=146-147{ }^{\circ} \mathrm{C}$). PE/EtOAc $=$ from 3:1 to 2:1 as eluent, $\mathrm{R}_{f}=0.14(\mathrm{PE} / E t O A c=2: 1)$.
${ }^{1} \mathrm{H}$ NMR ($\left.300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 8.83(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H})$, $7.23-7.07$ (m, 2H), 6.91 (t, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.62$ (dd, $J=3.3,1.7 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75.48 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 144.8, 143.2, 137.3, 132.1, 124.8, 124.7, 117.3, 115.4, 115.1, 112.2, 111.0, 103.9.

3-(Pyridin-3-yl)imidazo[1,5-a]pyridine-1-carbonitrile, 3k

Yield 40% ($88 \mathrm{mg}, 0.40 \mathrm{mmol}$). White solid. $\mathrm{mp}=207-208{ }^{\circ} \mathrm{C} . \mathrm{PE} / E t O A c=$ from $3: 1$ to $2: 1$ as eluent, $\mathrm{R}_{f}=0.27$ (EtOAc).
${ }^{1} \mathrm{H}$ NMR ($300.13 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, \delta$): 9.00 (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 8.72 (dd, $\left.J=4.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.44$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{dt}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.35$ $-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75.48 MHz, CD $\left.{ }_{3} \mathrm{CN}, \delta\right): 151.5,150.2,139.1,138.5,136.8,126.7,126.1,124.8$, 118.3, 117.7, 116.2, 109.1, 103.8.

HRMS (ESI-TOF) m/z [M+H] ${ }^{+}$. Calcd for $\left[\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}_{4}\right]^{+}$: 221.0822. Found: 221.0821.

3-(Pyridin-2-yl)imidazo[1,5-a]pyridine-1-carbonitrile, 31

Yield 54% ($119 \mathrm{mg}, 0.54 \mathrm{mmol}$). White solid. $\mathrm{mp}=201-203^{\circ} \mathrm{C} . \mathrm{PE} / \mathrm{EtOAc}=$ from $5: 1$ to $2: 1$ as eluent, $\mathrm{R}_{f}=0.5(\mathrm{PE} / \mathrm{EtOAc}=2: 1)$.
${ }^{1} \mathrm{H}$ NMR ($\left.300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 10.13(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.66(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.84 (td, $J=8.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.96(\mathrm{t}, \mathrm{J}$ $=6.9 \mathrm{~Hz}, 1 \mathrm{H}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75.48 MHz, $\left.\mathrm{CDCl}_{3}, ~ \delta\right): 149.8,148.4,138.6,137.1,136.9,127.9,125.6,123.3$, 122.8, 116.8, 115.5, 115.2, 103.6.

HRMS (ESI-TOF) m/z [M+H] ${ }^{+}$. Calcd for $\left[\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}_{4}\right]^{+}$: 221.0822. Found: 221.0830.

3-(Quinolin-8-yl)imidazo[1,5-a]pyridine-1-carbonitrile, 3m

Yield 48% ($130 \mathrm{mg}, 0.48 \mathrm{mmol}$). White solid. $\mathrm{mp}=262-263^{\circ} \mathrm{C}$ (decomp.). PE/EtOAc $1: 1$ as eluent, $\mathrm{R}_{f}=0.11$ (EtOAc).
${ }^{1} \mathrm{H}$ NMR ($\left.300.13 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}, \delta\right): 8.88-8.80(\mathrm{~m}, 1 \mathrm{H}), 8.57(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.34-$ $8.24(\mathrm{~m}, 1 \mathrm{H}), 8.08(\mathrm{dd}, J=7.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.88-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.66$ (dd, $J=8.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.32(\mathrm{~m}, 1 \mathrm{H}), 6.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75.48 MHz, DMSO-d $\left.6, ~ \delta\right): ~ 151.2,145.4,139.2,137.3,137.0,131.0,128.4,128.2$, 127.1, 126.6, 126.1, 125.8, 122.2, 116.0, 115.9, 114.2, 101.0.

HRMS (ESI-TOF) m/z [M+H] ${ }^{+}$. Calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~N}_{4}\right]^{+}$: 271.0978. Found: 271.0988.

3-(Quinolin-6-yl)imidazo[1,5-a]pyridine-1-carbonitrile, 3n

Yield 44% ($119 \mathrm{mg}, 0.44 \mathrm{mmol}$). White solid. $\mathrm{mp}=243-245{ }^{\circ} \mathrm{C}$ (decomp.). PE/EtOAc $1: 1$ as eluent, $\mathrm{R}_{f}=0.13$ (EtOAc).
${ }^{1} \mathrm{H}$ NMR (300.13 MHz, DMSO- $\left.\mathrm{d}_{6}, \delta\right): 9.02-8.95(\mathrm{~m}, 1 \mathrm{H}), 8.88-8.79(\mathrm{~m}, 1 \mathrm{H}), 8.56-8.46(\mathrm{~m}$, 2 H), $8.22-8.15(\mathrm{~m}, 2 \mathrm{H}), 7.90(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.14$ - 7.05 (m, 1H).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75.48 MHz, DMSO-d $\left.6, ~ \delta\right): ~ 151.7, ~ 147.7, ~ 139.0, ~ 137.8, ~ 136.7, ~ 134.6, ~ 129.8, ~ 129.3, ~$ 127.9, 127.8, 126.3, 126.0, 124.5, 122.3, 116.5, 115.6, 101.9.

HRMS (ESI-TOF) m/z [M+H] ${ }^{+}$. Calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~N}_{4}\right]^{+}$: 271.0978. Found: 271.0980.

3-(1-Phenyl-1H-pyrazol-5-yl)imidazo[1,5-a]pyridine-1-carbonitrile, 3o

Yield 54% ($154 \mathrm{mg}, 0.54 \mathrm{mmol}$). White solid. $\mathrm{mp}=168-170{ }^{\circ} \mathrm{C}$. PE/EtOAc $3: 1$ to $1: 1$ as eluent, R_{f} $=0.20(\mathrm{PE} / \mathrm{EtOAc}=2: 1)$.
 $=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{t}, \mathrm{J}=6.8$ $\mathrm{Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75.48 MHz, DMSO-d ${ }_{6}$, δ): 140.8, 139.3, 137.1, 129.9, 129.3, 129.1, 127.9, 126.8, 124.3, 123.7, 116.2, 115.7, 115.2, 111.1, 101.8.

HRMS (ESI-TOF) m/z [M+H] ${ }^{+}$. Calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{5}\right]^{+}$: 286.1087. Found: 286.1084.

3-(3-(3,5-Dimethyl-1H-pyrazol-1-yl)phenyl)imidazo[1,5-a]pyridine-1-carbonitrile, 3p

Yield 57% ($179 \mathrm{mg}, 0.57 \mathrm{mmol}$). White solid. $\mathrm{mp}=187-188^{\circ} \mathrm{C}$. PE/EtOAc $2: 1$ to $1: 1$ as eluent, R_{f} $=0.10$ (PE/EtOAc = 2:1).
${ }^{1} \mathrm{H}$ NMR ($\left.300.13 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}, \delta\right): \delta 8.64$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), $8.05-7.78$ (m, 3H), 7.70 (d, J= $5.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{dd}, \mathrm{J}=9.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.20$ (s, 3H).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75.48 MHz, DMSO-d ${ }_{6}$, δ): 148.3, 140.3, 139.5, 138.9, 137.7, 130.0, 129.0, 126.6, 126.3, 124.9, 124.3, 123.6, 116.5, 115.6, 115.6, 107.7, 101.6, 13.3, 12.3.

HRMS (ESI-TOF) m/z [M+H] ${ }^{+}$. Calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{5}\right]^{+}$: 314.1400. Found: 314.1393.

3-(2-((1H-Pyrazol-1-yl)methyl)phenyl)imidazo[1,5-a]pyridine-1-carbonitrile, 3q

Yield 66% ($198 \mathrm{mg}, 0.66 \mathrm{mmol}$). White solid. $\mathrm{mp}=157-158{ }^{\circ} \mathrm{C}$. PE/EtOAc 2:1 to $1: 1$ as eluent, R_{f} $=0.10(\mathrm{PE} / \mathrm{EtOAc}=2: 1)$.
${ }^{1} \mathrm{H}$ NMR (300.13 MHz, DMSO-d ${ }_{6}$, ס): 8.01 (d, J=7.1 Hz, 1H), 7.86 (d, J=9.1 Hz, 1H), 7.69-7.44 (m, 4H), $7.41-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.20(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 5.37 (s, 2H).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75.48 MHz, DMSO-d ${ }_{6}$, δ): 139.0, 138.1, 137.7, 137.0, 130.5, 130.3, 130.1, 129.4, 128.2, 126.5, 126.2, 124.0, 116.1, 115.9, 115.0, 105.1, 100.9, 52.3.

