ELECTRONIC SUPPORTING INFORMATION

Azaborahelicene Fluorophores Derived from Four-Coordinate *N*,*C*-Boron Chelates: Synthesis, Photophysical and Chiroptical Properties

Pablo Vázquez-Domínguez,^{a,b} José Francisco Rizo,^a Jesús F. Arteaga,^c Denis Jacquemin,^{d,e,*} Ludovic Favereau,^{f,*} Abel Ros,^{a,*} Uwe Pischel^{c,*}

^{*a*} Institute for Chemical Research (CSIC-US) C/Américo Vespucio 49, E-41092 Seville, Spain. E-mail: abel.ros@iiq.csic.es.

^b Department of Organic Chemistry, Innovation Centre in Advanced Chemistry, ORFEO-CINQA, University of Seville, C/Prof. García González 1, 41012 Seville, Spain. ^c CIQSO – Center for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus de El Carmen s/n, E-21071 Huelva, Spain. E-mail: uwe.pischel@diq.uhu.es.

^d Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France. E-mail: Denis.Jacquemin@univ-nantes.fr.

^e Institut Universitaire de France (IUF), F-75005 Paris, France.

^f Univ Rennes, CNRS, ISCR-UMR 6226, F-35000, Rennes, France. E-mail: ludovic.favereau@univ-rennes1.fr.

Table of Contents

1. Materials and methods	S3
2. Synthesis	S6
3. NMR spectra, HRMS, HPLC chromatograms	S23
4. Crystallographic data	S66
5. Additional UV/vis-absorption/emission spectra and photophysical data	S67
6. Additional chiroptical data	S73
7. Electrochemical data	S74
8. Theoretical calculations	S76
9. Atomic coordinates	S79
10. References	S102

1. Materials and methods

General information and materials

Anhydrous tetrahydrofuran (THF) and 1,4-dioxane were obtained by distillation over Na/benzophenone. Other solvents such as *n*-hexane, ethyl acetate (EtOAc), methanol, dichloromethane (DCM), chloroform, dimethoxyethane (DME), cyclohexane, toluene, and isopropanol were purchased in chromatographic purity and used as received. Pinacolborane (HBpin), Bis(pinacolate)diboron (B₂pin₂), and (Mes)₂BF were supplied by Aldrich, Frontier Scientific, and TCI, respectively, and used as received. *n*-BuLi (1.6 M in hexane), $Ir(\mu$ -OMe)(cod)]₂, [Pd(PPh₃)₄], and CuBr₂ were provided by Aldrich. The pyridino-hydrazone ligand, used in the Ir(I)-catalyzd borylation reaction, was synthesized according to previously described methodology.¹ The arylboronic acids **2a**–**f** are either commercially available (**2a** from Aldrich, **2d** and **2e** from BLDpharma) or were prepared according to published procedures (**2b**, **2c**, and **2f**).²⁻⁴

All synthetic transformations were done in oven-dried Schlenk tubes under inert (Ar) atmosphere. Specific rotations (in deg cm² g⁻¹) were measured in a 10 cm thermostated quartz cell on a PerkinElmer Model 341 polarimeter. The ¹H- and ¹³C-NMR spectra were measured on a DRX-400 spectrometer (Bruker) at 400 MHz or 100 MHz, respectively, using the residual solvent signal (CDCl₃; 7.26 ppm) as reference. The ¹¹B- NMR spectra were obtained with complete proton decoupling at 160 MHz, employing BF₃×Et₂O (0.00 ppm) as standard. Multiplicity of signals: s – singlet, d – doublet, t – triplet, q – quartet, br s – broad signal, m – multiplet. The racemic dyes **5a-f** were separated into their enantiopure forms by CSP-HPLC on Shimadzu LC-2030C Plus 3D RoHS-Prominence-I chromatograph, using chiral Chiralpak IA column. High-resolution mass spectra (ESI) were acquired on a Thermo Fisher Orbitrap Elite with an orbitrap mass analyzer.

Low-temperature diffraction data were collected on a Bruker D8 Quest APEX-III single crystal diffractometer, equipped with a Photon III detector and a I μ S 3.0 microfocus X-ray source. Data were collected by means of ω and φ scans using monochromatic radiation λ (Mo K α 1) = 0.71073 Å. The diffraction images collected were processed and scaled using APEX-4 v2021.4-0 software. The structures were solved with SHELXT and was refined against F2 on all data by full-matrix least squares with SHELXL,⁵ using Olex2 as graphical interface.⁶ All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in the model at geometrically calculated positions and refined using a riding model, unless otherwise noted. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms to which they are linked (1.5 times for methyl groups).

Photophysical measurements

The measurements were performed at room temperature (25°C) with dye solutions, contained in quartz cuvettes with 1 cm optical pathlength, using spectroscopic-grade solvents. The obtained data refer to air-equilibrated solutions. UV/vis absorption spectra were recorded on a CARY 5000 UV/Vis spectrophotometer (Agilent). The fluorescence emission was characterized with a Varian Eclipse fluorimeter and corrected for the response of the photomultiplier. The fluorescence quantum yields were obtained with 4-amino-*N*-propyl-1,8-naphthalimide ($\Phi_{\rm f} = 0.48$ in acetonitrile) as reference.⁷ This reference was calibrated against quinine sulfate in 0.05 M sulfuric acid ($\Phi_{\rm f} = 0.55$).^{8,9} Time-correlated single-photon-counting (TCSPC) experiments were carried out with an FLS 920 fluorimeter from Edinburgh Instruments. A picosecond pulsed diode laser EPL-445 (output 442.2 nm, pulse width at FWHM: 78 ps) was used as excitation

source. The fluorescence lifetimes were extracted from the decay traces by deconvolution analysis, taking into account the instrument response function.

