Supporting Information for:

PolycyclicAromaticHydrocarbonsContainingAntiaromaticChalcogenopyrano[3,2-b]chalcogenopyrans

Weinan Chen,^{a,†} Hao Zong,^{a,b,†} Yujie Xie,^a Jianping Xu,^a Jia-Wei Cai,^b Sui-Dong Wang,^{b,c,*} and Gang Zhou^{a,*}

^aLaboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, P. R. China
^bInstitute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
^cMacao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa 999078, Macao, P. R. China

[†]These authors contributed equally to this work.

Table of Contents:

1. Materials and reagents.	S2
2. Characterizations.	S2
3. Synthesis.	S3
4. X-ray crystallographic data.	S20
5. Electrochemical properties.	S37
6. Theoretical calculations.	S38
7. Fabrication and characterization of the OFETs.	S48
8. ¹ H and ¹³ C NMR spectra.	S54
9. References.	S83

EXPERIMENTAL SECTION

1 Materials and reagents.

All chemicals and reagents were purchased from commercial sources and used as received unless otherwise specified. The applied solvents anhydrous diethyl ether (E₂O), tetrahydrofuran (THF) and toluene were distilled from sodium benzophenone ketyl. Dichloromethane (DCM), *N*,*N*-dimethylformamide (DMF), and chloroform (CHCl₃) were distilled from CaH₂. Selenophene, 3-bromothiophene, 3-octylthiophene, 3,4-dibromothiophene, and thieno[2,3-*b*]thiophene were obtained through commercial sources and used without further purification. All reactions and manipulations were carried out with the use of standard inert atmosphere and Schlenk techniques.

2. Characterizations.

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were measured on a Varian Mercury Plus-400 spectrometer. The analyzed chemical shifts δ are referenced to residual solvent signals of the deuterated solvents CDCl₃ (δ = 7.26/77.0 ppm). The splitting patterns are designated as follows: s (singlet); d (doublet); t (triplet); m (multiplet). Ultraviolet-visible-near infrared (UV-vis-NIR) absorption spectra were acquired from PerkinElmer Lambda 750 spectrophotometer. Cyclic and differential pulse voltammetry measurements were performed using a CHI660E electrochemical workstation in a three-electrode electrochemical cell. A carbon glass coated electrode was used as the working electrode and an Ag/Ag⁺ electrode as the reference electrode, while 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF₆) in dichloromethane was the electrolyte, and ferrocene was used as internal standard to estimate frontier orbital energy levels of S/Se-fused heteroarenes. The potential is given vs. Fc/Fc⁺. Single crystal analysis was measured at 173 K using Bruker D8 Venture diffractometer equipped with a Cu Kα1 light source (λ = 1.5406 Å). Structures and refinements were completed using program SHELXL-97.

3. Synthesis

Scheme S1. Synthetic routes of 3,6-dioctyl-substituted chalcogenopheno[3,2-*b*]chalcogenophenes.

Synthesis of 3,4-dibromoselenophene (4).

Bromine (31.4 g) in CHCl₃ (20 mL) was added dropwise to a stirred solution of selenophene (5.0 g) in CHCl₃ (20 mL) and AcOH (3.5 mL) at 0 °C over the course of 1 hour. The reaction mixture was warmed to r.t. and stirred for 12 hours, and then heated to 70 °C for 5 hours. Upon completion of the reaction, the mixture was allowed to cool to r.t. and transferred to a large beaker. Excess bromine was evaporated at r.t. and the resulting mixture was diluted with CHCl₃ (200 mL). The organic phase was successively washed with water (80 mL), dilute NaOH solution (50 mL), and brine (60 mL), and then concentrated. The crude crystalline product was further purified by column chromatography on silica gel using hexane as an eluent

to give 2,3,4,5-tetrabromoselenophene as a white crystalline solid (15.5 g, 91%). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 118.12, 112.44. MALDI-TOF MS (m/z): [M-Br⁺] calcd for C₄Br₄Se-Br, 368.6671; found 368.6704. *n*-BuLi (1.6 M in hexanes, 14.7 mL, 23.5 mmol) was added dropwise to a stirred solution of 2,3,4,5-tetrabromoselenophene (5.0 g, 11.2 mmol) in anhydrous ether (60 mL) under a nitrogen atmosphere at -78 °C over the course of 30 minutes, and the mixture was stirred for another 1.5 hours at that temperature. H₂O (5 mL) was added slowly to the reaction mixture, which was then allowed to warm to r.t. The mixture was then diluted with water (100 mL), extracted with ether (3 × 50 mL), and the combined organic phases were washed with water (50 mL), brine, dried over anhydrous MgSO₄, and concentrated. The resulting colorless oil was purified by column chromatography on silica gel using hexane as an eluent to give compound **4** (2.8 g, 86%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.93 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 127.73, 114.62. MALDI-TOF MS (m/z): [M⁺] calcd for C₄Br₂Se, 287.7505; found 287.7489.

Synthesis of 1-(4-bromo-3-thienyl)octan-1-ol (5).

Compound 5 was synthesized according to reported method.^[S1]

Synthesis of 1-(4-bromoselenophen-3-yl)octan-1-ol (6).

To a mixture of compound **4** (1.0 eq.) in dry diethyl ether, *n*-BuLi (1.6 M in hexane, 1.1 eq.) was added dropwise at -78 °C. After the addition was finished, the resulting mixture was stirred another 2 hours and then octanal (1.2 eq.) was added quickly. The final mixture was allowed to warm to r.t. and stirred for 2 hours. This reaction was then quenched with water and extracted with ethyl acetate. The combined extracts were dried over anhydrous MgSO₄, filtered and distillation of solvent under reduced pressure gives the crude products. The residue was purified by chromatography (eluent: petroleum ether) on silica gel to afford the target compound **6** as a colorless oil (2.53 g, 78%). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.90 (s, 2H), 4.79 (d, *J* = 8.1 Hz, 1H), 1.33 – 1.26 (m, 12H), 0.90 – 0.86 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 146.06, 127.36, 126.46, 111.20, 71.61, 37.42, 32.07, 29.63, 29.49, 26.01, 22.92, 14.38. MALDI-TOF MS (m/z): [M⁺] calcd for C₁₂H₁₉BrOSe, 337.9776; found 337.9809.

Synthesis of 3-bromo-4-octylthiophene (7).

Compound 7 was synthesized according to reported method.^[S2]

Synthesis of 3-bromo-4-octylselenophene (8).

A round bottom flask containing compound **6** (1.0 eq.) and triethylsilane (4.0 eq.) in anhydrous CH₂Cl₂ were cooled to 0 °C, and then TFA (6.0 eq.) was added via syringe. The solution was stirred at r.t. for a period of 2 hours and quenched with saturated NaHCO₃. The mixture was extracted with CH₂Cl₂, dried over anhydrous MgSO₄, and concentrated to dryness. The residue was purified by chromatography (eluent: petroleum ether) on silica gel to afford the target compound **8** as a colorless oil (1.90 g, 80%).¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.86 (d, *J* = 2.9 Hz, 1H), 7.55 – 7.54 (m, 1H), 2.58 – 2.54 (m, 2H), 1.65 – 1.59 (m, 2H), 1.37 – 1.28 (m, 10H), 0.90 – 0.87 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 143.51, 126.29, 124.77, 124.69, 114.14, 77.58, 77.27, 76.95, 32.31, 32.13, 29.65, 29.54, 29.45, 22.94, 14.39. MALDI-TOF MS (m/z): [M⁺] calcd for C₁₂H₁₉BrSe, 321.9826; found 321.9840.

Synthesis of 1-(3-bromo-4-octylthien-2-yl)nonan-1-one (9).

Compound 9 was synthesized according to reported method.^[S2]

Synthesis of ethyl 3,6-dioctylthieno[3,2-b]thiophene-2-carboxylate (10).

Compound 10 was synthesized according to reported method.^[S2]

Synthesis of 1,2-bis(4-octylthien-3-yl)diselane (11).

A stirred solution of compounds 7 (1.0 eq.) in Et₂O were cooled to -78 °C and *n*-BuLi (1.6 M solution in hexane, 1.1 eq.) was added dropwise over 60 minutes. After stirring for 2 hours, selenium powder (1.2 eq.) was added in portions. The solution stirred for another an hour at -78 °C and then warmed to r.t. for 4 hours. The resulting solution was poured into HCl (10 %) and was stirred overnight at r.t. After filtration, the aqueous layer was extracted twice with ether, and the combined organic layers were dried with anhydrous magnesium sulfate and the solvents evaporated under vacuum. The residue was purified by

chromatography (eluent: petroleum ether) on silica gel to afford the target compound **11** as a yellow oil (1.40 g, 80%). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.29 (d, J = 3.2 Hz, 1H), 6.96 (d, J = 3.3 Hz, 1H), 2.57 – 2.52 (m, 2H), 1.61 – 1.57 (m, 2H), 1.30 – 1.26 (m, 10H), 0.89 (d, J = 2.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 142.92, 123.82, 121.78, 114.03, 33.11, 31.12, 30.62, 30.55, 30.53, 30.50, 23.92, 15.36. MALDI-TOF MS (m/z): [M⁺] calcd for C₂₄H₃₈S₂Se₂, 550.0742; found 550.0771.

Synthesis of 1,2-bis(4-octylselenophen-3-yl)diselane (12).