HRMS (ESI-TOF) m/z [M+H] ${ }^{+}$. Calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{5}\right]^{+}: 300.1244$. Found: 300.1244.

5-Methyl-3-phenylimidazo[1,5-a]pyridine-1-carbonitrile, 3s ${ }^{4}$

Yield 48% ($112 \mathrm{mg}, 0.48 \mathrm{mmol}$). White solid. $\mathrm{mp}=143-144{ }^{\circ} \mathrm{C}$ (lit. ${ }^{4} \mathrm{mp}=141-143{ }^{\circ} \mathrm{C}$). PE/EtOAc $5: 1$ to $2: 1$ as eluent, $\mathrm{R}_{f}=0.44$ ($\mathrm{PE} / \mathrm{EtOAc}=2: 1$).
${ }^{1} \mathrm{H}$ NMR ($\left.300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 7.54(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.51 - 7.35 (m, 5H), 7.04 (dd, J = 9.0, $6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 6.53 (d, J = 6.7 Hz, 1H), 2.12 (s, 3H).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75.48 MHz, $\mathrm{CDCl}_{3}, \delta$): 140.7, 138.9, 135.3, 131.9, 130.9, 129.9, 127.7, 125.0, 115.7, 115.5, 114.9, 102.5, 21.7.

8-Methyl-3-phenylimidazo[1,5-a]pyridine-1-carbonitrile, 3t

Yield 47% ($109 \mathrm{mg}, 0.47 \mathrm{mmol}$). White solid. $\mathrm{mp}=190-192^{\circ} \mathrm{C}$. PE/EtOAc $5: 1$ to $2: 1$ as eluent, $\mathrm{R}_{f}=0.4$ (PE/EtOAc $=2: 1$).
${ }^{1} \mathrm{H}$ NMR ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $\delta 8.20$ (d, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.73 (dd, $\left.J=7.8,1.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.60$ $-7.46(\mathrm{~m}, 3 \mathrm{H}), 6.87(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75.48 MHz, $\mathrm{CDCl}_{3}, \delta$): 140.3, 137.6, 130.0, 129.2, 128.7, 128.6, 124.0, 120.9, 117.0, 115.1, 103.1, 18.2.

HRMS (ESI-TOF) m/z [M+H] ${ }^{+}$. Calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{3}\right]^{+}$: 234.1026. Found: 234.1035.

6-Bromo-3-phenylimidazo[1,5-a]pyridine-1-carbonitrile, $3 u^{4}$

Yield 43\% (198 mg, 0.43 mmol). White solid. $\mathrm{mp}=176-177^{\circ} \mathrm{C}$ (lit. ${ }^{4} \mathrm{mp}=177-179^{\circ} \mathrm{C}$). PE/EtOAc $5: 1$ to $2: 1$ as eluent, $\mathrm{R}_{f}=0.24$ (PE/EtOAc $=5: 1$).
${ }^{1} \mathrm{H}$ NMR ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $8.46(\mathrm{~s}, 1 \mathrm{H}), 7.78-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.19(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75.48 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right): 140.2,135.9,130.5,129.6,128.6,128.1,127.9,122.9$, 118.1, 114.8, 110.6, 105.0.

2-(Benzylamino)-2-phenylacetonitrile, 4^{5}

Yield 15% ($34 \mathrm{mg}, 0.15 \mathrm{mmol}$). Yellow oil. PE/EtOAc 10:1 to $5: 1$ as eluent, $\mathrm{R}_{f}=0.23$ (n pentane/EtOAc = 20:1).
${ }^{1} \mathrm{H}$ NMR ($\left.300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 7.55$ (d, J = $6.1 \mathrm{~Hz}, 2 \mathrm{H}$), $7.44-7.27$ (m, 8H), 4.76 (s, 1H), 4.08 (d, $J=12.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.97 (d, $J=12.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.88 (br. s, 1H).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75.48 MHz, $\left.\mathrm{CDCl}_{3}, ~ \delta\right): 138.3,134.9,129.2,129.1,128.8,128.5,127.8,127.4$, 118.9, 53.6, 51.4.

HRMS (ESI-TOF) m/z [M+H] $]^{+}$. Calcd for [$\left.\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{2}\right]^{+}$: 223.1230. Found: 223.1222.

Experimental Procedure for Scale-Up Electrosynthesis.

Gram scale synthesis was carried out in a sandwich-type cell. An undivided cell was equipped with a glassy carbon anode ($15 \mathrm{~cm}^{2}$) (total surface area was $30 \mathrm{~cm}^{2}$) and two platinum plate cathode ($5 \mathrm{~cm}^{2}$) (total surface area was $10 \mathrm{~cm}^{2}$) and connected to a DC regulated power supply (cathodes were wired in parallel). The solution of pyridine-2-carboxaldehyde $\mathbf{1 a}(9.3 \mathrm{mmol}, 1.0 \mathrm{~g}$, 1.0 eq.), amine 2a ($18.6 \mathrm{mmol}, 2.0 \mathrm{~g}, 2.0$ eq.), $\mathrm{NH}_{4} \mathrm{SCN}(18.6 \mathrm{mmol}, 1.41 \mathrm{~g}, 2.0 \mathrm{eq}$.), and pyridine ($4.6 \mathrm{mmol}, 363 \mathrm{mg}, 0.5 \mathrm{eq}$.) in a 90 mL of DMSO with $\mathrm{H}_{2} \mathrm{O}$ ($9.3 \mathrm{mmol}, 167.0 \mu \mathrm{~L}, 1.0 \mathrm{eq}$.) was electrolyzed using constant current conditions at $70^{\circ} \mathrm{C}$ under magnetic stirring for 3 h 20 min with $\mathrm{I}=600 \mathrm{~mA}\left(j_{\text {anode }}=20 \mathrm{~mA} / \mathrm{cm}^{2}\right)$. After that, the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(250 \mathrm{~mL})$ and washed with mixture of PE and ethyl acetate (1:1) ($2 \times 250 \mathrm{~mL}$). Combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure using a rotary evaporator (1520 mmHg), (bath temperature, ca. $30-40^{\circ} \mathrm{C}$). Product $3 \mathrm{a} 53 \%(1080 \mathrm{mg}, 4.93 \mathrm{mmol}$) was isolated by chromatography on $\mathrm{SiO}_{2}(\mathrm{PE}: E t O A c=$ from $8: 1$ to $2: 1$).

Figure S1. Equipment employed for gram-scale synthesis in the present work a) a sandwich-type cell; b) the model reaction for gram-scale synthesis.

Experimental Procedures for Scheme 5.

a) To generate thiocyanogen, bromine ($2.0 \mathrm{mmol}, 319 \mathrm{mg}, 103 \mu \mathrm{~L}$) was added to the solution of sodium thiocyanate ($4.0 \mathrm{mmol}, 324 \mathrm{mg}$) in DMSO $(3 \mathrm{~mL})$ at $20-25^{\circ} \mathrm{C}$ under stirring. The solution of pyridine-2-carboxaldehyde $\mathbf{1 a}(1.0 \mathrm{mmol}, 107 \mathrm{mg}, 1.0 \mathrm{eq}$.), benzylamine $\mathbf{2 a}$ ($2.0 \mathrm{mmol}, 214$ $\mathrm{mg}, 2.0$ eq.), and pyridine ($0.5 \mathrm{mmol}, 39 \mathrm{mg}, 40.0 \mu \mathrm{~L}, 0.5$ eq.) in a 10 mL of DMSO with $\mathrm{H}_{2} \mathrm{O}(1.0$ mmol, $18.0 \mu \mathrm{~L}, 1.0$ eq.) was added to the resulting solution of thiocyanogen at $20-25^{\circ} \mathrm{C}$ under stirring. The reaction mixture was stirring for 214 min . at $70{ }^{\circ} \mathrm{C}$. After that, the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and washed with mixture of PE and ethyl acetate (1:1) $(2 \times 30 \mathrm{~mL})$.

Combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure using a rotary evaporator ($15-20 \mathrm{mmHg}$), (bath temperature, ca. $30-40^{\circ} \mathrm{C}$). Products 5 and $\mathbf{6}$ were isolated by chromatography on $\mathrm{SiO}_{2}(\mathrm{PE}: E t O A c=$ from $4: 1$ to $2: 1$). Product 3 a was not detected.
b) An undivided cell was equipped with a glassy carbon anode $\left(3 \mathrm{~cm}^{2}\right)$ and a platinum plate cathode ($3 \mathrm{~cm}^{2}$) and connected to a DC regulated power supply. The solution of 3-phenylimidazo[1,5-a]pyridine 7 ($1.0 \mathrm{mmol}, 194 \mathrm{mg}, 1.0$ eq.), $\mathrm{NH}_{4} \mathrm{SCN}(2.0 \mathrm{mmol}, 152 \mathrm{mg}, 2.0$ eq.) and pyridine ($0.5 \mathrm{mmol}, 39 \mathrm{mg}, 40.0 \mu \mathrm{~L}, 0.5 \mathrm{eq}$.) in a 10 mL of DMSO with $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{mmol}$, $18.0 \mu \mathrm{~L}, 1.0$ eq.) was electrolyzed using constant current conditions at $70^{\circ} \mathrm{C}$ under magnetic stirring for 214 min . with I = 60 mA . After that, the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and washed with mixture of PE and ethyl acetate ($1: 1$) $(2 \times 30 \mathrm{~mL})$. Combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure using a rotary evaporator (15-20 mmHg), (bath temperature, ca. $30-40^{\circ} \mathrm{C}$). Product 5 was isolated as a white solid. $\mathrm{mp}=107-108$ ${ }^{\circ} \mathrm{C}$. (lit. ${ }^{5} \mathrm{mp}=105-106{ }^{\circ} \mathrm{C}$). The isolated yield of 5 was 42% ($106 \mathrm{mg}, 0.42 \mathrm{mmol}, \mathrm{PE}: E t O A \mathrm{c}=$ from 4:1 to 2:1 as an eluent). $\mathrm{R}_{f}=0.26$ (PE/EtOAc = 5:1).

3-Phenyl-1-thiocyanatoimidazo[1,5-a]pyridine, $5{ }^{5}$

${ }^{1} \mathrm{H}$ NMR ($\left.300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 8.32(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.68(\mathrm{~m}, 3 \mathrm{H}), 7.61-7.46(\mathrm{~m}$, $3 \mathrm{H}), 7.09(\mathrm{dd}, J=8.9,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75.48 MHz, $\left.\mathrm{CDCl}_{3}, ~ \delta\right): 140.3,135.4,129.8,129.3,128.8,128.4,123.4,122.8$, 117.4, 114.5, 110.6, 108.2.

HRMS (ESI-TOF) m/z [M+H] ${ }^{+}$. Calcd for $\left[\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{~S}\right]^{+}$: 252.0590. Found: 252.0600.
c) An oven-dried reaction vessel was charged with N -benzyl-1-(pyridin-2-yl)methanimine 8 (1.0 $\mathrm{mmol}, 196 \mathrm{mg}, 1.0 \mathrm{eq}$.) in 10 mL of DMSO with $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{mmol}, 18.0 \mu \mathrm{~L}, 1.0 \mathrm{eq}$.). TMSCN (2.0 $\mathrm{mmol}, 259 \mu \mathrm{~L}, 2.0$ eq.) was added, and the mixture was further stirred at room temperature for 6 h. After completion of the reaction (TLC), the reaction mixture was quenched with water (30 mL) and extracted with ethyl acetate $(2 \times 30 \mathrm{~mL})$. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure using a rotary evaporator ($15-20 \mathrm{mmHg}$), (bath temperature, ca. $30-40^{\circ} \mathrm{C}$). Product 9 was isolated by chromatography on $\mathrm{SiO}_{2} \mathrm{PE} / \mathrm{EtOAc} 5: 1$ to $2: 1$) as an yellow oil. The isolated yield of 9 was 60% ($134 \mathrm{mg}, 0.60 \mathrm{mmol}$).
2-(Benzylamino)-2-(pyridin-2-yl)acetonitrile, $9{ }^{4}$

${ }^{1} \mathrm{H}$ NMR ($\left.300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 8.63(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.27$ ($\mathrm{m}, 7 \mathrm{H}$), 4.81 ($\mathrm{s}, 1 \mathrm{H}$), 4.13 ($\mathrm{d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.51$ (br. s, 1 H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75.48 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 153.9, 150.0, 138.1, 137.5, 128.8, 128.6, 127.8, 124.0, 122.2, 118.3, 55.1, 51.6.
d) An oven-dried reaction vessel was charged with 9 ($0.5 \mathrm{mmol}, 112 \mathrm{mg}, 1.0 \mathrm{eq}$) in DMSO (10 mL) with $\mathrm{H}_{2} \mathrm{O}\left(1.0 \mathrm{mmol}, 18.0 \mu \mathrm{~L}, 1.0\right.$ eq.), and the mixture was stirred at $70{ }^{\circ} \mathrm{C}$ for 3.5 h . After completion of the reaction (TLC), the reaction mixture was quenched with water (30 mL) and extracted with ethyl acetate $(2 \times 30 \mathrm{~mL})$. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure using a rotary evaporator ($15-20 \mathrm{mmHg}$), (bath temperature, ca. $30-40^{\circ} \mathrm{C}$). Products 3 a and 10 were isolated by chromatography on SiO_{2} PE/EtOAc 5:1 to 2:1). The isolated yield 3a was 60% ($134 \mathrm{mg}, 0.60 \mathrm{mmol}$). Product 10 was isolated as an yellow oil. The isolated yield 10 was 50% ($53 \mathrm{mg}, 0.25 \mathrm{mmol}$). ($\mathrm{R}_{f}=0.33$ (PE/EtOAc $=2: 1$).

N-benzylpicolinamide, $10{ }^{6}$

${ }^{1} \mathrm{H}$ NMR ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ס): $\delta 8.57-8.48$ (m, 1H), 8.37 (br.s, 1H), $8.29-8.19$ (m, 1H), 7.86 (td, J=7.7, 1.7 Hz, 1H), 7.44 (dd, $J=4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.39-7.33 (m, 4H), 7-33-7.27 (m, 1H), 4.68 (d, $J=6.1 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75.48 MHz, $\mathrm{CDCl}_{3}, \delta$): 164.4, 150.0, 148.2, 138.4, 137.5, 128.9, 128.0, 127.6, 126.4, 122.5, 43.7.

HRMS (ESI-TOF) m/z [M+H] ${ }^{+}$. Calcd for $\left[\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}\right]^{+}$: 213.1022. Found: 213.1029.

An undivided cell was equipped with a glassy carbon anode ($3 \mathrm{~cm}^{2}$) and a platinum plate cathode ($3 \mathrm{~cm}^{2}$) and connected to a DC regulated power supply. The solution of 2-(benzylamino)-2-(pyridin-2-yl)acetonitrile, 9 ($0.5 \mathrm{mmol}, 112 \mathrm{mg}, 1.0 \mathrm{eq}.), \mathrm{NH}_{4} \mathrm{SCN}(0.5 \mathrm{mmol}, 38 \mathrm{mg}, 1.0 \mathrm{eq}$.$) and$ pyridine ($0.25 \mathrm{mmol}, 19 \mathrm{mg}, 20.0 \mu \mathrm{~L}, 0.5 \mathrm{eq}$.) in 10 mL of DMSO with $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{mmol}, 18.0 \mu \mathrm{~L}, 1.0$ eq.) was electrolyzed using constant current conditions at $70{ }^{\circ} \mathrm{C}$ under magnetic stirring for 60 min . with I $=60 \mathrm{~mA}$. After that, the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and washed with mixture of PE and ethyl acetate (1:1) $(2 \times 30 \mathrm{~mL})$. Combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure using a rotary evaporator ($15-20 \mathrm{mmHg}$), (bath temperature, ca. $\left.30-40^{\circ} \mathrm{C}\right)$. Product 3a was isolated by chromatography on $\mathrm{SiO}_{2}(\mathrm{PE}: E t O A c=$ from 8:1 to $2: 1$).

Experimental Procedures for Scheme 6.

a) A divided cell was equipped with a glassy carbon anode ($3 \mathrm{~cm}^{2}$) and a platinum plate cathode $\left(3 \mathrm{~cm}^{2}\right)$ and connected to a DC regulated power supply. Anodic space: The solution of pyridine-2-carboxaldehyde 1a ($1.0 \mathrm{mmol}, 107 \mathrm{mg}, 1.0 \mathrm{eq}$), benzylamine 2a ($2.0 \mathrm{mmol}, 214 \mathrm{mg}, 2.0 \mathrm{eq}$.), $\mathrm{NH}_{4} \mathrm{SCN}(2.0 \mathrm{mmol}, 152 \mathrm{mg}, 2.0 \mathrm{eq}$.), pyridine ($0.5 \mathrm{mmol}, 39 \mathrm{mg}, 40.0 \mu \mathrm{~L}, 0.5 \mathrm{eq}$.), and supporting electrolyte $n-\mathrm{Bu}_{4} \mathrm{NBF}_{4}(1.0 \mathrm{mmol}, 329 \mathrm{mg})$ in 10 mL of DMSO with $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{mmol}, 18.0 \mu \mathrm{~L}, 1.0$ eq.). Cathodic space: $\mathrm{NH}_{4} \mathrm{SCN}\left(2.0 \mathrm{mmol}, 152 \mathrm{mg}, 2.0 \mathrm{eq}\right.$.) and supporting electrolyte n - $\mathrm{Bu}_{4} \mathrm{NBF}_{4}$ ($1.0 \mathrm{mmol}, 329 \mathrm{mg}$) in 10 mL of DMSO with $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{mmol}, 18.0 \mu \mathrm{~L}, 1.0 \mathrm{eq}$.). The solutions were electrolyzed using constant current conditions at $20-25^{\circ} \mathrm{C}$ under magnetic stirring for 322 min . with $\mathrm{I}=40 \mathrm{~mA}$. After that, the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and washed with mixture of PE and ethyl acetate (1:1) ($2 \times 30 \mathrm{~mL}$). Combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure using a rotary evaporator $(15-20 \mathrm{mmHg})$, (bath temperature, ca. $\left.30-40^{\circ} \mathrm{C}\right)$. Product 3a was isolated by chromatography on $\mathrm{SiO}_{2}(\mathrm{PE}: E t O A c=$ from 8:1 to 2:1).