Electronic circular dichroism (ECD, in $M^{-1}cm^{-1}$) was measured on a Jasco J-1700 Circular Dichroism Spectrometer. The circularly polarized luminescence (CPL) measurements were performed using a JASCO 300 CPL spectrofluoropolarimeter. The following parameters were used: emission slit width ≈ 20 mm, integration time = 4 sec, scan speed = 50 nm/min, accumulations = 8. The concentration of all the samples was *ca*. 10^{-5} – 10^{-6} M. Excitation of the samples was performed at 380 nm.

2. Synthetic procedures

Synthesis of chloride 1

N-oxydation step: Over a cooled solution (0 °C) of 8-phenylisoquinoline (21 mmol, 4.3 g) in CHCl₃ (200 mL), *m*-CPBA (77% purity, 32 mmol, 5.52 g) was added in portions. The reaction was stirred overnight at room temperature, and then, a saturated NaHCO₃ solution (60 mL) was poured into the reaction medium and the resulting two phases mixture was stirred for 30 min. The phases were separated, and the aqueous phase was extracted with chloroform (3 × 50 mL). Organic extracts were dried over MgSO₄, filtered and concentrated dryness. This reaction crude was used in the next step without purification.

Chlorination step: Over a round-bottom flask containing the previous reaction crude dissolved in CHCl₃ (30 mL), POCl₃ (50 mmol, 4.7 mL) was dropwise added. Then, the reaction mixture was stirred for 2 hours at 70 °C, cooled to room temperature, and neutralized with NH₃ (30% aqueous solution) until neutral pH. The aqueous phase was extracted with DCM (3 × 100 mL). The combined organic phases were dried with MgSO₄ and evaporated under reduced pressure. The raw product was purified by column chromatography on silica gel (cyclohexane/EtOAc 8:1) to afford **1** (1.96 g, 39%) as a yellow-orange viscous oil. ¹H-NMR (400 MHz, CDCl₃, 298 K): δ 8.28 (d, 1H, *J* = 5.3 Hz), 7.86 (d, 1H, *J* = 8.2 Hz), 7.71 (t, 1H, *J* = 8.3 Hz), 7.66 (d, 1H, *J* = 5.3 Hz), 7.53 (d, 1H, *J* = 6.7 Hz), 7.45–7.41 (m, 3H), 7.34–7.31 (m, 2H) ppm. ¹³C-NMR (100 MHz, CDCl₃, 298 K): δ 150.3 (Cq), 142.1 (Cq), 141.0, 140.8 (Cq), 139.3 (Cq),

132.2, 129.8, 129.4 (2 × C), 127.6 (2 × C), 127.3, 127.2, 125.0 (Cq), 121.2 ppm. **HRMS** (ESI) calcd. for C₁₅H₁₁ClN (M + H⁺) 240.0575. Found 240.0573.

Suzuki Coupling general procedure

A Schlenk tube was charged with $[Pd(PPh_3)_4]$ (5 mol%), 1 (0.4 mmol, 96 mg) and the corresponding boronic acid 2a–f. After three cycles of evacuation/nitrogen flushing, deoxygenized DME (1 mL/mmol) and Na₂CO₃ solution (2 M aqueous solution, 0.4 mL) were added and the reaction was stirred overnight at 90°C. After cooling down to rt, the reaction was quenched with water (10 mL) and extracted with DCM (3 × 20 mL). The combined organic phase was dried over anhydrous MgSO₄, filtered, concentrated to dryness, and the crude was purified by column chromatography on silica gel.

Synthesis of 3a

Following the general procedure, purification by column chromatography on silica gel (toluene/EtOAc 12:1) afforded **3a** (105 mg, 79%) as pale brown solid. ¹H-NMR (400 MHz, CD₂Cl₂, 298 K): δ 8.70 (d, 1H, J = 5.4 Hz), 7.99 (d, 1H, J = 7.8 Hz), 7.83 (d, 1H, J = 5.4 Hz), 7.74 (t, 1H, J = 7.5 Hz), 7.65 (d, 1H, J = 8.0 Hz), 7.48 (d, 1H, J = 6.8 Hz), 7.41–7.26 (m, 3H), 7.28 (t, 1H, J = 7.4 Hz), 7.18–7.12 (m, 2H), 6.92 (d, 1H, J = 7.5 Hz, br s), 6.84 (t, 1H, J =7.5 Hz, br s), 6.66 (t, 1H, J = 7.5 Hz), 6.43 (d, 1H, J = 7.6Hz, br s), 6.25 (t, 1H, J =7.6 Hz, br s) ppm. ¹³C-NMR (100 MHz, CD₂Cl₂, 298 K): δ 159.9 (Cq), 142.2, 142.1 (Cq), 141.7 (Cq), 140.5 (Cq), 138.5 (Cq), 133.60 (Cq), 132.3 (Cq), 131.8, 129.6, 129.4 (br s), 128.7, 128.2 (2 \times C), 127.4, 126.9, 126.2 (br s), 126.2 (2 \times C), 126.0, 126.0, 125.6, 125.1, 120.7 ppm. **HRMS (ESI)** calcd. for $C_{25}H_{18}N (M + H^+)$ 332.1434. Found 332.1434.