A stirred solution of compound **8** (1.0 eq.) in anhydrous Et₂O was cooled to -78 °C and *n*-BuLi (1.6 M solution in hexane, 1.1 eq.) was added dropwise over an hour. After stirring for 2 hours, selenium powder (1.2 eq.) was added in portions. The solution stirred for another an hour at -78 °C and then warmed to r.t. for 4 hours. The resulting solution was poured into HCl (10 %) and was stirred overnight at r.t. After filtration, the aqueous layer was extracted twice with ether, and the combined organic layers were dried with anhydrous magnesium sulfate and the solvents evaporated under vacuum. The residue was purified by chromatography (eluent: petroleum ether) on silica gel to afford the target compound **12** as a yellow oil (3.35 g, 75%). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.97 (d, J = 2.7 Hz, 1H), 7.57 (d, J = 2.7 Hz, 1H), 2.55 (s, 2H), 1.62 – 1.58 (m, 2H), 1.29 (d, J = 8.4 Hz, 10H), 0.89 (d, J = 2.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 146.30, 136.42, 127.32, 124.66, 32.22, 32.19, 31.85, 29.91, 29.40, 29.25, 22.65, 14.09. MALDI-TOF MS (m/z): [M⁺] calcd for C₂₄H₃₈Se₄, 643.9649; found 643.9675.

Synthesis of ethyl 2-((4-octylthien-3-yl)selanyl)acetate (13).

To a suspension of NaBH₄ (2.0 eq.) in anhydrous EtOH was added a solution of diselenide **11** (1.0 eq.) in anhydrous THF dropwise under a nitrogen atmosphere. The reaction mixture was kept under agitation at 0 °C and ethyl bromoacetate (2.0 eq.) in anhydrous THF was added. After 25 minutes, the reaction mixture was quenched with water and organic phase was extracted with dichloromethane. The organic layers were combined, dried over anhydrous magnesium sulfate, and concentrated under vacuum. The residue was purified by chromatography (eluent: petroleum ether) on silica gel to afford the target compound **13** as a yellow oil (1.40 g, 73%).¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.43 (s, 1H), 6.98 (s, 1H), 4.13 – 4.07 (m, 2H), 3.37 (s, 2H), 2.66 – 2.61 (m, 2H), 1.65 – 1.58 (m, 2H), 1.40 – 1.32 (m, 4H), 1.30 – 1.26 (m, 6H),

1.23 – 1.19 (m, 3H), 0.88 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 170.96, 144.93, 129.71, 123.86, 120.77, 61.54, 32.12, 30.39, 29.68, 29.51, 28.10, 22.92, 14.37, 14.28. MALDI-TOF MS (m/z): [M⁺] calcd for C₁₆H₂₆O₂SSe, 362.0813; found 362.0845.

Synthesis of ethyl 2-((4-octylselenophen-3-yl)selanyl)acetate (14).

To a suspension of NaBH₄ (2.0 eq.) in anhydrous EtOH was added a solution of diselenide compound **12** (1.0 eq.) in anhydrous THF dropwise under a nitrogen atmosphere. The reaction mixture was kept under agitation at 0 °C and ethyl bromoacetate (2.0 eq.) in anhydrous THF was added. After 25 minutes, the reaction mixture was quenched with water and organic phase was extracted with dichloromethane. The organic layers were combined, dried over anhydrous magnesium sulfate, and concentrated under vacuum. The residue was purified by chromatography (eluent: petroleum ether) on silica gel to afford the target compound **14** as a yellow oil (3.35 g, 75%). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.11 (d, *J* = 2.7 Hz, 1H), 7.59 – 7.58 (m, 1H), 4.13 – 4.08 (m, 2H), 3.40 (s, 2H), 2.63 – 2.59 (m, 2H), 1.64 – 1.59 (m, 2H), 1.34 – 1.26 (m, 10H), 1.20 (d, *J* = 7.1 Hz, 3H), 0.87 (d, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 170.97, 146.27, 133.34, 124.93, 61.56, 32.35, 32.12, 30.25, 29.69, 29.52, 28.00, 22.93, 14.37, 14.29. MALDI-TOF MS (m/z): [M⁺] calcd for C₁₆H₂₆O₂Se₂, 410.0261; found 410.0294.

Synthesis of ethyl 2-((2-nonanoyl-4-octylthien-3-yl)selanyl)acetate (15).

Into a 50 mL flask was placed dichloromethane under a nitrogen atmosphere, and the flask was cooled using an ice bath before AlCl₃ (1.5 eq.) was added. A dropping funnel was charged with nonanoyl chloride (1.4 eq.) in dichloromethane, and this solution was added to the AlCl₃ suspension over a period of 10 minutes. After about 30 minutes of stirring at 0 °C, most of the AlCl₃ had dissolved. Another dropping funnel was charged with compound **13** (1.0 eq.) in dichloromethane, and this mixture was added to the reaction mixture over a 10 minutes period. The reaction was left to proceed at 0 °C for 30 minutes, and then the reaction mixture was warmed slowly to r.t. for 12 hours. Then the reaction mixture was cooled to 0 °C once again, and dilute solution of HCl was added carefully to consume excess AlCl₃. The reaction mixture was diluted with dichloromethane, and water was added. The inorganic phase was extracted twice

with dichloromethane, washed with saturated NaHCO₃ and brine, and finally dried over anhydrous magnesium sulfate. The combined extracts were dried over anhydrous MgSO₄, filtered and distillation of solvent under reduced pressure gives the crude products. The residue was purified by chromatography (eluent: petroleum ether/DCM = 4/1) on silica gel to afford the target compound **15** as a yellow liquid (1.04 g, 45%). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.21 (s, 1H), 4.03 – 3.97 (m, 2H), 3.55 (s, 2H), 2.96 (t, *J* = 7.4 Hz, 2H), 2.74 – 2.68 (m, 2H), 1.76 – 1.69 (m, 2H), 1.61 – 1.54 (m, 2H), 1.40 – 1.30 (m, 8H), 1.30 – 1.24 (m, 12H), 1.11 (t, *J* = 7.2 Hz, 3H), 0.87 (t, *J* = 6.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 193.40, 170.75, 149.22, 143.02, 128.64, 125.27, 61.36, 42.38, 32.09, 32.07, 31.13, 30.62, 29.66, 29.64, 29.59, 29.49, 29.39, 28.85, 24.92, 22.90, 14.35, 14.16. MALDI-TOF MS (m/z): [M⁺] calcd for C₂₅H₄₂O₃SSe, 502.2015; found 502.2019.

Synthesis of ethyl 2-((2-nonanoyl-4-octylselenophen-3-yl)selanyl)acetate (16).

Into a 50 mL flask was placed dichloromethane under a nitrogen atmosphere, and the flask was cooled using an ice bath before AlCl₃ (1.5 eq.) was added. A dropping funnel was charged with nonanoyl chloride (1.4 eq.) in dichloromethane, and this solution was added to the AlCl₃ suspension over a period of 10 minutes. After about 30 minutes of stirring at 0 °C, most of the AlCl₃ had dissolved. Another dropping funnel was charged with compounds **14** (1.0 eq.) in dichloromethane, and this mixture was added to the reaction mixture over a 10 minutes period. The reaction was left to proceed at 0 °C for 30 minutes, and then the reaction mixture was warmed slowly to r.t. for 12 hours. Then the reaction mixture was cooled to 0 °C again, and dilute solution of HCl was added carefully to consume excess AlCl₃. The reaction mixture was diluted with dichloromethane, and water was added. The inorganic phase was extracted twice with dichloromethane, washed with saturated NaHCO₃ and brine, and finally dried over anhydrous magnesium sulfate. The combined extracts were dried over anhydrous MgSO₄, filtered and distillation of solvent under reduced pressure gives the crude products. The residue was purified by chromatography (eluent: petroleum ether/DCM = 4/1) on silica gel to afford the target compound **16** as a yellow oil (2.45 g, 55%).¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.31 (s, 1H), 4.05 (q, *J* = 7.1 Hz, 2H), 3.60 (s, 2H), 3.01 (t, *J* = 7.4 Hz, 2H), 2.79 - 2.73 (m, 2H), 1.79 - 1.76 (m, 2H), 1.63 (d, *J* = 7.8 Hz, 2H), 1.45 - 1.35 (m, 8H),

1.34 - 1.29 (m, 12H), 1.16 (t, J = 7.2 Hz, 3H), 0.92 (t, J = 6.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm):193.68, 171.02, 149.50, 125.55, 61.63, 42.66, 32.37, 32.35, 31.41, 30.90, 29.93, 29.92, 29.87, 29.77, 29.66, 29.13, 25.19, 23.18, 14.63, 14.44. MALDI-TOF MS (m/z): [M⁺] calcd for C₂₅H₄₂O₃Se₂, 550.1464; found 508. 550.1498.

Synthesis of ethyl 3,6-dioctylselenopheno[3,2-b]thiophene-5-carboxylate (17).