An undivided cell was equipped with a glassy carbon anode ($3 \mathrm{~cm}^{2}$) and a platinum plate cathode $\left(3 \mathrm{~cm}^{2}\right)$ and connected to a DC regulated power supply. The solution of pyridine-2-carboxaldehyde $\mathbf{1 a}(1.0 \mathrm{mmol}, 107 \mathrm{mg}, 1.0 \mathrm{eq}$.$) , benzylamine \mathbf{2 a}$ ($2.0 \mathrm{mmol}, 214 \mathrm{mg}, 2.0 \mathrm{eq}$.), $\mathrm{NH}_{4} \mathrm{SCN}(2.0 \mathrm{mmol}$, $152 \mathrm{mg}, 2.0$ eq.), pyridine ($0.5 \mathrm{mmol}, 39 \mathrm{mg}, 40.0 \mu \mathrm{~L}, 0.5 \mathrm{eq}$.) and supporting electrolyte n $\mathrm{Bu}_{4} \mathrm{NBF}_{4}(1.0 \mathrm{mmol}, 329 \mathrm{mg})$ in 10 mL of with $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{mmol}, 18.0 \mu \mathrm{~L}, 1.0$ eq.) , was electrolyzed using constant current conditions at $20-25^{\circ} \mathrm{C}$ under magnetic stirring for 322 min . with $\mathrm{I}=40 \mathrm{~mA}$. After that, the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and washed with mixture of PE and ethyl acetate (1:1) ($2 \times 30 \mathrm{~mL}$). Combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure using a rotary evaporator ($15-20 \mathrm{mmHg}$), (bath temperature, ca. 30-40 $\left.{ }^{\circ} \mathrm{C}\right)$. Product 3a was isolated by chromatography on $\mathrm{SiO}_{2}(\mathrm{PE}: \mathrm{EtOAc}=$ from 8:1 to 2:1).
b) An undivided cell was equipped with a glassy carbon anode $\left(3 \mathrm{~cm}^{2}\right)$ and a platinum plate cathode $\left(3 \mathrm{~cm}^{2}\right)$ and connected to a DC regulated power supply. The solution of 3 -phenylimidazo[1,5-a]pyridine-1-carbonitrile 3 a ($0.5 \mathrm{mmol}, 109 \mathrm{mg}, 1.0$ eq.), $\mathrm{NH}_{4} \mathrm{SCN}(1.0 \mathrm{mmol}$, $76 \mathrm{mg}, 2.0$ eq.) , and pyridine ($0.25 \mathrm{mmol}, 19 \mathrm{mg}, 20.0 \mu \mathrm{~L}, 0.5 \mathrm{eq}$.) in 5 mL of DMSO with $\mathrm{H}_{2} \mathrm{O}(0.5$ $\mathrm{mmol}, 9.0 \mu \mathrm{~L}, 1.0 \mathrm{eq}$.) was electrolyzed using constant current conditions at $70^{\circ} \mathrm{C}$ under magnetic stirring for 107 min . with $\mathrm{I}=60 \mathrm{~mA}$. After that, the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ and washed with mixture of PE and ethyl acetate ($1: 1$) $(2 \times 15 \mathrm{~mL})$. Combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure using a rotary evaporator (15-20 mmHg), (bath temperature, ca. $30-40^{\circ} \mathrm{C}$). Product 11 was isolated by chromatography on SiO_{2} (PE:EtOAc = from 5:1 to 2:1).

3-Phenyl-5,8-dihydroimidazo[1,5-a]pyridine-1-carbonitrile, 11

56% ($124 \mathrm{mg}, 0.28 \mathrm{mmol}, \mathrm{PE} / E t O A c 5: 1$ to $2: 1$ as eluent). $\mathrm{R}_{f}=0.16$ (PE/EtOAc $=4: 1$).
White solid. $\mathrm{mp}=154-155^{\circ} \mathrm{C}$.
${ }^{1}{ }^{1} \mathrm{H}$ NMR ($\left.300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}, ~ \delta\right): 7.71$ - 7.56 (m, 2H, H13, 17), 7.54 - 7.39 (m, 3H, H14-16), 6.13 - 5.99 (m, 1H, H6), $5.97-5.84$ (m, 1H, H1), 4.72-4.53 (m, 2H, H2), 3.67-3.49 (m, 2H, H5). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75.48 MHz, CDCl ${ }_{3}$, ס): 147.47 (C7), 136.68 (C4), 129.78 (C15), 129.21 (C12), 128.94 (C14-16), 128.68 (C13,17), 121.28 (C6), 115.24 (C10), 109.77 (C9), 44.72 (C2), 22.12 (C5).
HRMS (ESI-TOF) m/z [M+H] $]^{+}$. Calcd for $\left[\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{3}\right]^{+}$: 222.1026. Found: 222.1035.

Experimental procedures for electrolysis of the starting substrates under optimal conditions with $\mathrm{NH}_{4} \mathrm{OAc}$ or $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$.

$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ or $\mathrm{NH}_{4} \mathbf{O A c}$ (2.0 eq.),

An undivided cell was equipped with a glassy carbon anode ($3 \mathrm{~cm}^{2}$) and a platinum plate cathode ($3 \mathrm{~cm}^{2}$) and connected to a DC regulated power supply. The solution of pyridine-2-carboxaldehyde 1a ($1.0 \mathrm{mmol}, 107 \mathrm{mg}, 1.0 \mathrm{eq}$.), benzylamine 2a ($2.0 \mathrm{mmol}, 214 \mathrm{mg}, 2.0 \mathrm{eq}$.), $\mathrm{NH}_{4} \mathrm{OAc} \cdot \mathrm{H}_{2} \mathrm{O}(2.0$ $\mathrm{mmol}, 154 \mathrm{mg}, 2.0 \mathrm{eq}$.) or $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}(2.0 \mathrm{mmol}, 192 \mathrm{mg}, 2.0 \mathrm{eq}$) , and pyridine ($0.5 \mathrm{mmol}, 39$ $\mathrm{mg}, 40.0 \mu \mathrm{~L}, 0.5 \mathrm{eq}$.) in 10 mL of DMSO with $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{mmol}, 18.0 \mu \mathrm{~L}, 1.0$ eq.) , was electrolyzed using constant current conditions at $70^{\circ} \mathrm{C}$ under magnetic stirring for 214 min . with $\mathrm{I}=60 \mathrm{~mA}$. After that, the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and washed with mixture of PE and ethyl acetate (1:1) ($2 \times 30 \mathrm{~mL}$). Combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure using a rotary evaporator $(15-20 \mathrm{mmHg})$, (bath temperature, ca. 30-40 ${ }^{\circ} \mathrm{C}$). Product 3a was not detected.

CV-study

Cyclic voltammetry (CV) was implemented on an IPC-Pro M computer-assisted potentiostat manufactured by «Econix» (scan rate error 1.0%, potential setting 0.25 mV ; scan rate $50-250 \mathrm{mV}$ s^{-1}). Analyzed solutions were prepared in 5 ml DMSO with $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{O}$ and contained n - $\mathrm{Bu}_{4} \mathrm{NClO}_{4}$ (0.1 M) as the supporting electrolyte and analyte (0.1 M). The experiments were performed in a 10 mL fiveneck glass conic electrochemical cell with a water jacket for thermostatting. CV curves were recorded using a three-electrode scheme. In a typical case, 10 mL of a solution was utilized. The working electrode was a disc glassy-carbon electrode ($\mathrm{d}=3 \mathrm{~mm}$, surface area $\approx 0.07 \mathrm{~cm}^{2}$). A platinum wire served as an auxiliary electrode. $\mathrm{An} \mathrm{Ag} / \mathrm{AgNO}_{3}$ electrode was used as the reference electrode and was linked to the solution by a porous glass diaphragm. The solutions were kept under thermally controlled conditions at $15 \pm 0.5{ }^{\circ} \mathrm{C}$ and deaerated by argon bubbling. Electrochemical experiments were performed under an argon atmosphere. The working electrode was polished with figure-eight motions on a synthetic chamois leather pad using a $\mathrm{Cr}_{2} \mathrm{O}_{3}$ - based polishing paste ($\approx 5 \mu \mathrm{~m}$ particle size) down to the mirror-like surface, and rinsed with acetonitrile. Polishing was carried before each recording of CV curve.