Synthesis of 3b

Following the general procedure, purification by column chromatography on silica gel (toluene/EtOAc 12:1) afforded 3b (121 mg, 84%) as a light-yellow amorphous solid. ¹H-NMR (400 MHz, ÓМе **CDCl₃, 298 K):** δ 8.71 (d, 1H, J = 5.4 Hz), 8.03 (d, 1H, J = 8.2 Hz) 7.70 (t, 1H, J = 7.4 Hz, H₄), 7.34–7.26 (m, 4H), 7.09 (d, 1H, J = 7.8 Hz), 6.87 (d, 1H, J= 7.6 Hz, br s), 6.82 (t, 1H, J = 7.3 Hz, br s), 6.70 (t, 1H, J = 7.3 Hz), 6.49 (d, 1H, J = 7.3 Hz) 7.8 Hz), 6.37 (d, 1H, J = 7.6Hz, br s), 6.29 (t, 1H, J = 7.6 Hz, br s), 3.90 (s, 3H) ppm. ¹³C-NMR (100 MHz, CDCl₃, 298 K): δ 159.7 (Cq), 155.12 (Cq), 142.0 (Cq), 141.8, 141.3 (Cq), 138.1 (Cq), 132.9 (Cq), 132.5 (Cq), 131.4, 129.2, 128.9, 128.7, 128.1, 127.0, 126.8 (Cq), 126.3, 126.2, 125.7, 125.5, 125.4, 125.1 (Cq), 124.6, 121.7, 120.2, 103.3, 55.6 (OMe) ppm. **HRMS (ESI)** calcd. for $C_{26}H_{20}ON (M + H^+)$ 362.1539. Found 362.1538.

Synthesis of 3c

Following the general procedure, purification column by chromatography on silica gel (cyclohexane/EtOAc 4:1) afforded 3c (110 mg, 72%) as a dark-green viscous oil. ¹H-NMR (400 MHz, **CDCl₃, 298 K):** δ 8.71 (d, 1H, J = 5.5 Hz), 8.02 (d, 1H, J = 8.4 Hz),

4H), 7.10 (d, 1H, J = 7.7 Hz), 6.88 (d, 1H, J = 7.5 Hz, br s), 6.84 (t, 1H, J = 7.5 Hz, br

7.94 (d, 1H, J = 8.1 Hz), 7.78 (d, 1H, J = 5.5 Hz) 7.70 (t, 1H, J = 8.1 Hz), 7.35–7.20 (m,

s), 6.76 (d, 1H, J = 7.7 Hz), 6.65 (t, 1H, J = 7.4 Hz, br s), 6.42 (d, 1H, J = 7.5 Hz, br s), 6.29 (t, 1H, J = 7.7 Hz, br s), 2.79 (s, 6H) ppm. ¹³C-NMR (100 MHz, CDCl₃, 298 K): δ 159.9 (Cq), 150.3 (Cq), 141.9 (Cq), 141.8, 141.2 (Cq), 138.0 (Cq), 134.8 (Cq), 133.1 (Cq), 131.2, 130.0, 129.1, 129.0, 128.5 (Cq), 128.4, 128.3, 128.1 (Cq), 126.9, 126.6, 126.1, 125.9, 125.5, 124.5, 123.8, 120.2, 114.2, 44.9 (NMe₂) ppm. HRMS (ESI) calcd. for C₂₇H₂₃N₂ (M + H⁺) 375.1856. Found 375.1855.

Synthesis of 3d

Following the general procedure, purification by column chromatography on silica gel (cyclohexane/EtOAc 5:1) afforded **3d** (121 mg, *ca.* 79%; the product was contaminated with an unidentified product) as a light-yellow foam. ¹H-NMR (400 MHz, CDCl₃, 298 K): δ 8.78 (d, 1H, J = 5.5 Hz), 8.23 (s, 1H), 8.01 (d, 1H, J = 8.4 Hz), 8.00 (s, 1H), 7.96 (d, 1H, J = 8.4 Hz), 7.87 (d, 1H, J = 5.5 Hz), 7.74–7.72 (m, 2H), 7.64 (m, 1H), 7.41 (d, 1H, J = 8.2 Hz), 7.38-7.34 (m, 2H), 7.14–7.11 (m, 2H), 6.95 (d, 1H, J = 6.9 Hz, br s), 6.86 (t, 1H, J = 7.0 Hz, br s), 6.61 (t, 1H, J = 7.4 Hz), 6.22 (d, 1H, J = 7.0 Hz, br s), 5.91 (t, 1H, J = 7.0 Hz, br s) ppm. ¹³C-NMR (100 MHz, CDCl₃, 298 K): δ 159.6 (Cq), 141.9, 141.8 (Cq), 141.2 (Cq), 139.6 (Cq), 138.2 (Cq), 131.6, 131.6, 131.4, 131.2 (Cq), 130.5 (Cq), 129.3, 128.8, 128.5, 128.4, 128.2, 128.0, 127.9, 127.1, 126.6 (Cq), 126.4 (Cq), 126.1, 125.9, 125.7 (Cq), 125.1, 124.9, 124.6, 124.3, 120.6 ppm. HRMS (ESI) calcd. C₂₉H₂₀N (M + H⁺) 382.1589. Found 382.1601.