In a 50 mL round bottom flask, precursor compound **15** (1.0 eq.) was taken with anhydrous DMF and K₂CO₃ (3.0 eq.) was added. The mixture was stirred at 70 °C for 24 hours under a nitrogen atmosphere. It was quenched by adding H₂O and the compound extracted with dichloromethane. The organic phase was washed several times with H₂O, dried over anhydrous magnesium sulfate and evaporated in vacuum. The residue was purified by chromatography (eluent: hexane/DCM = 4/1) on silica gel to afford the target compound **17** as a yellow oil (0.94 g, 94%).¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.12 (s, 1H), 4.36 – 4.31 (m, 2H), 3.20 – 3.06 (m, 2H), 2.70 (t, *J* = 7.7 Hz, 2H), 1.76 – 1.67 (m, 4H), 1.42 – 1.36 (m, 7H), 1.32 (d, *J* = 6.1 Hz, 4H), 1.30 – 1.25 (m, 12H), 0.90 – 0.86 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 164.27, 146.51, 142.98, 141.57, 138.76, 129.61, 124.28, 77.58, 77.26, 76.94, 61.16, 32.12, 32.10, 30.78, 30.75, 30.05, 29.67, 29.64, 29.58, 29.48, 29.46, 28.99, 22.91, 14.60, 14.36. MALDI-TOF MS (m/z): [M⁺] calcd for C₂₅H₄₀O₂SSe, 484.1910; found 484.1942.

Synthesis of ethyl 3,6-dioctylselenopheno[3,2-b]selenophene-2-carboxylate (18).

In a 50 mL round bottom flask, precursor compound **16** (1.0 eq.) was taken with anhydrous DMF and K₂CO₃ (3.0 eq.) was added. The mixture was stirred at 70 °C for 24 hours under a nitrogen atmosphere. It was quenched by adding H₂O and the compound extracted with dichloromethane. The organic phase was washed several times with H₂O, dried over anhydrous magnesium sulfate and evaporated in vacuum. The residue was purified by chromatography (eluent: hexane/DCM = 4/1) on silica gel to afford the target compound **18** as a yellow oil (1.30 g, 85%). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.66 (s, 1H), 4.33 (q, J = 7.1 Hz, 2H), 3.13 – 3.08 (m, 2H), 2.67 (t, J = 7.7 Hz, 2H), 1.75 – 1.69 (m, 4H), 1.38 (s, 3H), 1.36 – 1.21 (m, 20H), 0.89 – 0.86 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 164.12, 148.94, 144.08, 143.06,

140.83, 128.95, 127.06, 126.99, 77.58, 77.26, 76.94, 61.17, 32.40, 32.11, 31.92, 30.08, 29.82, 29.59, 29.47, 28.87, 22.91, 14.62, 14.36. MALDI-TOF MS (m/z): $[M^+]$ calcd for $C_{25}H_{40}O_2Se_2$, 532.1358; found 532.1377.

General procedure for the synthesis of compounds 19-21.

A mixture of precursor compounds 10/17/18 (1.0 eq.), LiOH (0.5 eq. 10 wt%), tetrabutylammonium iodide (5 mmol%), and MeOH in THF (1/4, v/v) was heated under reflux at 85 °C for 5 hours. After evaporating the solvent under reduced pressure, the mixture was acidified with concentrated HCl and then extracted with EtOAc. The combined organic phases were dried and the solvent evaporated under reduced pressure. The crude product was directly used in the next reaction without further purification.

Synthesis of 3,6-dioctylthieno[3,2-*b*]thiophene (22).

Compound 22 was synthesized according to reported method.^[S2]

Synthesis of 3,6-dioctylselenopheno[3,2-*b*]thiophene (23).

A mixture of crude precursor compound **20** and Cu powder (0.65 eq.) in quinoline was stirred at 250 °C for 4 hours. After cooling to r.t., the mixture was added to hexane and then washed with 2 M HCl. The organic phase was dried over anhydrous magnesium sulfate and the solvent evaporated under reduced pressure. The residue was purified by chromatography (eluent: petroleum ether) on silica gel to afford the target compound **23** as a colorless solid (0.69 g, 82%). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.47 (s, 1H), 6.94 (s, 1H), 2.72 (t, *J* = 6.4 Hz, 2H), 2.70 – 2.66 (m, 2H), 1.78 – 1.72 (m, 4H), 1.39 – 1.33 (m, 8H), 1.31 – 1.26 (m, 12H), 0.89 (d, *J* = 7.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 141.22, 138.92, 138.48, 137.78, 123.26, 120.38, 77.58, 77.27, 76.95, 32.14, 31.56, 30.82, 29.67, 29.65, 29.63, 29.50, 29.11, 28.81, 22.93, 14.38. MALDI-TOF MS (m/z): [M⁺] calcd for C₂₂H₃₆SSe, 412.1698; found 412.1730.

Synthesis of 3,6-dioctylselenopheno[3,2-*b*]selenophene (24).

A mixture of crude precursor compound 21 and Cu powder (0.65 eq.) in quinoline was stirred at 250 °C

for 4 hours. After cooling to r.t., the mixture was added to hexane and then washed with 2 M HCl. The organic phase was dried over anhydrous magnesium sulfate and the solvent evaporated under reduced pressure. The residue was purified by chromatography (eluent: petroleum ether) on silica gel to afford the target compound **24** as a colorless solid (0.86 g, 88%). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.46 (s, 1H), 2.68 (t, *J* = 7.7 Hz, 2H), 1.74 (t, *J* = 7.1 Hz, 2H), 1.38 – 1.27 (m, 10H), 0.88 (d, *J* = 2.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 141.02, 140.49, 122.82, 77.57, 77.25, 76.93, 32.45, 32.12, 29.65, 29.62, 29.48, 28.97, 22.92, 14.36. MALDI-TOF MS (m/z): [M⁺] calcd for C₂₂H₃₆Se₂, 460.1146; found 460.1178.

Scheme S2. Synthetic routes of the PAHs containing chalcogenopyrano[3,2-b]chalcogenopyrans moieties.

Synthesis of selenopheno[3,2-*b*]thiophene (26).

Compound 26 was synthesized according to reported method.^[S3]

Synthesis of selenopheno[3,2-b]selenophene (27).

A mixture of crude precursor compound (1.0 eq.) and Cu powder (0.65 eq.) in quinoline was stirred at 250 °C for 4 hours. After cooling to r.t., the mixture was added to hexane and then washed with 2 M HCl. The organic phase was dried over anhydrous magnesium sulfate and the solvent evaporated under reduced pressure. The residue was purified by chromatography (eluent: petroleum ether/DCM = 8/1) on silica gel to afford the target compound **27** as a colorless solid (1.24 g, 82%). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.00 – 7.96 (m, 2H), 7.59 – 7.54 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 140.66, 130.76, 125.29. MALDI-TOF MS (m/z): [M⁺] calcd for C₆H₄Se₂, 235.8640; found 235.8593.

Synthesis of 2,5-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)thieno[3,2-b]thiophene (28).

To a solution of compound **25** (1.0 eq.) in dry THF, a 1.6 M solution of *n*-BuLi (2.5 eq.) in hexanes was added at -70 °C. The solution was stirred for 30 minutes at -70 °C, and then 2-isopropoxy-1,3,2-dioxaboralane (3.0 eq.) was added. The mixture was allowed to reach r.t. and stirred overnight. The reaction mixture was poured in water and DCM, and the organic layer was washed with brine. The solvents were evaporated from the organic layer to obtain the mixture. The residue was purified by chromatography (eluent: petroleum ether/DCM = 2/1) on silica gel to afford the target compound **28** as a colorless solid (5.2 g, 46%). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.76 (s, 2H), 1.35 (s, 24H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 146.88, 129.13, 84.59, 25.02. MALDI-TOF MS (m/z): [M⁺] calcd for C₁₈H₂₆B₂O₄S₂, 392.1460; found 392.1482.

Synthesisof2,2'-(selenopheno[3,2-b]thiophene-2,5-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (29).

To a solution of compound **26** (1.0 eq.) in dry THF, a 1.6 M solution of *n*-BuLi (2.5 eq.) in hexanes were added at -70 °C. The solution was stirred for 30 minutes at -70 °C, and then 2-isopropoxy-1,3,2-

dioxaboralane (3.0 eq.) was added. The mixture was allowed to reach r.t. and stirred overnight. The reaction mixture was poured in water and DCM, and the organic layer was washed with brine. The solvents were evaporated from the organic layer to obtain the mixture. The residue was purified by chromatography (eluent: petroleum ether/DCM = 2/1) on silica gel to afford the target compound **29** as a colorless solid (1.5 g, 48%). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.06 (s, 1H), 7.80 (s, 1H), 1.35 – 1.35 (m, 24H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 148.81, 145.81, 132.43, 131.85, 84.61, 84.58, 25.03. MALDI-TOF MS (m/z): [M⁺] calcd for C₁₈H₂₆B₂O₄SSe, 440.0905; found 440.0929.

Synthesis of 2,5-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)selenopheno[3,2-*b*]selenophene (30).

To a solution of compound **27** (1.0 eq.) in dry THF, a 1.6 M solution of *n*-BuLi (2.5 eq.) in hexanes was added at -70 °C. The solution was stirred for 30 minutes at -70 °C, and then 2-isopropoxy-1,3,2-dioxaboralane (3.0 eq.) was added. The mixture was allowed to reach r.t. and stirred overnight. The reaction mixture was poured in water and DCM, and the organic layer was washed with brine. The solvents were evaporated from the organic layer to obtain the mixture. The residue was purified by chromatography (eluent: petroleum ether/DCM = 2/1) on silica gel to afford the target compound **30** as a colorless solid (1.2 g, 38%). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.09 (s, 2H), 1.35 (s, 24H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 148.00, 135.02, 84.59, 25.03. MALDI-TOF MS (m/z): [M⁺] calcd for C₁₈H₂₆B₂O₄Se₂, 488.0354; found 488.0384.