Figure S2. CV curves for the corresponding solutions on a working glassy-carbon electrode ($\mathrm{d}=$
 $\mathrm{NH}_{4} \mathrm{SCN}$; (c) 0.1 M solution of aldehyde $\mathbf{1 a}$ and 0.2 M solution of amine $\mathbf{2 a}$; (d) 0.1 M solution of aldehyde $\mathbf{1 a}, 0.2 \mathrm{M}$ solution of amine $\mathbf{2 a}$ and 0.2 M solution of $\mathrm{NH}_{4} \mathrm{SCN}$ in $0.1 \mathrm{M} n-\mathrm{Bu}_{4} \mathrm{NClO}_{4}$ solution in DMSO with $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{O}$.

CV-study of reaction mixture with different scanning rates

Figure S3. CV curves for the reaction mixture on a working glassy-carbon electrode ($\mathrm{d}=3 \mathrm{~mm}$) under different scan rates from $50 \mathrm{mV} / \mathrm{s}$ to $250 \mathrm{mV} / \mathrm{s}$ at $20^{\circ} \mathrm{C}$. Reaction mixture contains 0.1 M solution of aldehyde $\mathbf{1 a}, 0.2 \mathrm{M}$ solution of amine $\mathbf{2 a}$ and 0.2 M solution of $\mathrm{NH}_{4} \mathrm{SCN}$ in 0.1 M n $\mathrm{Bu}_{4} \mathrm{NCIO}_{4}$ solution in DMSO with $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{O}$.

Bioassay of fungicidal activity

The antifungal activities were tested according to the conventional procedure ${ }^{7-9}$ with six phytopathogenic fungi from different taxonomic classes: S. sclerotiorum (S.s.), F. oxysporum (F.o.), F. moniliforme (F.m.), B. sorokiniana (B.s.), R. solani (R.s.), and V. inaequalis (V.i.). The effect of the chemicals on mycelial radial growth was determined by dissolving concentration 3 $\mathrm{mg} \times \mathrm{mL}^{-1}$ in acetone and suspending aliquots in potato-saccharose agar at $50^{\circ} \mathrm{C}$ to give the concentration $30 \mu \mathrm{~g} \times \mathrm{mL}^{-1}$. The final acetone concentration of both fungicide-containing and control samples was $10 \mathrm{~mL} \times \mathrm{L}^{-1}$. Petri dishes containing 15 mL of the agar medium were inoculated by placing 2-mm micelial agar discs on the agar surface. Plates were incubated at 25 ${ }^{\circ} \mathrm{C}$ and radial growth was measured after 72 h . The mixed medium without sample was used as the blank control. Three replicates of each test were carried out. The mycelium elongation diameter (mm) of fungi settlements was measured after 72 h of culture. The growth inhibition rates were calculated with the following equation: $I=[(D C-D T) / D C] \times 100 \%$. Here I is the growth inhibition rates (\%), DC is the control settlement diameter (mm), and DT is the treatment group fungi settlement diameter (mm). The results are summarized in Table 2.

X-ray study

X-ray diffraction data were collected at 100K on a four-circle Rigaku Synergy S diffractometer equipped with a HyPix6000HE area-detector (kappa geometry, shutterless ω-scan technique), using monochromatized $\mathrm{Cu} \mathrm{K}_{\alpha}$-radiation. The intensity data were integrated and corrected for absorption and decay by the CrysAlisPro program ${ }^{10}$. The structure was solved by direct methods using SHELXT ${ }^{11}$ and refined on F^{11} using SHELXL-2018 ${ }^{12}$ in the OLEX2 program. ${ }^{13}$ All non-hydrogen atoms were refined with individual anisotropic displacement parameters. Locations of hydrogen atoms (H4A, H4B, H7A and H7B) were found from the electron density-difference map; these hydrogen atoms were refined with individual isotropic displacement parameters. All other hydrogen atoms were placed in ideal calculated positions and refined as riding atoms with relative isotropic displacement parameters.

CCDC 2290138 contains the supplementary crystallographic data for 11. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/structures.

Sample preparation: compound 11 was dissolved in EtOAc and crystallized by vapor diffusion of petroleum ether.

Figure S4. Molecular structure of 11 presented in thermal ellipsoids ($P=50 \%$).

Table S2. Crystal data and structure refinement for 3-phenyl-5,8-dihydroimidazo[1,5-a]pyridine-1-carbonitrile (11)
Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Observed reflections
Completeness to theta $=67.684^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$1>2$ sigma (1)]
R indices (all data)
Absolute structure parameter
Largest diff. peak and hole

11

C14 H11 N3
221.26
100.0(3) K
1.54184 Å

Monoclinic
Cc
$a=5.76010(10) \AA \quad a=90^{\circ}$.
$b=16.4872(3) \AA \quad b=102.0990(10)^{\circ}$.
$c=11.6145(2) \AA \quad g=90^{\circ}$.
1078.50(3) \AA^{3}

4
$1.363 \mathrm{~g} / \mathrm{cm}^{3}$
$0.662 \mathrm{~mm}^{-1}$
464
$0.12 \times 0.05 \times 0.03 \mathrm{~mm}^{3}$
5.366 to 77.086°.
$-4<=h<=7,-20<=k<=20,-14<=1<=14$
5838
1451 [$R($ int $)=0.0305]$
1435
99.9 \%

Semi-empirical from equivalents
1.00000 and 0.51018

Full-matrix least-squares on F^{2}
1451 / 2 / 170
1.057
$R 1=0.0328, w R 2=0.0857$
$R 1=0.0330, w R 2=0.0859$
-0.4(5)
0.242 and -0.164 e. \AA^{-3}

Table S3. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for compound (11). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

-	x	y	z	$U(e q)$
$N(1)$	$7196(3)$	$2842(1)$	$5002(1)$	$17(1)$
$N(2)$	$3955(3)$	$3600(1)$	$4439(2)$	$18(1)$
$N(3)$	$-143(3)$	$2504(1)$	$2356(2)$	$26(1)$
$C(1)$	$6095(3)$	$3564(1)$	$5124(2)$	$17(1)$
$\mathrm{C}(2)$	$3692(4)$	$2860(1)$	$3862(2)$	$18(1)$
		S26		

C(3)	$5667(4)$	$2379(1)$	$4210(2)$	$18(1)$
C(4)	$6203(4)$	$1528(1)$	$3927(2)$	$24(1)$
C(5)	$8449(4)$	$1229(1)$	$4689(2)$	$24(1)$
C(6)	$9910(4)$	$1694(1)$	$5457(2)$	$24(1)$
C(7)	$9506(4)$	$2565(1)$	$5671(2)$	$21(1)$
C(8)	$1571(4)$	$2662(1)$	$3029(2)$	$20(1)$
C(9)	$7128(3)$	$4200(1)$	$5978(2)$	$18(1)$
C(10)	$9287(4)$	$4579(1)$	$5954(2)$	$21(1)$
C(11)	$10150(4)$	$5184(1)$	$6778(2)$	$23(1)$
C(12)	$8881(4)$	$5402(1)$	$7622(2)$	$22(1)$
C(13)	$6726(4)$	$5030(1)$	$7642(2)$	$22(1)$
C(14)	$5846(4)$	$4433(1)$	$6822(2)$	$19(1)$

Table S4. Bond lengths $[\AA]$ and angles $\left[^{\circ}\right]$ for compound (11).