Synthesis of 3e

Following the general procedure, but at 1 mmol scale of 1, purification by column chromatography on silica gel (cyclohexane/EtOAc 10:1) afforded **3e** (294 mg, 70%) as a

yellow viscous oil. ¹H-NMR (400 MHz, CDCl₃, 298 K): δ 8.72 (d, 1H, J = 5.5 Hz), 7.96 (d, 1H, J = 8.0 Hz), 7.81 (d, J = 5.6 Hz), 7.74 (t, 1H, J = 7.6 Hz), 7.51 (d, 1H, J =7.2 Hz), 7.43 (d, 1H, J = 7.2 Hz), 7.36 (d, 1H, J = 7.6 Hz), 7.28 (d, 1H, J = 6.8 Hz), 7.20 (t, 1H, J = 7.6 Hz), 7.12–7.10 (br s, 2H), 6.98 (t, 1H, J = 7.2 Hz), 6.79–6.75 (2H, br s), 6.72–6.69 (2H, br s), 5.68 (t, 1H, J = 7.2 Hz) ppm. ¹³C-NMR (100 MHz, CDCl₃, 298 K): δ 158.6 (Cq), 142.7 (Cq), 141.4, 141.3 (Cq), 141.2 (Cq), 138.3 (Cq), 136.7 (Cq), 136.5 (Cq), 134.8 (Cq), 134.6 (Cq), 131.4, 129.9, 129.8, 129.5, 128.8, 128.7, 128.6, 127.8, 127.5, 127.4, 127.3, 127.0, 126.6, 126.1, 125.1 (Cq), 120.7 ppm. HRMS (ESI) calcd. C₂₇H₁₈NS₂ (M + H⁺) 420.0874. Found 420.0886.

Synthesis of 3f

Following the general procedure, purification by column chromatography on silica gel (toluene/EtOAc 12:1) afforded **3f** (147 mg, 90%) as a yellow viscous oil. ¹H-NMR (400 MHz, CDCl₃, 298 K): δ 8.84 (d, 1H, J = 5.3 Hz), 8.18 (d, 1H, J = 7.4 Hz), 8.14 (d, 1H,

J = 7.4 Hz), 8.05–7.98 (m, 3H), 7.94-7.89 (m, 4H), 7.81–7.75 (m, 2H), 7.59 (d, 1H, *J* = 9.3 Hz), 7.40 (d, 1H, *J* = 7.2 Hz), 6.77 (d, 1H, *J* = 7.6 Hz), 6.58 (t, 1H, *J* = 7.6 Hz), 6.47 (d, 1H, *J* = 7.6 Hz), 6.14 (t, 1H, *J* = 7.6 Hz), 5.66 (t, 1H, *J* = 7.6 Hz) ppm. ¹³C-NMR (100 MHz, CDCl₃, 298 K): δ 160.0 (Cq), 141.9, 141.9 (Cq), 140.8 (Cq), 138.1, 137.4 (Cq), 131.6, 131.2 (Cq), 130.8 (Cq), 129.4, 129.2 (Cq), 128.9, 128.1, 127.9, 127.4, 127.2, 127.1, 127.1, 127.0 (Cq), 126.1, 125.6, 125.2, 125.0, 125.0, 124.8, 124.5 (Cq),

124.3, 120.6 ppm. 2 C signals are not visible. **HRMS (ESI)** calcd. $C_{31}H_{20}N (M + H^+)$ 406.1589. Found 406.1601.

General procedure for borylation-bromination

A dried Schlenk tube was charged with $[Ir(\mu-OMe)(cod)]_2$ (2.5 mol%), ligand (2pyridinecarboxaldehyde *N*,*N*-dibenzylhydrazone, 5 mol), B₂pin₂ (1.2 eq), and **3a–f** (1 eq.). After three cycles of vacuum/nitrogen flushing, anhydrous THF or 1,4-dioxane (2.5 mL/mmol substrate) and HBpin (10 mol%) were added and the reaction mixture was stirred overnight at 70°C (THF) or 90°C (1,4-dioxane) (monitoring the consumption of the starting materials by TLC analysis). Then the reaction mixture was cooled to room temperature and concentrated to dryness. The resulting crude was dissolved in an isopropanol/MeOH 2:3 mixture (19 mL/mmol substrate) and treated with a solution of CuBr₂ (3 eq.) in H₂O (9.5 mL/mmol substrate). The mixture was stirred overnight at 90°C, subsequently cooled to room temperature, diluted with DCM (40 mL), and finally washed with aqueous NH₃ solution (30%) to remove the copper salts. The organic phase was dried over anhydrous MgSO₄, filtered, concentrated to dryness, and the crude product was purified by column chromatography, yielding **4a-f** as racemic mixtures.