General synthetic procedure of 2,2'-(3,6-dioctylthieno[3,2-*b*]thien-2,5-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (31), 2,2'-(3,6-dioctylselenopheno[3,2-*b*]thien-2,5-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (32), and 2,2'-(3,6-dioctylselenopheno[3,2-*b*]selenophene-2,5-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (33).

To a solution of compounds **22-24** (1.0 eq.) in dry THF, a 1.6 M solution of *n*-BuLi (2.5 eq.) in hexanes were added at -78 °C. The solution was stirred for 30 minutes at -78 °C, and then 2-isopropoxy-1,3,2-dioxaboralane (2.6 eq.) was added at -78 °C. The mixture was allowed to reach r.t. and stirred overnight.

The reaction mixture was poured in water and DCM, and the organic layer was washed with brine. The solvents were evaporated from the organic layer to obtain the mixture. The crude products **31-33** were directly used in the next reaction without further purification due to their decomposition in the chromatography separation.

Synthesis of 2-bromo-1-(dec-1-yn-1-yl)naphthalene (40).

Compound **40** was synthesized according to reported method.^[S2]

Synthesis of 2,5-bis(1-(dec-1-yn-1-yl)naphthalen-2-yl)thieno[3,2-b]thiophene (34).

Under the protection of nitrogen, to a degassed mixture solution of toluene and K₂CO₃ (4.0 eq.) was added compound **28** (1.0 eq.), compound **40** (2.3 eq.) and Pd(PPh₃)₄ (0.05 eq.). The mixture was heated overnight under nitrogen at 100 °C. The resulting mixture was extracted with dichloromethane, and the combined organic layer was dried with anhydrous MgSO₄ and concentrated in vacuo. The residue was purified by chromatography (eluent: petroleum ether/DCM = 6/1) on silica gel to afford the target compound **34** as a colorless solid (0.82 g, 62%). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.50 (d, *J* = 8.4 Hz, 2H), 7.99 (d, *J* = 1.2 Hz, 2H), 7.84 – 7.79 (m, 4H), 7.75 – 7.72 (m, 2H), 7.63 – 7.58 (m, 2H), 7.54 – 7.49 (m, 2H), 2.68 – 2.64 (m, 4H), 1.82 – 1.71 (m, 4H), 1.57 – 1.50 (m, 4H), 1.39 – 1.25 (m, 16H), 0.8 – 0.84 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 145.11, 140.20, 134.60, 134.39, 132.51, 128.23, 128.19, 127.41, 127.34, 126.88, 126.65, 119.84, 118.42, 102.29, 32.13, 29.53, 29.50, 29.46, 28.80, 22.94, 20.52, 14.35. MALDI-TOF MS (m/z): [M⁺] calcd for C₄₆H₄₈S₂, 664.3192; found 664.3215.

Synthesis of 2,5-bis(1-(dec-1-yn-1-yl)naphthalen-2-yl)selenopheno[3,2-b]thiophene (35).

Under the protection of nitrogen, to a degassed mixture solution of toluene and K_2CO_3 (4.0 eq.) was added compound **29** (1.0 eq.), compound **40** (2.3 eq.) and Pd(PPh₃)₄ (0.05 eq.). The mixture was heated overnight under nitrogen at 100 °C. The resulting mixture was extracted with dichloromethane, and the combined organic layer was dried with anhydrous MgSO₄ and concentrated in vacuo. The residue was purified by chromatography (eluent: petroleum ether/DCM = 6/1) on silica gel to afford the target compound **35** as a colorless solid (0.65 g, 54%). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.51 – 8.47 (m, 2H), 8.10 (s, 1H), 8.02 (s, 1H), 7.84 – 7.80 (m, 2H), 7.78 – 7.72 (m, 4H), 7.64 – 7.57 (m, 2H), 7.54 – 7.49 (m, 2H), 2.72 – 2.68 (m, 2H), 2.66 (t, J = 5.8 Hz, 2H), 1.78 – 1.73 (m, 4H), 1.58 – 1.53 (m, 4H), 1.40 – 1.35 (m, 4H), 1.32 – 1.27 (m, 8H), 0.86 (t, J = 3.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 134.60, 134.27, 132.50, 132.44, 128.24, 128.21, 128.18, 127.45, 127.41, 127.35, 126.86, 126.63, 126.29, 122.96, 121.89, 117.81, 78.60, 32.15, 29.57, 29.54, 29.52, 29.50, 29.48, 28.81, 28.73, 22.97, 20.75, 20.56, 14.39. MALDI-TOF MS (m/z): [M⁺] calcd for C₄₆H₄₈SSe, 712.2641; found 712.2675.

Synthesis of 2,5-bis(1-(dec-1-yn-1-yl)naphthalen-2-yl)selenopheno[3,2-b]selenophene (36).

Under the protection of nitrogen, to a degassed mixture solution of toluene and K₂CO₃ (4.0 eq.) was added compound **30** (1.0 eq.), compound **40** (2.3 eq.) and Pd(PPh₃)₄ (0.05 eq.). The mixture was heated overnight under nitrogen at 100 °C. The resulting mixture was extracted with dichloromethane, and the combined organic layer was dried with anhydrous MgSO₄ and concentrated in vacuo. The residue was purified by chromatography (eluent: petroleum ether/DCM = 6/1) on silica gel to afford the target compound **36** as a colorless solid (0.32 g, 59%). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.49 – 8.47 (m, 2H), 8.12 (s, 2H), 7.82 – 7.75 (m, 6H), 7.61 – 7.57 (m, 2H), 7.51 – 7.49 (m, 2H), 2.69 (t, *J* = 7.1 Hz, 4H), 1.83 – 1.76 (m, 4H), 1.60 – 1.53 (m, 4H), 1.40 – 1.36 (m, 4H), 1.32 – 1.27 (m, 12H), 0.95 – 0.81 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 148.97, 142.12, 136.14, 134.62, 132.43, 128.20, 128.14, 127.43, 127.35, 126.60, 126.19, 124.92, 117.79, 103.66, 32.14, 29.54, 29.51, 29.49, 28.71, 22.95, 20.76, 14.37. MALDI-TOF MS (m/z): [M⁺] calcd for C₄₆H₄₈Se₂, 760.2092; found 760.2120.

Synthesis of 2,5-bis(1-(dec-1-yn-1-yl)naphthalen-2-yl)-3,6-dioctylthieno[3,2-b]thiophene (37).

Compound **37** was synthesized according to reported method.^[S2]

Synthesis of 2,5-bis(1-(dec-1-yn-1-yl)naphthalen-2-yl)-3,6-dioctylselenopheno[3,2-b]thiophene (38). Under the protection of nitrogen, to a degassed mixture solution of toluene and K₂CO₃ (4.0 eq.) was added compound 32 (1.0 eq.), compound 40 (2.3 eq.) and Pd(PPh₃)₄ (0.05 eq.). The mixture was heated overnight under nitrogen at 100 °C. The resulting mixture was extracted with dichloromethane, and the combined organic layer was dried with anhydrous MgSO₄ and concentrated in vacuo. The residue was purified by chromatography (eluent: petroleum ether/DCM = 8/1) on silica gel to afford the target compound **38** as a colorless solid (0.25 g, 45%). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.52 – 8.44 (m, 2H), 7.89 – 7.86 (m, 2H), 7.82 – 7.78 (m, 2H), 7.64 – 7.59 (m, 2H), 7.57 – 7.53 (m, 4H), 2.73 – 2.65 (m, 4H), 2.48 (t, *J* = 7.0 Hz, 4H), 1.75 – 1.65 (m, 4H), 1.60 – 1.53 (m, 4H), 1.39 – 1.32 m, 4H), 1.30 – 1.21 (m, 20H), 1.19 – 1.12 (m, 16H), 0.89 – 0.86 (m, 6H), 0.84 – 0.80 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 141.05, 140.38, 138.49, 137.43, 136.63, 135.77, 135.48, 134.79, 133.99, 133.97, 132.80, 132.72, 129.16, 128.95, 128.28, 127.24, 127.20, 127.14, 126.75, 122.55, 101.16, 100.62, 78.07, 78.01, 32.20, 32.10, 29.99, 29.67, 29.65, 29.53, 29.50, 29.47, 29.39, 29.08, 28.97, 28.91, 28.84, 22.96, 22.88, 20.25, 20.23, 14.39, 14.34. MALDI-TOF MS (m/z): [M⁺] calcd for C₆₂H₈₀SSe, 936.5148; found 936.5176.

Synthesis of 2,5-bis(1-(dec-1-yn-1-yl)naphthalen-2-yl)-3,6-dioctylselenopheno[3,2-*b*]selenophene (39).