$\mathrm{N}(1)-\mathrm{C}(1)$	$1.370(2)$
$\mathrm{N}(1)-\mathrm{C}(3)$	$1.365(3)$
$\mathrm{N}(1)-\mathrm{C}(7)$	$1.466(3)$
$\mathrm{N}(2)-\mathrm{C}(1)$	$1.321(2)$
$\mathrm{N}(2)-\mathrm{C}(2)$	$1.385(3)$
$\mathrm{N}(3)-\mathrm{C}(8)$	$1.153(3)$
$\mathrm{C}(1)-\mathrm{C}(9)$	$1.480(3)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.375(3)$
$\mathrm{C}(2)-\mathrm{C}(8)$	$1.428(3)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.488(3)$
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	$0.99(4)$
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	$1.01(4)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.491(3)$
$\mathrm{C}(5)-\mathrm{H}(5)$	0.9500
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.333(3)$
$\mathrm{C}(6)-\mathrm{H}(6)$	0.9500
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.484(3)$
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	$1.03(3)$
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	$0.97(3)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.397(3)$
$\mathrm{C}(9)-\mathrm{C}(14)$	$1.399(3)$
$\mathrm{C}(10)-\mathrm{H}(10)$	0.9500
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.399(3)$
$\mathrm{C}(11)-\mathrm{H}(11)$	0.9500
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.388(3)$
$\mathrm{C}(12)-\mathrm{H}(12)$	0.9500
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.389(3)$

$\mathrm{C}(13)-\mathrm{H}(13)$	0.9500
C(13)-C(14)	1.389(3)
$\mathrm{C}(14)-\mathrm{H}(14)$	0.9500
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(7)$	127.16(17)
$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(1)$	107.94(16)
$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(7)$	124.66(18)
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(2)$	104.17(16)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(9)$	123.72(17)
$N(2)-\mathrm{C}(1)-\mathrm{N}(1)$	111.76(17)
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{C}(9)$	124.41(17)
$\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(8)$	121.30(19)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{N}(2)$	111.45(18)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(8)$	127.25(18)
$N(1)-C(3)-C(2)$	104.66(17)
$N(1)-C(3)-C(4)$	122.77(18)
$C(2)-C(3)-C(4)$	132.47(19)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	110(2)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	109(2)
$C(3)-C(4)-C(5)$	112.09(18)
$\mathrm{H}(4 \mathrm{~A})-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	110(3)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	107(2)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	108(2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	118.2
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	123.6(2)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	118.2
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	117.6
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	124.7(2)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6)$	117.6
$N(1)-C(7)-C(6)$	111.68(18)
$N(1)-C(7)-H(7 A)$	113.2(18)
$N(1)-C(7)-H(7 B)$	111.6(18)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	108.2(18)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	109.9(17)
$\mathrm{H}(7 \mathrm{~A})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	102(3)
$\mathrm{N}(3)-\mathrm{C}(8)-\mathrm{C}(2)$	179.9(3)
$C(10)-C(9)-C(1)$	122.60(17)
$C(10)-C(9)-C(14)$	119.55(18)
$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{C}(1)$	117.84(17)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$	120.1

$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$119.73(19)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10)$	120.1
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11)$	119.9
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	$120.25(19)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11)$	119.9
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12)$	119.9
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$120.13(18)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12)$	119.9
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13)$	120.0
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$120.03(19)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13)$	120.0
$\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{H}(14)$	119.8
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(9)$	$120.30(19)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14)$	119.8

Table S5. Anisotropic displacement parameters ($\AA^{2} \times 10^{3}$) for compound (11). The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

-						
	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$N(1)$	$16(1)$	$19(1)$	$16(1)$	$-2(1)$	$1(1)$	$1(1)$
$\mathrm{N}(2)$	$19(1)$	$19(1)$	$18(1)$	$0(1)$	$3(1)$	$0(1)$
$\mathrm{N}(3)$	$23(1)$	$24(1)$	$27(1)$	$-4(1)$	$-2(1)$	$2(1)$
$\mathrm{C}(1)$	$18(1)$	$18(1)$	$15(1)$	$1(1)$	$5(1)$	$0(1)$
$\mathrm{C}(2)$	$18(1)$	$21(1)$	$16(1)$	$-1(1)$	$3(1)$	$-1(1)$
$\mathrm{C}(3)$	$19(1)$	$22(1)$	$14(1)$	$-1(1)$	$4(1)$	$0(1)$
$\mathrm{C}(4)$	$24(1)$	$22(1)$	$24(1)$	$-4(1)$	$-1(1)$	$4(1)$
$\mathrm{C}(5)$	$28(1)$	$21(1)$	$25(1)$	$2(1)$	$5(1)$	$7(1)$
$\mathrm{C}(6)$	$23(1)$	$25(1)$	$22(1)$	$4(1)$	$2(1)$	$6(1)$
$\mathrm{C}(7)$	$17(1)$	$28(1)$	$18(1)$	$1(1)$	$1(1)$	$4(1)$
$\mathrm{C}(8)$	$21(1)$	$17(1)$	$21(1)$	$-2(1)$	$4(1)$	$2(1)$
$\mathrm{C}(9)$	$19(1)$	$17(1)$	$17(1)$	$1(1)$	$1(1)$	$2(1)$
$\mathrm{C}(10)$	$21(1)$	$22(1)$	$20(1)$	$1(1)$	$4(1)$	$-1(1)$
$\mathrm{C}(11)$	$21(1)$	$20(1)$	$25(1)$	$2(1)$	$2(1)$	$-4(1)$
$\mathrm{C}(12)$	$29(1)$	$15(1)$	$20(1)$	$-1(1)$	$0(1)$	$0(1)$
$\mathrm{C}(13)$	$26(1)$	$18(1)$	$21(1)$	$0(1)$	$5(1)$	$2(1)$
$\mathrm{C}(14)$	$21(1)$	$17(1)$	$20(1)$	$1(1)$	$5(1)$	$0(1)$
				S29		

Table S6. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for compound (11).

	x	y	z	U(eq)
H(4A)	4910(60)	1160(20)	4060(30)	37(8)
H(4B)	6360(70)	1490(20)	3080(40)	54(10)
H(5)	8863	675	4624	29
H(6)	11310	1450	5900	28
H(7A)	10910(60)	2890(19)	5490(30)	33(8)
H(7B)	9670(50)	2662(17)	6510(30)	26(7)
H(10)	10165	4427	5381	25
H(11)	11610	5446	6759	27
H(12)	9488	5806	8188	26
H(13)	5854	5183	8217	26
H(14)	4366	4182	6834	23

Table S7. Torsion angles [${ }^{\circ}$] for compound (11).

$N(1)-C(1)-C(9)-C(10)$	$60.5(3)$
$N(1)-C(1)-C(9)-C(14)$	$-120.7(2)$
$N(1)-C(3)-C(4)-C(5)$	$5.7(3)$
$N(2)-C(1)-C(9)-C(10)$	$-123.7(2)$
$N(2)-C(1)-C(9)-C(14)$	$55.1(2)$
$N(2)-C(2)-C(3)-N(1)$	$-1.2(2)$
$N(2)-C(2)-C(3)-C(4)$	$175.0(2)$
$C(1)-N(1)-C(3)-C(2)$	$1.4(2)$
$C(1)-N(1)-C(3)-C(4)$	$-175.32(18)$
$C(1)-N(1)-C(7)-C(6)$	$169.06(18)$
$C(1)-N(2)-C(2)-C(3)$	$0.5(2)$
$C(1)-N(2)-C(2)-C(8)$	$179.99(18)$
$C(1)-C(9)-C(10)-C(11)$	$179.15(17)$
$C(1)-C(9)-C(14)-C(13)$	$-179.71(17)$
$C(2)-N(2)-C(1)-N(1)$	$0.4(2)$

$\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{C}(9)$	$-175.88(17)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$-169.9(2)$
$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{N}(2)$	$-1.2(2)$
$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(9)$	$175.15(17)$
$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	$-4.7(3)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$-5.8(3)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$0.6(4)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(1)$	$4.7(3)$
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{N}(2)$	$-175.73(18)$
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(9)$	$0.6(3)$
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	$176.11(18)$
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	$-0.6(3)$
$\mathrm{C}(8)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{N}(1)$	$179.4(2)$
$\mathrm{C}(8)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-4.4(4)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$0.6(3)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(13)$	$-0.9(3)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$-1.1(3)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$0.6(3)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(9)$	$0.4(3)$
$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$0.4(3)$