Synthesis of rac-4a

Following the general procedure, starting from **3a** (0.54 mmol, 180 mg) and carrying out the borylation step at 70°C, purification by column chromatography on silica gel (cyclohexane/EtOAc 8:1) afforded *rac*-**4a** (208 mg, 79%) as a yellow foam. ¹H-NMR (**400 MHz, CDCl₃, 298 K**): δ 8.75 (d, 1H, *J* = 5.6 Hz), 7.99 (d, 1H, *J* = 8.0 Hz), 7.87 (d, 1H, *J* = 5.6 Hz), 7.71 (t, 1H, *J* = 7.2 Hz), 7.62 (d, 1H, *J* = 8.0 Hz), 7.38 (t, 1H, *J* = 6.8 Hz), 7.32–7.25 (m, 5H), 7.13 (d, 1H, *J* = 8.0 Hz), 6.91 (t, 1H, *J* = 7.2 Hz), 6.70 (t, 1H, *J* = 7.6 Hz), 6.31 (d, 1H, *J* = 7.6 Hz), 6.19 (t, 1H, *J* = 7.2 Hz) ppm. ¹³C-NMR (**100 MHz, CDCl₃, 298 K**): δ 158.3 (Cq), 142.1, 141.1 (Cq), 140.3 (Cq), 139.4 (Cq), 137.7 (Cq), 133.8 (Cq), 132.1 (Cq), 131.3, 129.5, 129.3, 129.2, 128.2, 127.7 (2 × C), 127.4, 126.7 (Cq), 126.6, 126.5, 126.4, 126.3, 125.6, 125.2, 122.0 (Cq), 121.3 ppm. **HRMS (ESI)** calcd. C₂₅H₁₇BrN⁺ (M + H⁺) 410.0539 (⁷⁹Br), 412.0518 (⁸¹Br). Found 410.0526, 412.0504.

Synthesis of rac-4b

Following the general procedure, starting from **3b** (0.78 mmol, 284 mg) and carrying out the borylation step at 70 °C, purification by column chromatography on silica gel (cyclohexane/EtOAc 10:1) afforded *rac*-**4b** (270 mg, 79%) as a light-yellow foam. ¹H-NMR (**400 MHz, CDCl₃, 298**

K): δ 8.75 (d, 1H, J = 5.6 Hz), 8.01 (d, 1H, J = 8.0 Hz), 7.97 (d, J = 8.0 Hz, 1H, 7.84 (d, 1H, J = 5.6 Hz), 7.69 (t, 1H, J = 6.8 Hz), 7.37 (t, 1H, J = 7.2 Hz), 7.30–7.26 (m, 3H), 7.06 (d, 1H, J = 8.4 Hz), 6.93 (t, 1H, J = 7.6 Hz), 6.75 (t, 1H, J = 6.8 Hz), 6.59 (s, 1H), 6.25–6.20 (m, 2H), 3.88 (s, 3H) ppm. ¹³C-NMR (100 MHz, CDCl₃, 298 K): δ 158.5 (Cq), 155.1 (Cq), 142.1, 141.3 (Cq), 140.7 (Cq), 137.8 (Cq), 134.4 (Cq), 132.1 (Cq), 131.3, 129.2, 128.1, 127.6, 127.4, 127.2, 127.1 (Cq), 126.3, 126.0, 125.9, 125.2,

124.9, 124.5 (Cq), 122.1 (Cq), 121.8, 121.2, 108.3, 55.8 ppm. **HRMS (ESI)** calcd. C₂₆H₁₉BrNO⁺ (M + H⁺) 440.0645 (⁷⁹Br), 442.0624 (⁸¹Br). Found 440.0641, 442.0617.

Synthesis of rac-4c

Following the general procedure (except for the use of solely 2 eq. CuBr₂), starting from **3c** (0.63 mmol, 263 mg) and carrying out the borylation step at 90°C, purification by column chromatography on silica

^{NMe₂} gel (cyclohexane/EtOAc 10:1) afforded *rac*-4c (170 mg, 61%) as a yellow-orange foam. ¹H-NMR (400 MHz, CDCl₃, 298 K): δ 8.74 (d, 1H, J = 5.6 Hz), 7.99 (d, 1H, J = 7.5 Hz), 7.97 (d, 1H, J = 8.2 Hz), 7.84 (d, 1H, J = 5.6 Hz,), 7.70 (t, 1H, J = 7.2 Hz), 7.37 (t, 1H, J = 8.3 Hz,), 7.30-7.23 (m, 3H), 7.09 (d, 1H, J = 8.1 Hz), 6.94 (t, 1H, J = 7.2 Hz), 6.83 (s, 1H), 6.70 (t, 1H, J = 7.6 Hz), 6.29 (d, 1H, J = 7.6 Hz), 6.23 (t, 1H, J = 7.2 Hz), 2.79 (s, 6H) ppm. ¹³C-NMR (100 MHz, CDCl₃, 298 K): δ 158.7 (Cq), 151.1 (Cq), 142.1, 141.3 (Cq), 140.7 (Cq), 137.7 (Cq), 134.9 (Cq), 134.3 (Cq), 131.3, 129.2, 128.2, 127.8, 127.6 (Cq), 127.4, 127.0 (Cq), 126.8, 126.5, 126.4, 126.3, 125.2, 124.8, 124.0, 122.3 (Cq), 121.1, 118.3, 44.9 ppm. HRMS (ESI) calcd. C₂₇H₂₂BrN₂⁺ (M + H⁺) 453.0961 (⁷⁹Br), 455.0940 (⁸¹Br). Found 453.0964, 455.0940.