Under the protection of nitrogen, to a degassed mixture solution of toluene and K₂CO₃ (4.0 eq.) was added compound **33** (1.0 eq.), compound **40** (2.3 eq.) and Pd(PPh₃)₄ (0.05 eq.). The mixture was heated overnight under nitrogen at 100 °C. The resulting mixture was extracted with dichloromethane, and the combined organic layer was dried with anhydrous MgSO₄ and concentrated in vacuo. The residue was purified by chromatography (eluent: petroleum ether/DCM = 8/1) on silica gel to afford the target compound **39** as a colorless solid (0.34 g, 59%). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.48 (d, *J* = 8.3 Hz, 2H), 7.88 (d, *J* = 8.0 Hz, 2H), 7.80 (d, *J* = 8.5 Hz, 2H), 7.63 – 7.59 (m, 2H), 7.57 – 7.53 (m, 4H), 2.71 – 2.64 (m, 4H), 2.48 (t, *J* = 7.0 Hz, 4H), 1.72 – 1.65 (m, 4H), 1.64 – 1.51 (m, 4H), 1.39 – 1.35 (m, 4H), 1.27 (d, *J* = 2.9 Hz, 20H), 1.20 – 1.10 (m, 16H), 0.90 – 0.86 (m, 6H), 0.82 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 140.65, 137.48, 137.37, 133.97, 132.72, 128.93, 128.27, 127.19, 127.17, 127.14, 126.71, 122.04, 101.19, 78.08, 77.59, 77.27, 76.95, 32.22, 32.10, 30.81, 29.63, 29.51, 29.46, 29.40, 29.18, 29.10, 28.85, 22.97, 22.88, 20.26, 14.40, 14.35. MALDI-TOF MS (m/z): [M⁺] calcd for C₆₂H₈₀Se₂, 984.4602; found 984.4626.

Synthesis of 9,18-dioctylbenzo[4',5']indeno[1',2':5,6]thiopyrano[3,2-b]benzo[4,5]indeno[1,2-

e]thiopyran (SS2).

Under the protection of nitrogen, to a degassed solution of compound **34** (1.0 eq.) in dry toluene were added PtCl₂ (0.1 eq.), The mixture was heated overnight at 110 °C and then cooled to r.t. After removing toluene with a rotary evaporator, the product was separated and purified through column chromatography (eluent: petroleum ether/DCM = 4/1) on silica gel to provide the product **SS2** as a yellow solid (68 mg, 38%). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.46 (d, *J* = 8.1 Hz, 2H), 8.10 (d, *J* = 8.2 Hz, 2H), 7.98 (s, 2H), 7.94 (d, *J* = 8.0 Hz, 2H), 7.68 (d, *J* = 8.2 Hz, 2H), 7.57 – 7.49 (m, 4H), 3.21 (t, *J* = 7.6 Hz, 4H), 1.98 – 1.80 (m, 4H), 1.64 – 1.53 (m, 4H), 1.45 – 1.38 (m, 4H), 1.33 – 1.21 (m, 12H), 0.89 (t, *J* = 5.2 Hz, 6H). ¹³C NMR peaks were barely detected because of the low solubility of **SS2** in deuterated solvent. MALDI-TOF MS (m/z): [M⁺] calcd for C₄₆H₄₈S₂, 664.3192; found 664.3215.

Synthesis of 9,18-dioctylbenzo[4',5']indeno[1',2':5,6]selenopyrano[3,2-*b*]benzo[4,5]indeno[1,2*e*]thiopyran (SSe2).

Under the protection of nitrogen, to a degassed solution of compound **35** (1.0 eq.) in dry toluene were added PtCl₂ (0.1 eq.), The mixture was heated overnight at 110 °C and then cooled to r.t. After removing toluene with a rotary evaporator, the product was separated and purified through column chromatography (eluent: petroleum ether/DCM = 4/1) on silica gel to provide the product **SSe2** as a yellow solid (84 mg, 47%). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.42 (d, *J* = 8.2 Hz, 1H), 8.34 (d, *J* = 8.3 Hz, 1H), 8.05 – 7.99 (m, 2H), 7.95 (s, 1H), 7.89 (t, *J* = 7.4 Hz, 2H), 7.74 (s, 1H), 7.63 (t, *J* = 7.3 Hz, 2H), 7.54 – 7.43 (m, 4H), 3.16 (t, *J* = 7.7 Hz, 2H), 3.04 (t, *J* = 7.7 Hz, 2H), 1.88 – 1.86 (m, 4H), 1.56 (t, *J* = 7.4 Hz, 4H), 1.41 (d, *J* = 7.3 Hz, 4H), 1.34 – 1.30 (m, 12H), 1.00 – 0.75 (m, 6H). ¹³C NMR peaks were barely detected because of the low solubility of **SSe2** in deuterated solvent. MALDI-TOF MS (m/z): [M⁺] calcd for C₄₆H₄₈SSe, 712.2641; found 712.2672.

Synthesis of 9,18-dioctylbenzo[4',5']indeno[1',2':5,6]selenopyrano[3,2-*b*]benzo[4,5]indeno[1,2*e*]selenopyran (SeSe2).

Under the protection of nitrogen, to a degassed solution of compound 36 (1.0 eq.) in dry toluene were

added PtCl₂ (0.1 eq.), The mixture was heated overnight at 110 °C and then cooled to r.t. After removing toluene with a rotary evaporator, the product was separated and purified through column chromatography (eluent: petroleum ether/DCM = 4/1) on silica gel to provide the product **SeSe2** as a yellow solid (92 mg, 42%). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.38 (d, *J* = 8.3 Hz, 2H), 8.03 (d, *J* = 8.3 Hz, 2H), 7.94 – 7.87 (m, 2H), 7.82 (d, *J* = 1.6 Hz, 2H), 7.65 (d, *J* = 8.3 Hz, 2H), 7.56 – 7.43 (m, 4H), 3.07 (t, *J* = 7.7 Hz, 4H), 1.89 – 1.87 (m, 4H), 1.58 – 1.56 (m, 4H), 1.40 – 1.37 (m, 4H), 1.38 – 1.27 (m, 12H), 0.97 – 0.78 (m, 6H). ¹³C NMR peaks were barely detected because of the low solubility of **SeSe2** in deuterated solvent. MALDI-TOF MS (m/z): [M⁺] calcd for C₄₆H₄₈Se₂, 760.2092; found 760.2150.

Synthesisof7,9,16,18-tetraoctylbenzo[4',5']indeno[1',2':5,6]thiopyrano[3,2-b]benzo[4,5]indeno[1,2-e]thiopyran (SS4).

Compound SS4 was synthesized according to reported method.^[S2]

Synthesisof7,9,16,18-tetraoctylbenzo[4',5']indeno[1',2':5,6]selenopyrano[3,2-b]benzo[4,5]indeno[1,2-e]thiopyran (SSe4).

Under the protection of nitrogen, to a degassed solution of compound **38** (1.0 eq.) in dry toluene was added PtCl₂ (0.1 eq.), The mixture was heated overnight at 110 °C and then cooled to r.t. After removing toluene with a rotary evaporator, the product was separated and purified through column chromatography (eluent: petroleum ether/DCM = 6/1) on silica gel to provide the product **SSe4** as a yellow solid (63 mg, 75%). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.61 – 8.46 (m, 2H), 8.22 – 8.18 (m, 2H), 7.96 – 7.61 (m, 2H), 7.70 – 7.67 (m, 2H), 7.58 – 7.49 (m, 4H), 3.83 – 3.73 (m, 4H), 3.35 (t, *J* = 7.8 Hz, 2H), 3.22 (t, *J* = 7.9 Hz, 2H), 2.09 (s, 4H), 1.91 (d, *J* = 8.2 Hz, 4H), 1.80 (m, 4H), 1.66 – 1.55 (m, 8H), 1.50 – 1.43 (m, 8H), 1.41 – 1.37 (m, 10H), 1.34 – 1.30 (m, 10H), 0.99 – 0.94 (m, 6H), 0.93 – 0.89 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 142.89, 142.42, 139.64, 134.28, 134.27, 130.93, 129.34, 129.04, 129.01, 128.74, 127.73, 127.44, 126.14, 126.07, 125.80, 125.76, 125.64, 125.35, 125.30, 125.10, 124.40, 123.83, 123.29, 122.96, 122.67, 122.11, 34.01, 32.43, 32.32, 31.53, 30.57, 30.52, 30.51, 30.46, 30.14, 30.09, 29.92, 29.89, 29.86, 29.84, 29.81, 29.56, 29.02, 28.48, 23.30, 23.27, 14.66, 14.62. MALDI-TOF MS (m/z): [M⁺]

Synthesisof7,9,16,18-tetraoctylbenzo[4',5']indeno[1',2':5,6]selenopyrano[3,2-b]benzo[4,5]indeno[1,2-e]selenopyran (SeSe4).

Under the protection of nitrogen, to a degassed solution of compound **39** (1.0 eq.) in dry toluene was added PtCl₂ (0.1 eq.), The mixture was heated overnight at 110 °C and then cooled to r.t. After removing toluene with a rotary evaporator, the product was separated and purified through column chromatography (eluent: petroleum ether/DCM = 6/1) on silica gel to provide the product **SeSe4** as a yellow solid (72 mg, 72%). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.51 (d, *J* = 8.2 Hz, 2H), 8.20 (d, *J* = 8.7 Hz, 2H), 7.95 – 7.91 (m, 2H), 7.70 (d, *J* = 8.6 Hz, 2H), 7.55 – 7.50 (m, 4H), 3.26 (t, *J* = 7.9 Hz, 4H), 2.15 – 2.11 (m, 4H), 1.95 – 1.87 (m, 4H), 1.84 – 1.77 (m, 4H), 1.65 – 1.55 (m, 10H), 1.39 – 1.27 (m, 30H), 0.97 – 0.94 (m, 6H), 0.91 – 0.89 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 134.31, 130.59, 128.82, 128.76, 128.65, 127.51, 126.10, 125.80, 125.16, 123.33, 122.62, 110.21, 34.61, 34.60, 32.43, 32.33, 31.48, 30.54, 30.43, 30.34, 30.21, 30.12, 29.94, 29.90, 29.88, 29.86, 28.58, 23.28, 14.66, 14.63. MALDI-TOF MS (m/z): [M⁺] calcd for C₆₂H₈₀Se₂, 984.4602; found 984.4074.