References

(1) Meng, Z.-Y.; Feng, C.-T.; Zhang, L.; Yang, Q.; Chen, D.-X.; Xu, K. Regioselective C-H Phosphorothiolation of (Hetero)arenes Enabled by the Synergy of Electrooxidation and Ultrasonic Irradiation Org. Lett. 2021, 23, 4214-4218.
(2) He, M.; Lehn, J.-M. Time-Dependent Switching of Constitutional Dynamic Libraries and Networks from Kinetic to Thermodynamic Distributions J. Am. Chem. Soc. 2019, 141, 1856018569.
(3) Vil', V. A.; Grishin, S. S.; Baberkina, E. P.; Alekseenko, A. L.; Glinushkin, A. P.; Kovalenko, A. E.; Terent'ev, A. O. Electrochemical Synthesis of Tetrahydroquinolines from Imines and Cyclic Ethers via Oxidation/Aza-Diels-Alder Cycloaddition Adv. Synth. Catal. 2022, 364, 1098-1108.
(4) Yang, Q.; Yan, X.-T.; Feng, C.-T.; Chen, D.-X.; Yan, Z.-Z.; Xu, K. Tandem Strecker/C(sp3)-H amination reactions for the construction of cyanide-functionalized imidazo[1,5a]pyridines with $\mathrm{NH}_{4} \mathrm{SCN}$ as a cyanating agent Org. Chem. Front. 2021, 8, 6384-6389.
(5) Hernández, J. G.; Turberg, M.; Schiffers, I.; Bolm, C. Mechanochemical Strecker Reaction: Access to α-Aminonitriles and Tetrahydroisoquinolines under Ball-Milling Conditions Chem. Eur. J. 2016, 22, 14513-14517.
(6) W. Ren and M. Yamane. Carbamoylation of Aryl Halides by Molybdenum or Tungsten Carbonyl Amine Complex J. Org. Chem. 2010, 75, 9, 3017-3020
(7) Metodicheskie rekomendatsii po opredeleniyu fungitsidnoi aktivnosti novykh soedinenii, NIITEKhIM, Cherkassy, 1984, pp. 32 (in Russian).
(8) Popkov, S. V.; Kovalenko, L. V.; Bobylev, M. M.; Molchanov, O. Y.; Krimer, M. Z.; Tashchi, V. P.; Putsykin, Y. G. The Synthesis and Fungicidal Activity of 2-Substituted 1-Azol-1-ylmethyl-6-arylidenecyclohexanols Pesticide Sci. 1997, 49, 125-129.
(9) Itoh, H.; Kajino, H.; Tsukiyama, T.; Tobitsuka, J.; Ohta, H.; Takahi, Y.; Tsuda, M.; Takeshiba, H. Synthesis of silicon-containing azole derivatives with magnesium bromide diethyl etherate, and an investigation of their fungicidal activities Bioorg. Med. Chem. 2002, 10, 40294034.
(10) CrysAlisPro. Version 1.171.41. Rigaku Oxford Diffraction, 2021.
(11) Sheldrick, G. M. SHELXT - Integrated space-group and crystal-structure determination. Acta Cryst. 2015, A71(1).
(12) Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71(1), 3-8.
(13) Dolomanov O.V.; Bourhis L.J.; Gildea R.J.; Howard J.A.K.; Puschmann H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42(2), 229341.

NMR spectra of the synthesized compounds
${ }^{1} \mathrm{H}$ NMR (300.13 MHz, CDCl_{3}) of 3-phenylimidazo[1,5-a]pyridine-1-carbonitrile, 3a

${ }^{13} \mathrm{C}$ NMR ($75.48 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3-phenylimidazo[1,5-a]pyridine-1-carbonitrile, 3a

${ }^{1} \mathrm{H}$ NMR (300.13 MHz, DMSO- d_{6}) of 3-(4-chlorophenyl)imidazo[1,5-a]pyridine-1-carbonitrile, 3b

${ }^{13} \mathrm{C}$ NMR (75.48 MHz, DMSO- \boldsymbol{d}_{6}) of 3-(4-chlorophenyl)imidazo[1,5-a]pyridine-1-carbonitrile, 3b

${ }^{1} \mathrm{H}$ NMR (300.13 MHz, DMSO- d_{6}) of 3-(4-fluorophenyl)imidazo[1,5-a]pyridine-1-carbonitrile, 3c

${ }^{13} \mathrm{C}$ NMR (75.48 MHz, DMSO- d_{6}) of 3-(4-fluorophenyl)imidazo[1,5-a]pyridine-1-carbonitrile, 3c

${ }^{1} \mathrm{H}$ NMR (300.13 MHz, DMSO- d_{6}) of 3-(4-methoxyphenyl)imidazo[1,5-a]pyridine-1-carbonitrile, 3d

${ }^{13} \mathrm{C}$ NMR (75.48 MHz, DMSO- d_{6}) of 3-(4-methoxyphenyl)imidazo[1,5-a]pyridine-1-carbonitrile, 3d

${ }^{1} \mathrm{H}$ NMR ($\mathbf{3 0 0 . 1 3} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3-(3-bromophenyl)imidazo[1,5-a]pyridine-1-carbonitrile, 3e

${ }^{13} \mathrm{C}$ NMR (75.48 MHz, CDCl_{3}) of 3-(3-bromophenyl)imidazo[1,5-a]pyridine-1-carbonitrile, 3e

${ }^{1} \mathrm{H}$ NMR (300.13 MHz, DMSO- d_{6}) of 3-(3-chlorophenyl)imidazo[1,5-a]pyridine-1-carbonitrile, 3 f

${ }^{13} \mathrm{C}$ NMR (75.48 MHz, DMSO- d_{6}) of 3-(3-chlorophenyl)imidazo[1,5-a]pyridine-1-carbonitrile, 3 f

${ }^{1} \mathrm{H}$ NMR (300.13 MHz, DMSO- d_{6}) of 3-(3-methoxyphenyl)imidazo[1,5-a]pyridine-1-carbonitrile, 3 g

${ }^{13} \mathrm{C}$ NMR (75.48 MHz, DMSO- d_{6}) of 3-(3-methoxyphenyl)imidazo[1,5-a]pyridine-1-carbonitrile, 3 g

${ }^{1} \mathrm{H}$ NMR (300.13 MHz, CDCl_{3}) of 3-(2-chlorophenyl)imidazo[1,5-a]pyridine-1-carbonitrile, 3 h

${ }^{13} \mathrm{C}$ NMR (75.48 MHz, CDCl_{3}) of 3-(2-chlorophenyl)imidazo[1,5-a]pyridine-1-carbonitrile, 3 h

${ }^{1} \mathrm{H}$ NMR (300.13 MHz, DMSO- \boldsymbol{d}_{6}) of 3-(2,4-dichlorophenyl)imidazo[1,5-a]pyridine-1-carbonitrile, 3 i

${ }^{13} \mathrm{C}$ NMR (75.48 MHz, DMSO- d_{6}) of 3-(2,4-dichlorophenyl)imidazo[1,5-a]pyridine-1-carbonitrile, 3i

${ }^{1} \mathrm{H}$ NMR ($\mathbf{3 0 0 . 1 3} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3-(furan-2-yl)imidazo[1,5-a]pyridine-1-carbonitrile, 3 j

${ }^{13} \mathrm{C}$ NMR (75.48 MHz, CDCl_{3}) of 3-(furan-2-yl)imidazo[1,5-a]pyridine-1-carbonitrile, 3 j

${ }^{1} \mathrm{H}$ NMR (300.13 MHz, $\mathrm{CD}_{3} \mathrm{CN}$) of 3-(pyridin-3-yl)imidazo[1,5-a]pyridine-1-carbonitrile, 3k

${ }^{13} \mathrm{C}$ NMR (75.48 MHz, $\mathrm{CD}_{3} \mathrm{CN}$) of 3-(pyridin-3-yl)imidazo[1,5-a]pyridine-1-carbonitrile, 3k

${ }^{1} \mathrm{H}$ NMR (300.13 MHz, CDCl_{3}) of 3-(pyridin-2-yl)imidazo[1,5-a]pyridine-1-carbonitrile, 31

${ }^{13} \mathrm{C}$ NMR of (75.48 MHz, CDCl_{3}) of 3-(pyridin-2-yl)imidazo[1,5-a]pyridine-1-carbonitrile, 3I

${ }^{1} \mathrm{H}$ NMR ($\mathbf{3 0 0 . 1 3} \mathbf{~ M H z}$, DMSO- \boldsymbol{d}_{6}) of 3-(quinolin-8-yl)imidazo[1,5-a]pyridine-1-carbonitrile, 3m

${ }^{13} \mathrm{C}$ NMR (75.48 MHz, DMSO- d_{6}) of 3-(quinolin-8-yl)imidazo[1,5-a]pyridine-1-carbonitrile, 3m

${ }^{1} \mathrm{H}$ NMR (300.13 MHz, DMSO- d_{6}) of 3-(quinolin-6-yl)imidazo[1,5-a]pyridine-1-carbonitrile, 3 n

${ }^{13} \mathrm{C}$ NMR (75.48 MHz, DMSO- d_{6}) of 3-(quinolin-6-yl)imidazo[1,5-a]pyridine-1-carbonitrile, 3n

${ }^{1} \mathrm{H}$ NMR (300.13 MHz, DMSO- d_{6}) of 3-(1-phenyl-1H-pyrazol-5-yl)imidazo[1,5-a]pyridine-1-carbonitrile, 30

${ }^{13} \mathrm{C}$ NMR (75.48 MHz, DMSO- d_{6}) of 3-(1-phenyl-1H-pyrazol-5-yl)imidazo[1,5-a]pyridine-1-carbonitrile, 30

${ }^{1} \mathrm{H}$ NMR (300.13 MHz, DMSO- d_{6}) of 3-(3-(3,5-dimethyl-1 H-pyrazol-1-yl)phenyl)imidazo[1,5-a]pyridine-1-carbonitrile, 3p

${ }^{13} \mathrm{C}$ NMR (75.48 MHz, DMSO- d_{6}) of 3-(3-(3,5-dimethyl-1 H-pyrazol-1-yl)phenyl)imidazo[1,5-a]pyridine-1-carbonitrile, 3p

${ }^{1} \mathrm{H}$ NMR ($\mathbf{3 0 0} .13 \mathrm{MHz}$, DMSO- d_{6}) of 3-(2-((1 H-pyrazol-1-yl)methyl)phenyl)imidazo[1,5-a]pyridine-1-carbonitrile, 3q