Synthesis of rac-4d

Following the general procedure, starting from **3d** (0.76 mmol, 290 mg) and carrying out the borylation step at 70°C, purification by column chromatography on silica gel (cyclohexane/EtOAc 10:1) afforded *rac*-**4d** (240 mg, 69%) as a light-yellow foam. ¹**H-NMR (400 MHz, CDCl₃, 298 K):** δ 8.81 (d, 1H, J = 5.6 Hz), 8.23 (s, 1H), 8.03 (d, 1H, J = 8.2 Hz), 7.96 (d, J = 8.4 Hz, 1H), 7.92 (d, 1H, J = 5.6 Hz), 7.75–7.71 (m, 3H), 7.49–7.43 (m, 2H), 7.38 (t, 1H, J = 7.2 Hz), 7.32-7.28 (m, 2H), 7.21 (d, 1H, J = 9.1 Hz), 6.94 (t, 1H, J = 7.6 Hz), 6.65 (t, 1H, J = 7.2 Hz), 6.12 (d, 1H, J = 7.7 Hz), 5.83 (t, 1H, J = 7.6 Hz) ppm. ¹³C-NMR (100 MHz, CDCl₃, 298 K): δ 158.4 (Cq), 142.2, 141.1 (Cq), 140.3 (Cq), 139.1 (Cq), 137.8 (Cq), 132.2 (Cq), 131.9 (Cq), 131.3, 131.2 (Cq), 130.2 (Cq), 129.6, 129.3, 129.1, 128.5, 128.2, 127.9, 127.7, 127.5, 126.8 (Cq), 126.5, 126.4, 126.3, 125.61, 125.57, 125.1, 125.1, 122.0 (Cq), 121.4 ppm. HRMS (ESI) calcd. C₂₉H₁₉BrN⁺ (M + H⁺) 460.0695 (⁷⁹Br), 462.0675 (⁸¹Br). Found 460.0681, 462.0659.

Synthesis of *rac*-4e

Following the general procedure, starting from **3e** (0.38 mmol, 162 mg) and carrying out the borylation step at 90°C for 48 h, purification by column chromatography on silica gel (cyclohexane/EtOAc 10:1) afforded *rac*-**4e** (40 mg, 21%) as a light-brown foam. ¹H-NMR (400 MHz, CDCl₃, 298 **K)**: δ 8.72 (d, 1H, J = 5.6 Hz), 7.98 (d, 1H, J = 8.3 Hz), 7.86 (d, 1H, J = 5.6 Hz), 7.73 (t, 1H, J = 7.2 Hz), 7.52 (d, 1H, J = 7.6 Hz), 7.40–7.20 (m, 5H), 7.03–6.89 (m, 3H), 6.78–6.76 (m, 2H), 5.65 (t, 1H, J = 7.6 Hz) ppm. ¹³C-NMR (100 MHz, CDCl₃, 298 **K)**: δ 157.6 (Cq), 142.2 (Cq), 141.8, 140.9 (Cq), 140.5 (Cq), 137.8 (Cq), 137.4 (Cq), 136.2 (Cq), 135.6 (Cq), 134.3 (Cq), 131.3, 130.8, 129.7, 129.4, 129.0, 128.7, 128.4, 127.9, 127.7, 127.6, 127.4, 127.2, 127.1, 126.1, 125.4 (Cq), 123.1 (Cq), 121.7 ppm. HRMS (ESI) calcd. C₂₇H₁₇BrNS₂⁺ (M + H⁺) 497.9980 (⁷⁹Br), 499.9960 (⁸¹Br). Found 497.9983, 499.9959.

Synthesis of rac-4f

Following the general procedure, starting from **3f** (0.63 mmol, 254 mg) and carrying out the borylation step at 70°C, purification by two column chromatographies on silica gel (first with cyclohexane/EtOAc 10:1 and then with toluene/EtOAc 50:1) afforded *rac*-**4f** (137 mg, 45%) as a light-

yellow foam. ¹H-NMR (400 MHz, CDCl₃, 298 K): δ 8.83 (d, 1H, J = 5.6 Hz), 8.18 (d, 1H, J = 7.6 Hz), 8.14 (d, 1H, J = 7.6 Hz), 8.04–8.01 (m, 4H), 7.93 (d, 1H, J = 5.6 Hz), 7.90 (d, 1H, J = 9.3 Hz), 7.73 (t, 1H, J = 8.2 Hz), 7.36 (d, 1H, J = 8.9 Hz), 7.29 (d, 1H, J = 7.2 Hz), 7.19 (d, 1H, J = 7.6 Hz), 6.66 (t, 1H, J = 7.6 Hz), 6.30 (d, 1H, J = 7.6 Hz), 6.12 (t, 1H, J = 7.6 Hz), 5.50 (t, 1H, J = 7.6 Hz) ppm. ¹³C-NMR (100 MHz, CDCl₃, 298 K): δ 158.6 (Cq), 142.0, 141.2 (Cq), 140.3 (Cq), 137.7 (Cq), 136.7 (Cq), 131.9 (Cq), 131.4 (Cq), 131.3, 130.8 (Cq), 130.3 (Cq), 129.3, 128.3, 128.2, 127.84, 127.80, 127.6, 127.4, 127.2 (Cq), 126.2, 126.0, 125.9, 125.6, 125.5 (2 × C), 125.3, 124.7, 124.0 (Cq), 123.3 (Cq), 122.0 (Cq), 121.4 ppm. HRMS (ESI) calcd. C₃₁H₁₉BrN⁺ (M + H⁺) 484.0695 (⁷⁹Br), 486.0675 (⁸¹Br). Found 484.0691, 486.0671.