4. X-ray crystallographic data.

Compounds	SS2	SSe2	SeSe2	SS4	SSe4	SeSe4
CCDC No.	2294520	2294524	2294527	2204211	2294534	2294533
formula	$C_{46}H_{48}S_2$	C ₄₆ H ₄₈ SSe	$C_{46}H_{48}Se_2$	$C_{62}H_{80}S_2$	C ₆₂ H ₈₀ SSe	$C_{62}H_{80}Se_2$
Μ	664.96	711.86	758.76	891.15	936.28	983.18
T (K)	100	173	173	194	123	293
wavelength (Å)	1.54178	1.54178	1.54178	1.54178	1.54178	1.54178
crystal system	Monoclinic	Monoclinic	Monoclinic	Trigonal	Trigonal	Trigonal
space group	<i>C</i> 2/c	C2/c	<i>C</i> 2/c	R3	R3	R3
a (Å)	20.1191(8)	20.3594(5)	20.4997(5)	53.3488(8)	53.004(11)	53.438(3)
b (Å)	4.7123(2)	4.7400(10)	4.7373(10)	53.3488(8)	53.004(11)	53.438(3)
c (Å)	37.0051(15)	37.0751(9)	37.0859(9)	5.0913(11)	5.077(2)	5.104(3)
α (deg.)	90	90	90	90	90.00(3)	90
β (deg.)	90.592(2)	90.515(10)	90.479(10)	90	90.00(3)	90
γ (deg.)	90	90	90	120	120.00(3)	120
V (Å ³)	3508.2(2)	3577.73(15)	3601.41(15)	12549(3)	12352(7)	12622(8)
Z / D _{calcd} (mg/m ³)	4 / 1.259	4 / 1.322	4 / 1.399	9 / 1.061	9 / 1.133	9 / 1.164
μ (mm ⁻¹)	1.608	2.195	2.795	1.119	1.537	1.898
F (000)	1424.0	1496.0	1568.0	4364	4518	4680
max/min transmission	0.753 / 0.718	0.167 / 0.064	0.753 / 0.717	0.753 / 0.641	0.837 / 0.791	0.796 / 0.675
final R indices	R1 = 0.0343	R1 = 0.0330	R1 = 0.0240	R1 = 0.0585	R1 = 0.0931	R1 = 0.1205
$[I > 2\theta(I)]$	wR2 = 0.0969	wR2 = 0.0890	wR2 = 0.0649	wR2 = 0.1936	wR2 = 0.2503	wR2 = 0.2438
R indices (all data)	R1 = 0.0381	R1 = 0.0380	R1 = 0.0254	R1 = 0.0747	R1 = 0.1254	R1 = 0.1351
	wR2 = 0.1005	wR2 = 0.0931	wR2 = 0.0660	wR2 = 0.2062	wR2 = 0.3008	wR2 = 0.2516

Table S1. Crystal data and structure refinement details for the PAHs containing chalcogenopyrano[3,2-*b*]chalcogenopyrans moieties.

Fig. S1. ORTEP diagram for the crystal structure of SS2 with an ellipsoid contour probability level of 50%.

Fig. S2. ORTEP diagram for the crystal structure of SSe2 with an ellipsoid contour probability level of 50%.

Fig. S3. ORTEP diagram for the crystal structure of SeSe2 with an ellipsoid contour probability level of 50%.

Fig. S4. ORTEP diagram for the crystal structure of **SS4** with an ellipsoid contour probability level of 50%.

Fig. S5. ORTEP diagram for the crystal structure of SSe4 with an ellipsoid contour probability level of 50%.

Fig. S6. ORTEP diagram for the crystal structure of **SeSe4** with an ellipsoid contour probability level of 50%.

Fig. S7. Crystal packing structures of SSe2.

Fig. S8. Crystal packing structures of SeSe2.

Fig. S9. Crystal packing structures of SSe4.

Fig. S10. Crystal packing structures of SeSe4.

 Table S2. Selected bond lengths for SS2.

Bond	Length (Å)	Bond	Length (Å)
S1-C4	1.7313(14)	C9-C10	1.422(2)
S1-C1	1.7516(14)	C10-C15	1.415(2)
C1-C1	1.386(3)	C10-C11	1.436(2)
C1-C2	1.4331(19)	C11-C12	1.417(2)
C2-C3	1.356(2)	C12-C13	1.373(2)
C3-C7	1.4500(19)	C13-C14	1.409(2)
C3-C4	1.4631(19)	C14-C15	1.367(2)
C4-C5	1.3685(19)	C16-C17	1.5387(18)
C5-C6	1.4711(19)	C17-C18	1.5227(19)
C5-C16	1.5028(19)	C18-C19	1.5268(19)
C7-C8	1.407(2)	C19-C20	1.5277(19)
C7-C6	1.4100(19)	C20-C21	1.5255(19)
C6-C11	1.4333(19)	C21-C22	1.524(2)
C9-C8	1.366(2)	C22-C23	1.524(2)

Bond	Length (Å)	Bond	Length (Å)
Sel-Cl	1.871(2)	C8-C9	1.366(3)
Se1-C2	1.952(2)	C9-C10	1.414(3)
S1-C2	1.705(4)	C10-C12	1.417(3)
S1-C1	1.743(5)	C10-C11	1.436(2)
C1-C7	1.361(2)	C11-C15	1.413(3)
C1-C4	1.458(2)	C12-C13	1.358(3)
C2-C2	1.382(4)	C13-C14	1.406(3)
C2-C3	1.434(3)	C14-C15	1.372(3)
C3-C4	1.353(3)	C16-C17	1.536(2)
C4-C5	1.455(2)	C17-C18	1.524(2)
C5-C6	1.403(2)	C18-C19	1.519(2)
C5-C8	1.407(3)	C19-C20	1.522(2)
C6-C11	1.432(2)	C20-C21	1.520(3)
C6-C7	1.477(2)	C21-C22	1.519(3)
C7-C16	1.499(2)	C22-C23	1.518(3)

 Table S3. Selected bond lengths for SSe2.

Bond	Length (Å)	Bond	Length (Å)
Se1-C4	1.8697(17)	C9-C8	1.372(3)
Sel-Cl	1.9010(16)	C9-C10	1.406(3)
C1-C1	1.373(3)	C10-C11	1.365(3)
C1-C2	1.438(2)	C11-C12	1.418(2)
C2-C3	1.352(2)	C12-C13	1.418(2)
C4-C5	1.363(2)	C13-C14	1.369(2)
C4-C3	1.461(2)	C14-C15	1.406(2)
C3-C15	1.457(2)	C16-C17	1.536(2)
C7-C8	1.415(2)	C17-C18	1.521(2)
C7-C6	1.429(2)	C18-C19	1.526(2)
C7-C12	1.438(2)	C19-C20	1.520(2)
C6-C15	1.405(2)	C20-C21	1.525(2)
C6-C5	1.478(2)	C21-C22	1.519(3)
C5-C16	1.500(2)	C22-C23	1.520(3)

Bond	Length (Å)
C1C1	1.398(6)
C1-C2	1.458(4)
C1-S1	1.745(3)
S1-C4	1.717(3)
C2-C3	1.369(4)
C3-C4	1.458(4)
C3-C7	1.468(4)
C5-C4	1.368(4)
C5-C6	1.460(4)
C6-C7	1.420(4)
C6-C11	1.431(4)
C7-C8	1.408(4)
C9-C8	1.364(4)
C9-C10	1.424(4)
C10-C15	1.411(4)
C10-C11	1.429(4)
C11-C12	1.415(4)
C12-C13	1.367(4)
C13-C14	1.401(5)
C14-C15	1.364(5)

_

 Table S5. Selected bond lengths for SS4.

Table S6. Selected bond lengths for SSe4.