${ }^{13} \mathrm{C}$ NMR (75.48 MHz, DMSO- d_{6}) of 3-(2-((1H-pyrazol-1-yl)methyl)phenyl)imidazo[1,5-a]pyridine-1-carbonitrile, 3q

${ }^{1} \mathrm{H}$ NMR ($\mathbf{3 0 0 . 1 3} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 5-methyl-3-phenylimidazo[1,5-a]pyridine-1-carbonitrile, 3s

${ }^{13} \mathrm{C}$ NMR ($75.48 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 5-methyl-3-phenylimidazo[1,5-a]pyridine-1-carbonitrile, 3s

${ }^{1} \mathrm{H}$ NMR ($\mathbf{3 0 0 . 1 3} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of 8-methyl-3-phenylimidazo[1,5-a]pyridine-1-carbonitrile, 3t

${ }^{13} \mathrm{C}$ NMR ($75.48 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 8-methyl-3-phenylimidazo[1,5-a]pyridine-1-carbonitrile, 3 t

${ }^{1} \mathrm{H}$ NMR ($\mathbf{3 0 0 . 1 3} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 6-bromo-3-phenylimidazo[1,5-a]pyridine-1-carbonitrile, 3 u

${ }^{13} \mathrm{C}$ NMR (75.48 MHz, CDCl_{3}) of, 6-bromo-3-phenylimidazo[1,5-a]pyridine-1-carbonitrile, 3u

${ }^{1} \mathrm{H}$ NMR ($\mathbf{3 0 0 . 1 3} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2-(benzylamino)-2-phenylacetonitrile, 4

${ }^{13} \mathrm{C}$ NMR (75.48 MHz, CDCl_{3}) of 2-(benzylamino)-2-phenylacetonitrile, 4

${ }^{1} \mathrm{H}$ NMR (300.13 MHz, CDCl_{3}) of 3-phenyl-1-thiocyanatoimidazo[1,5-a]pyridine, 5

${ }^{13} \mathrm{C}$ NMR ($75.48 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3-phenyl-1-thiocyanatoimidazo[1,5-a]pyridine, 5

${ }^{1} \mathrm{H}$ NMR (300.13 MHz, CDCl_{3}) of 2-(benzylamino)-2-(pyridin-2-yl)acetonitrile, 9

${ }^{13} \mathrm{C}$ NMR (75.48 MHz, CDCl_{3}) of 2-(benzylamino)-2-(pyridin-2-yl)acetonitrile, 9

${ }^{1} \mathrm{H}$ NMR ($\mathbf{3 0 0 . 1 3} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of N -benzylpicolinamide, 10

${ }^{13} \mathrm{C}$ NMR ($75.48 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of N -benzylpicolinamide, 10

${ }^{1} \mathrm{H}$ NMR ($\mathbf{3 0 0 . 1 3 ~ M H z , ~} \mathrm{CDCl}_{3}$) of 3-phenyl-5,8-dihydroimidazo[1,5-a]pyridine-1-carbonitrile, 11

${ }^{1} \mathrm{H}$ NMR (300.13 MHz, CDCl_{3}) of 3-phenyl-5,8-dihydroimidazo[1,5-a]pyridine-1-carbonitrile, 11 with correlations

${ }^{13} \mathrm{C}$ NMR (75.48 MHz, CDCl_{3}) of 3-phenyl-5,8-dihydroimidazo[1,5-a]pyridine-1-carbonitrile, 11

${ }^{13} \mathrm{C}$ NMR ($75.48 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3-phenyl-5,8-dihydroimidazo[1,5-a]pyridine-1-carbonitrile, 11 with correlations

$\left\{{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\right\}$ HSQC of 3-phenyl-5,8-dihydroimidazo[1,5-a]pyridine-1-carbonitrile, 11

$\left\{{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\right\}$ HMBC of 3-phenyl-5,8-dihydroimidazo[1,5-a]pyridine-1-carbonitrile, 11

HRMS spectra of the synthesized compounds
HRMS of 3-phenylimidazo[1,5-a]pyridine-1-carbonitrile, 3a
Display Report

Analysis Info		Acquisition Date	25.07 .2022 11:30:24
Analysis Name	D:\Data\Kolotyrkina\2022\Vil\0725007.d		
Method	tune_low.m	Operator	BDAL@DE
Sample Name	ITERN SG-561	Instrument / Ser\# maXis	
Comment	C14H9N3 mH 220.0869 clb added CH3CN		

Comment C14H9N3 mH 220.0869 clb added CH3CN

Display Report

Analysis Info
Analysis Name Method
Sample Name
Comment

D:\Data\Chizhov\Terentiev\Wil\sg-647_\&clblow.d tune low.m
/TERN SG-647
CH3CN 100 \%, dil. 1000, calibrant added

Acquisition Date 26.07.2023 13:35:51

Operator BDAL@DE
Instrument / Ser\# micrOTOF 10248

Acquisition Parameter

Display Report

Display Report

Display Report

Analysis Info
Analysis Name
Method
Sample Name
Comment

Acquisition Date 03.07.2023 10:28:09

Operator BDAL@DE
Instrument / Ser\# micrOTOF 10248
10248

Acquisition Paramete

Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	0.4 Bar
Focus	Not active			Set Dry Heater	$180{ }^{\circ} \mathrm{C}$
Scan Begin	$50 \mathrm{~m} / \mathrm{z}$		Set Capillary	4500 V	Set Dry Gas
Scan End	$2000 \mathrm{~m} / \mathrm{z}$	Set End Plate Offset	-500 V	Set Divert Valve	Waste

Display Report

Analysis Info
Analysis Name
Method
Sample Name
Comment

Acquisition Date 20.02.2023 15:25:31

Operator BDAL@DE
Instrument / Ser\# micrOTOF 1024810248

Display Report

Analysis Info
Analysis Name
Method
Sample Name
Comment

D:\Data\Kolotyrkina\2022\Vil\1229011.d
tune_low.m
/TERN SG-630
C15H8N4S2 mH 309.0263 calibrant added, CH3CN

Acquisition Date 29.12.2022 13:52:43

Operator BDAL@DE
Instrument / Ser\# micrOTOF 1024810248

Acquisition Paramete

Display Report

Analysis Info
Analysis Name
Method
D:\Data\Kolotyrkina\2023\Vill0619041.d
tune_low.m
Sample Name
Comment

Acquisition Date 19.06.2023 16:52:48

Operator BDAL@DE
Instrument / Ser\# micrOTOF 1024810248
ition

Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	0.4 Bar
Focus	Not active			Set Dry Heater	$180{ }^{\circ} \mathrm{C}$
Scan Begin	$50 \mathrm{~m} / \mathrm{z}$	Set Capillary	4500 V	Set Dry Gas	$4.0 \mathrm{I} / \mathrm{min}$
Scan End	$3000 \mathrm{~m} / \mathrm{z}$	Set End Plate Offset	-500 V	Set Divert Valve	Waste

Bruker Compass DataAnalysis 4.0 printed: 19.06.2023 16:56:10 Page 1 of 1

Display Report

Analysis Info
Analysis Name
Method
Sample Name
Comment

Acquisition Date 20.06.2023 15:45:52

Operator BDAL@DE
Instrument / Ser\# micrOTOF 10248

Acquisition Parameter

Display Report

Analysis Info
Analysis Name
Method
Sample Name
Comment
C17H11N5 mH 286.1087 calibrant added CH3CN

Acquisition Date 06.06.2023 15:49:55

Operator BDAL@DE
Instrument / Ser\# micrOTOF 10248
10248

Display Report

Analysis Info
Analysis Name Method
Sample Name Comment

D:\Data\Kolotyrkina\2023\Vil\0606028.d
tune_low.m
/TERN SG-692
C19H15N5 mH 314.1400 calibrant added CH3CN

Acquisition Date 06.06.2023 15:43:56

Operator BDAL@DE
Instrument / Ser\# micrOTOF 1024810248

Acquisition Paramete

Display Report

Display Report

Display Report

Analysis Info
Analysis Name
Method
Sample Name
Comment

D:\Data\Kolotyrkina\2022\Vil\1222008.d
tune_low.m
/TERN SG-626
C15H14N2 mH 223.1229calibrant added CH 3 OH

Acquisition Date
22.12.2022 13:29:36

Operator BDAL@DE
Instrument / Ser\# micrOTOF
10248

Acquisition Paramete

Display Report

Analysis Info
Analysis Name Method
Sample Name Comment

D:\Data\Chizhov\Terentiev\Willsg-717_\&clb_low.d tune_low.m
/TERN SG-717
CH3CN 100 \%, dil. 200, calibrant added

Acquisition Date 17.07.2023 15:09:29

Operator BDAL@DE
Instrument / Ser\# micrOTOF 10248

Acquisition Paramete

Display Report

Display Report