General procedure for lithiation-borylation. Synthesis of boranes 5a-f

A dried Schlenk tube was charged with 4a-f (1 eq.), and after three cycles of vacuum/argon flushing, anhydrous THF (2 mL/0.1 mmol substrate) was added. The reaction mixture was cooled to -78 °C, then *n*-BuLi (1.6 M in hexane, 1.3 eq.) was added dropwise, and the resulting solution was stirred at this temperature for one hour.

Then, Mes₂BF (1.3 eq.) was added at -78 °C under Schlenk conditions, and the resulting mixture was stirred at this temperature for 15 minutes and then at room temperature overnight. The reaction was quenched with water and the mixture was extracted with DCM. The combined organic phase was dried over anhydrous MgSO₄, filtered, concentrated to dryness, and the crude product was purified by column chromatography yielding the target dyes **5a**–**f**.

Synthesis of rac-5a

Following the general procedure, starting from **4a** (0.2 mmol, 81.8 mg), purification by column chromatography on silica gel (cyclohexane/EtOAc 30:1) afforded *rac*-**5a** (111 mg, 96%) as a yellow foam. ¹H-NMR (**400** MHz, CDCl₃, **298** K): δ 8.64 (d, 1H,

J = 6.4 Hz), 7.91–7.85 (m, 2H), 7.81 (d, 1H, J = 8.2 Hz), 7.72 (d, 1H, J = 6.6 Hz), 7.71 (d, 1H, J = 6.4 Hz), 7.60 (d, 1H, J = 6.8 Hz), 7.44 (d, 1H, J = 8.3 Hz), 7.40 (d, 1H, J = 7.60 Hz), 7.16–7.09 (m, 2H), 6.90 (br s, 1H, H_{Mes}), 6.81–6.78 (m, 3H), 6.76–6.49 (br s, 4H), 6.25 (s, 1H, H_{Mes}), 2.39 (s, 1H, CH_{3Mes}), 2.30 (s, 1H, CH_{3Mes}), 2.28 (s, 1H, CH_{3Mes}), 2.24 (s, 1H, CH_{3Mes}), 2.08 (s, 1H, CH_{3Mes}), 1.18 (s, 1H, CH_{3Mes}) ppm. ¹³C-NMR (100 MHz, CDCI₃, 298 K): δ 160.9 (Cq), 144.0 (Cq), 142.4 (Cq), 141.6 (Cq), 140.8 (Cq), 140.3 (Cq), 139.7 (Cq), 137.7 (Cq), 136.5, 134.7 (Cq), 133.3 (Cq), 132.2 (Cq), 132.1, 131.8 (2xC), 131.5, 130.31, 130.25, 129.6 (br s), 129.5 (2xC), 129.0, 128.4, 127.7, 127.3, 126.3 (br s), 125.7, 125.2, 123.9, 123.5, 122.8 (Cq), 119.3, 28.0, 25.6, 25.5, 21.8, 20.9, 20.7 ppm, (C–B were not observed). ¹¹B-NMR (128 MHz, CDCI₃, 298 K): δ 5.5 (br s) ppm. HRMS (ESI) calcd. C₄₃H₃₈BNNa⁺ (M + Na⁺) 602.2990. Found 602.2986. The enantiomers of the title compound were separated by semipreparative CSP- HPLC (IA column, *n*-hexane:isopropanol 99:1, T = 303 K, F = 12 mL/min), affording the first

enantiomer *M*-**5a** with a retention time of 8.24 min and $[\alpha]^{20}{}_{D}$ –577 (c 0.25, CHCl₃) for er 99:1, and the second enantiomer *P*-**5a** with a retention time of 10.13 min and $[\alpha]^{20}{}_{D}$ +565 (c 0.25, CHCl₃) for er 98:2. The absolute configuration of the reported chiral emitters was assigned by comparison of the experimental ECD spectra with our previous results,¹⁰ and further confirmed by the computed ones (see below).

Synthesis of rac-5b

Following the general procedure, starting from **4b** (0.2 mmol, 88 mg), purification by column chromatography on silica gel (cyclohexane/EtOAc 30:1) afforded *rac*-**5b** (101 mg, 83%) as a