Dand	Longth (Å)	Dond	Longth (Å)
Bond	Length (A)	Bond	Length (A)
Sel-C19	1.876(7)	C14-C15	1.454(11)
Sel-C15	1.915(7)	C15-C16	1.374(9)
C1-C6	1.42(1)	C16-C17	1.462(12)
C1-C2	1.428(10)	C17-C18	1.383(11)
C1-C10	1.428(11)	C18-C22	1.442(12)
S1-C12	1.780(8)	C18-C19	1.513(10)
S1-C16	1.865(8)	C19-C20	1.407(10)
C3-C2	1.356(12)	C20-C21	1.461(10)
C3-C4	1.38(1)	C21-C22	1.379(9)
C4-C5	1.348(10)	C21-C26	1.439(10)
C5-C6	1.416(11)	C22-C23	1.417(11)
C6-C7	1.425(10)	C23-C24	1.366(12)
C8-C7	1.344(12)	C24-C25	1.423(10)
C8-C9	1.421(9)	C25-C30	1.394(11)
C9-C10	1.432(9)	C25-C26	1.426(9)
C9-C13	1.499(10)	C26-C27	1.407(9)
C10-C11	1.434(10)	C27-C28	1.376(11)
C11-C12	1.334(10)	C28-C29	1.417(11)
C12-C13	1.421(9)	C29-C30	1.391(10)
C14-C13	1.342(10)		
Bond	Length (Å)	Bond	Length (Å)
---------	------------	---------	------------
Se1-C12	1.857(8)	C13-C14	1.330(11)
Se1-C15	1.919(8)	C14-C5	1.466(11)
C1-C2	1.420(12)	C14-C24	1.535(11)
C1-C6	1.421(11)	C15-C15	1.380(16)
C1-C10	1.431(11)	C16-C17	1.542(12)
C2-C3	1.376(12)	C17-C18	1.513(11)
C3-C4	1.405(12)	C18-C19	1.524(13)
C4-C5	1.365(13)	C19-C20	1.508(12)
C5-C6	1.433(11)	C20-C21	1.535(15)
C6-C7	1.412(12)	C21-C22	1.509(14)
C7-C8	1.378(11)	C22-C23	1.523(17)
C8-C9	1.402(11)	C24-C25	1.547(12)
C9-C10	1.414(11)	C25-C26	1.512(13)
C9-C13	1.491(11)	C26-C27	1.507(15)
C10-C11	1.468(11)	C27-C28	1.532(15)
C11-C12	1.353(11)	C28-C29	1.547(19)
C11-C16	1.504(11)	C29-C30	1.48(2)
C12-C13	1.470(11)	C30-C31	1.52(3)

 Table S7. Selected bond lengths for SeSe4.

5. Electrochemical properties

Fig. S11. Cyclic voltammograms of the chalcogen-fused PAHs in DCM solutions (*ca.* 10^{-4} M).

6. Theoretical calculations.

All the theoretical calculations were conducted with the Gaussian 16 program.^[S4] The geometry optimization, the frontier orbitals, and the reorganization energy calculation were carried out using the B3LYP method and the 6-311G(d, p) basis set. The nucleus-independent chemical shift (NICS)^[S5] was calculated at the same level using the standard GIAO procedure^[S6] with the assistance of Multiwfn.^[S7] Anisotropy of the induced current density (AICD) plots were calculated by Herges's method based on the optimized structure geometry with π orbitals only.^[S8] The iso-chemical shielding surface (ICSS) calculations were carried out to analyze two-dimensional nucleus induced chemical shifts (2D-NICS) along the XY planes.^[S7,S9] The octyl groups were omitted for simplification. The transfer integrals between the HOMOs of adjacent molecules were calculated based on the crystal geometries using PW91 exchange and PW91 correlation functionals with the 6-31G* basis set.^[S10,S11] The transfer integrals, reorganization energies, and the charge hopping mobilities of the chalcogenopyran-fused PAHs were calculated according to the reported method.^[S12]

Fig. S12. Calculated HOMO distributions of (a) azulene, cyclopenta[b]chalcogenopyran, and (b) chalcogenopyran-fused PAHs

Fig. S13. Calculated (a) NICS(1)_{zz} values and (b) AICD plots of the cyclopenta[5,6]chalcogenopyrano-[3,2-b]cyclopenta[e]chalcogenopyran with 18 π -electrons.

Fig. S14. Correlation between the crystal structures and the calculated transfer integrals of the chalcogenopyran-fused PAHs.

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Name	Туре	Х	Y	Ζ
1	С	0	-8.364017	1.438292	0.001007
2	С	0	-6.992311	1.536718	0.000741
3	С	0	-6.177784	0.376819	0.000316
4	С	0	-6.806551	-0.913198	0.000160
5	С	0	-8.222260	-0.974770	0.000440
6	С	0	-8.984737	0.170055	0.000854
7	С	0	-4.755269	0.419325	0.000030
8	С	0	-4.008062	-0.773674	-0.000374
9	С	0	-4.639906	-2.034811	-0.000508
10	С	0	-6.010748	-2.097057	-0.000254
11	С	0	-3.845565	1.552639	0.000172
12	С	0	-2.572516	1.063146	-0.000148
13	С	0	-2.605380	-0.408734	-0.000455
14	S	0	-1.072159	1.943407	-0.000446
15	С	0	0.157555	0.674829	-0.000479
16	С	0	-0.157555	-0.674830	-0.000484
17	С	0	-1.492426	-1.189122	-0.000537
18	С	0	1.492426	1.189121	-0.000554
19	С	0	2.605380	0.408733	-0.000492
20	С	0	2.572517	-1.063146	-0.000166
21	S	0	1.072159	-1.943407	-0.000508
22	С	0	4.008062	0.773674	-0.000414
23	С	0	4.755269	-0.419325	0.000012
24	С	0	3.845565	-1.552639	0.000165
25	С	0	4.639906	2.034811	-0.000549
26	С	0	6.010747	2.097058	-0.000278
27	С	0	6.806550	0.913199	0.000157
28	С	0	6.177784	-0.376819	0.000317
29	С	0	8.222260	0.974771	0.000452
30	С	0	8.984737	-0.170055	0.000887
31	С	0	8.364017	-1.438291	0.001044
32	С	0	6.992311	-1.536717	0.000762
33	Н	0	-8.973243	2.335010	0.001334
34	Н	0	-6.521877	2.513217	0.000854
35	Н	0	-8.700321	-1.948897	0.000317
36	Н	0	-10.066840	0.101897	0.001065
37	Н	0	-4.052635	-2.946949	-0.000832

Table S8. Calculated orientation for SS.

38	Н	0	-6.514574	-3.057295	-0.000375
39	Н	0	-4.130385	2.594008	0.000439
40	Н	0	-1.608066	-2.268652	-0.000652
41	Н	0	1.608067	2.268651	-0.000677
42	Н	0	4.130386	-2.594008	0.000446
43	Н	0	4.052635	2.946949	-0.000889
44	Н	0	6.514573	3.057295	-0.000400
45	Н	0	8.700321	1.948897	0.000326
46	Н	0	10.066840	-0.101896	0.001109
47	Н	0	8.973244	-2.335009	0.001386
48	Н	0	6.521878	-2.513217	0.000879

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Name	Туре	Х	Y	Ζ
1	С	0	-8.397604	-1.047375	0.000827
2	С	0	-7.033956	-1.222807	0.000655
3	С	0	-6.155478	-0.109992	0.000269
4	С	0	-6.711626	1.213364	0.000057
5	С	0	-8.122060	1.354129	0.000241
6	С	0	-8.946928	0.253899	0.000617
7	С	0	-4.738516	-0.230170	0.000076
8	С	0	-3.925116	0.915835	-0.000290
9	С	0	-4.484506	2.209886	-0.000487
10	С	0	-5.850536	2.349324	-0.000322
11	С	0	-3.889329	-1.413070	0.000246
12	С	0	-2.592464	-0.997816	-0.000008
13	С	0	-2.539420	0.471861	-0.000323
14	Se	0	-1.017363	-2.027387	-0.000172
15	С	0	0.285527	-0.627036	-0.000299
16	С	0	-0.065300	0.710539	-0.000334
17	С	0	-1.404942	1.220582	-0.000404
18	С	0	1.629145	-1.111936	-0.000406
19	С	0	2.726588	-0.307834	-0.000364
20	С	0	2.659973	1.162832	-0.000088
21	S	0	1.139925	2.007010	-0.000415
22	С	0	4.136291	-0.640677	-0.000329
23	С	0	4.856368	0.569514	0.000004
24	С	0	3.921716	1.681644	0.000140
25	С	0	4.797165	-1.887169	-0.000423
26	С	0	6.168844	-1.918196	-0.000225
27	С	0	6.937585	-0.716282	0.000105
28	С	0	6.279714	0.559038	0.000239
29	С	0	8.354219	-0.745693	0.000324
30	С	0	9.090615	0.416191	0.000667
31	С	0	8.441325	1.669927	0.000806
32	С	0	7.067655	1.737064	0.000594
33	Н	0	-9.056198	-1.908509	0.001123
34	Н	0	-6.619163	-2.224226	0.000817
35	Н	0	-8.544776	2.353517	0.000078
36	Н	0	-10.023560	0.382032	0.000753
37	Н	0	-3.847713	3.088140	-0.000785

Table S9. Calculated orientation for SSe.

38	Н	0	-6.298939	3.336705	-0.000488
39	Н	0	-4.234699	-2.436300	0.000495
40	Н	0	-1.508667	2.301673	-0.000538
41	Н	0	1.774080	-2.188186	-0.000544
42	Н	0	4.182720	2.729218	0.000346
43	Н	0	4.230929	-2.812557	-0.000671
44	Н	0	6.694581	-2.866629	-0.000322
45	Н	0	8.854264	-1.708733	0.000217
46	Н	0	10.173993	0.372556	0.000832
47	Н	0	9.029996	2.580273	0.001079
48	Н	0	6.575031	2.702562	0.000698

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Name	Type	Х	Y	Ζ
1	С	0	8.483684	1.278890	0.001962
2	С	0	7.116403	1.423814	0.001542
3	С	0	6.262941	0.291774	0.000687
4	С	0	6.848399	-1.018820	0.000272
5	С	0	8.261517	-1.128115	0.000714
6	С	0	9.061775	-0.009768	0.001538
7	С	0	4.843500	0.380689	0.000209
8	С	0	4.055602	-0.783583	-0.000594
9	С	0	4.644162	-2.064887	-0.000944
10	С	0	6.012751	-2.173882	-0.000544
11	С	0	3.968671	1.544209	0.000529
12	С	0	2.681261	1.099730	-0.000033
13	С	0	2.661208	-0.370637	-0.000700
14	Se	0	1.083111	2.091872	-0.000638
15	С	0	-0.193372	0.661926	-0.000721
16	С	0	0.193371	-0.661926	-0.000714
17	С	0	1.541354	-1.143266	-0.000899
18	С	0	-1.541354	1.143267	-0.000931
19	С	0	-2.661208	0.370637	-0.000725
20	С	0	-2.681260	-1.099730	-0.000036
21	Se	0	-1.083111	-2.091872	-0.000656
22	С	0	-4.055602	0.783582	-0.000631
23	С	0	-4.843500	-0.380689	0.000188
24	С	0	-3.968671	-1.544209	0.000525
25	С	0	-4.644161	2.064887	-0.000972
26	С	0	-6.012751	2.173883	-0.000555
27	С	0	-6.848399	1.018819	0.000271
28	С	0	-6.262941	-0.291774	0.000683
29	С	0	-8.261517	1.128115	0.000729
30	С	0	-9.061774	0.009768	0.001566
31	С	0	-8.483684	-1.278890	0.001985
32	С	0	-7.116403	-1.423814	0.001550
33	Н	0	9.122908	2.154499	0.002619
34	Н	0	6.679237	2.415668	0.001871
35	Н	0	8.706359	-2.117868	0.000388
36	Н	0	10.140992	-0.113974	0.001869
37	Н	0	4.027246	-2.957249	-0.001570

Table S10. Calculated orientation for SeSe.

38	Н	0	6.483239	-3.150941	-0.000856
39	Н	0	4.291120	2.574871	0.001056
40	Н	0	1.674268	-2.221409	-0.001220
41	Н	0	-1.674267	2.221409	-0.001281
42	Н	0	-4.291120	-2.574871	0.001057
43	Н	0	-4.027247	2.957250	-0.001605
44	Н	0	-6.483239	3.150941	-0.000860
45	Н	0	-8.706359	2.117867	0.000407
46	Н	0	-10.140992	0.113974	0.001909
47	Н	0	-9.122908	-2.154499	0.002651
48	Η	0	-6.679236	-2.415668	0.001873

7. Fabrication and characterization of the OFETs.

The Si/SiO₂ wafer was initially ultrasonically cleaned in acetone, ethanol, and isopropanol for 15 minutes each to remove surface impurities. After drying, a uniformly dense octadecyltrichlorosilane (OTS) monolayer was formed on the surface by maintaining the wafer at 90 °C in a vacuum oven for 90 min. After cooling to room temperature, the silicon wafer was cleaned and dried again. Then 20 μ L toluene solution of PAH (1 mg/mL) was drop-cast onto the treated silicon wafer. After the solvent evaporated, single crystals successfully grew on the surface. By using the "Au strips" method, a simple single crystal OFET device was successfully fabricated. The current-voltage (*I–V*) characteristics of the device were measured on the micromanipulator probe station using a Keysight B1500A source meter under vacuum conditions.

Fig. S15. (a) Transfer and (b) output characteristics for the OFET based on SS2.

Fig. S16. (a) Transfer and (b) output characteristics for the OFET based on SeSe2.

Fig. S17. (a) Transfer and (b) output characteristics for the OFET based on SS4.

Fig S18. (a) Transfer and (b) output characteristics for the OFET based on SSe4.

Fig. S19. (a) Transfer and (b) output characteristics for the OFET based on SeSe4.

8. ¹H and ¹³C NMR spectra.

Fig. S20. ¹H NMR spectrum of 2,3,4,5-tetrabromoselenophene in CDCl₃.

Fig. S21. ¹³C NMR spectrum of 2,3,4,5-tetrabromoselenophene in CDCl₃.

Fig. S22. ¹H NMR spectrum of 4 in CDCl₃.

Fig. S23. ¹³C NMR spectrum of 4 in CDCl₃.

Fig. S24. ¹H NMR spectrum of 6 in CDCl₃.

Fig. S26. ¹H NMR spectrum of 7 in CDCl₃.

Fig. S27. ¹³C NMR spectrum of 7 in CDCl₃.

Fig. S28. ¹H NMR spectrum of 8 in CDCl₃.

Fig. S30. ¹H NMR spectrum of 11 in CDCl₃.

Fig. S31. ¹³C NMR spectrum of 11 in CDCl₃.

Fig. S32. ¹H NMR spectrum of 12 in CDCl₃.

Fig. S33. ¹³C NMR spectrum of 12 in CDCl₃.

Fig. S34. ¹H NMR spectrum of 13 in CDCl₃.

Fig. S35. ¹³C NMR spectrum of 13 in CDCl₃.

Fig. S36. ¹H NMR spectrum of 14 in CDCl₃.

Fig. S37. ¹³C NMR spectrum of 14 in CDCl₃.

Fig. S38. ¹H NMR spectrum of 15 in CDCl₃.

Fig. S40. ¹H NMR spectrum of 16 in CDCl₃.

Fig. S42. ¹H NMR spectrum of 17 in CDCl₃.

Fig. S44. ¹H NMR spectrum of 18 in CDCl₃.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 Chemical Shift (ppm) Fig. S46. ¹H NMR spectrum of 23 in CDCl₃.

Fig. S47. ¹³C NMR spectrum of 23 in CDCl₃.

Fig. S48. ¹H NMR spectrum of 24 in CDCl₃.

Fig. S49. ¹³C NMR spectrum of 24 in CDCl₃.

Fig. S52. ¹H NMR spectrum of 27 in CDCl₃.

Fig. S53. ¹³C NMR spectrum of 27 in CDCl₃.

Fig. S55. ¹³C NMR spectrum of 28 in CDCl₃.

Fig. S56. ¹H NMR spectrum of 29 in CDCl₃.

Fig. S57. ¹³C NMR spectrum of 29 in CDCl₃.

Fig. S58. ¹H NMR spectrum of 30 in CDCl₃.

Fig. S59. ¹³C NMR spectrum of 30 in CDCl₃.

Fig. S60. ¹H NMR spectrum of 34 in CDCl₃.

Fig. S61. ¹³C NMR spectrum of 34 in CDCl₃.

Fig. S62. ¹H NMR spectrum of 35 in CDCl₃.

Fig. S63. ¹³C NMR spectrum of 35 in CDCl₃.

Fig. S64. ¹H NMR spectrum of 36 in CDCl₃.

Fig. S65. ¹³C NMR spectrum of 36 in CDCl₃.

Fig. S66. ¹H NMR spectrum of 38 in CDCl₃.

Fig. S67. ¹³C NMR spectrum of 38 in CDCl₃.

Fig. S68. ¹H NMR spectrum of 39 in CDCl₃.

Fig. S69. ¹³C NMR spectrum of 39 in CDCl₃.

Fig. S70. ¹H NMR spectrum of SS2 in CDCl₃.

Fig. S71. ¹H NMR spectrum of SSe2 in CDCl₃.

Fig. S72. ¹H NMR spectrum of SeSe2 in CDCl₃.

Fig. S73. ¹H NMR spectrum of SSe4 in CDCl₃.

Fig. S74. ¹³C NMR spectrum of SSe4 in CDCl₃.

142.89 134.28 134.28 129.04 129.04 125.00 125.00 125.58 12

Fig. S75. ¹H NMR spectrum of SeSe4 in CDCl₃.

Fig. S76. ¹³C NMR spectrum of SeSe4 in CDCl₃.

9. References.

- S1 R. D. Rieke, S.-H. Kim and X. Wu, J. Org. Chem. 1997, 62, 6921-6927.
- S2 W. Chen, S. Liu, Y. Ren, S. Xie, C. Yan, Z. Zhou and G. Zhou, Chem. Eur. J. 2023, 29, e202203238.
- S3 S. P. Mishra, A. E. Javier, R. Zhang, J. Liu, J. A. Belot, I. Osaka and R. D. McCullough, J. Mater. Chem. 2011, 21, 1551-1561.
- S4 Gaussian 16, Revision C.01; M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Hda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc., Wallingford CT, **2019**.
- S5 Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta and P. v. R. Schleyer, *Chem. Rev.* 2005, 105, 3842-3888.
- S6 P. v. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao and N. J. R. van Eikema Hommes, J. Am. Chem. Soc. 1996, 118, 6317-6318.
- S7 T. Lu and F. Chen, J. Comput. Chem. 2012, 33, 580-592.
- S8 D. Geuenich, K. Hess, F. Kçhler and R. Herges, Chem. Rev. 2005, 105, 3758-3772.
- S9 S. Klod and E. Kleinpeter, J. Chem. Soc. Perkin Trans. 2 2001, 1893-1898.
- S10 J. Huang and M. Kertesz, Chem. Phys. Lett. 2004, 390, 110-115.
- S11 D. Yang, J. Wang, L. Wang, W. Long and G. Shuai, Chem. Mater. 2008, 20, 3205-321.
- S12 W. Deng, L. Sun, Huang, S. Chai, S. Wen and K. Han, Quantitative prediction of charge mobilities of π -stacked systems by first-principles simulation. *Nat. Protoc.* 2015, **10**, 632-642.