yellow foam. ¹H-NMR (400 MHz, CDCl₃, 298 K): δ 8.50 (d, 1H,

J = 6.5 Hz), 7.88–7.78 (m, 3H), 7.69–7.66 (m, 2H), 7.49 (d, 1H, J = 6.4 Hz), 7.19 (s, 1H), 7.14–7.08 (m, 3H), 6.88 (s, 1H, H_{Mes}), 6.82–6.78 (m, 3H), 6.75–6.59 (br s, 3H), 6.26 (s, 1H, H_{Mes}), 3.86 (s, 3H, OMe), 2.39 (s, 3H, CH_{3Mes}), 2.26 (s, 3H, CH_{3Mes}), 2.24 (s, 3H, CH_{3Mes}), 2.23 (s, 3H, CH_{3Mes}), 2.08 (s, 3H, CH_{3Mes}), 1.21 (s, 3H, CH_{3Mes}) ppm. ¹³C-NMR (100 MHz, CDCl₃, 298 K): δ 160.8 (Cq), 157.8 (Cq), 144.1 (Cq), 142.5 (Cq), 141.5 (Cq), 140.7 (Cq), 140.3 (Cq), 139.9 (Cq), 137.9 (Cq), 136.4, 134.6 (Cq), 133.2 (Cq), 131.8, 131.5, 130.6 (Cq), 130.3, 130.2, 129.7 (br s), 129.5, 128.9, 127.2, 126.3 (br s), 126.2 (Cq), 125.7, 125.6, 124.4 (Cq), 123.5, 123.2, 122.2 (Cq), 121.9, 117.9, 106.1, 55.2, 27.6, 25.5, 25.3, 21.7, 20.8, 20.6 ppm, (*C*–B were not observed). ¹¹B-NMR (128 MHz, CDCl₃, 298 K): δ 5.4 (br s) ppm. HRMS (ESI) calcd. C₄₄H₄₀BNNaO⁺ (M + Na⁺) 632.3095. Found 632.3095.

The enantiomers of the title compound were separated by semipreparative CSP- HPLC (IA column, *n*-hexane:isopropanol 99:1, T = 303 K, F = 9 mL/min), affording the first enantiomer *M*-**5b** with a retention time of 10.69 min and $[\alpha]^{20}_{D}$ –522 (c 0.15, CHCl₃)

for er >99:1, and the second enantiomer P-5b with a retention time of 12.44 min and $\left[\alpha\right]_{D}^{20}$ +410 (c 0.1, CHCl₃) for er >99:1. The absolute configuration of the reported chiral emitters was assigned by comparison of the experimental ECD spectra with our previous results,¹⁰ and further confirmed by the computed ones (see below).

Synthesis of rac-5c

Following the general procedure, starting from 4c (0.2 mmol, 91 mg), purification by column chromatography on silica gel (toluene/EtOAc 2:1) afforded rac-5c (66 mg, 53%) as an orange foam. ¹H-NMR (400 MHz, CDCl₃, 298 K): δ 8.41 (d, 1H, J = 6.4 Hz), 7.87–7.80 (m, 2H), 7.65 (dd, 1H, J = 6.3, 2.1 Hz), 7.63–7.61 (m, 2H), 7.44 (d, 1H, J = 6.4 Hz), 7.29–7.25 (m, 2H), 7.07 (t, J = 8.2 Hz, 1H), 7.02 (t, 1H, J = 6.7 Hz), 6.88 (br s, 1H, H_{Mes}), 6.78 (s, 1H, H_{Mes}), 6.74–6.49 (m + br s, 5H), 6.24 (s, 1H, H_{Mes}), 2.79 (s, 6H, NMe₂), 2.38 (s, 3H, CH_{3Mes}), 2.28 (s, 3H, CH_{3mes}), 2.22 (s, 3H, CH_{3mes}), 2.18 (s, 3H, CH_{3Mes}), 2.06 (s, 3H, CH_{3Mes}), 1.27 (s, 3H, CH_{3mes}) ppm. ¹³C-NMR (100 MHz, CDCl₃, 298 K): δ 160.8 (Cq), 153.1 (Cq), 143.8 (Cq), 142.5 (Cq), 141.6 (Cq), 141.1 (Cq), 140.5 (Cq), 139.7 (Cq), 137.9 (Cq), 136.5, 134.6 (Cq), 133.0 (Cq), 131.6, 131.5 (Cq), 131.3, 130.1, 129.9, 129.5 (br s), 129.4 (br s), 129.3, 128.7, 126.9 (Cq), 126.7, 126.5 (Cq), 125.6, 124.8 (2 × C), 123.4, 123.1, 121.8 (Cq), 117.2, 112.7, 43.7, 27.1, 25.4, 25.1, 21.7, 20.8, 20.6 ppm, C-B were not observed. ¹¹B-NMR (128 MHz, CDCl₃, 298 K): δ 5.5 (br s) ppm. **HRMS(ESI)** calcd. $C_{45}H_{44}BN_2^+$ (M + H⁺) 623.3592. Found 623.3592. The enantiomers of the title compound were separated by semipreparative CSP- HPLC (IA column, *n*-hexane:isopropanol 99:1, T = 303 K, F = 9 mL/min), affording the first enantiomer *M*-5c with a retention time of 6.67 min and $\left[\alpha\right]_{D}^{20}$ -522 (c 0.1, CHCl₃) for er >99:1, and the second enantiomer *P*-5c with a retention time of 8.46 min and $[\alpha]^{20}$

+570 (c 0.1, CHCl₃) for er >99:1. The absolute configuration of the reported chiral emitters was assigned by comparison of the experimental ECD spectra with our previous results,¹⁰ and further confirmed by the computed ones (see below).

Synthesis of rac-5d

Following the general procedure, starting from **4d** (0.2 mmol, 91.8 mg), purification by column chromatography on silica gel (cyclohexane/EtOAc 30:1) afforded *rac*-**5d** (80 mg, 64%) as a orange foam. ¹H-NMR (**400** MHz, CDCl₃, **298** K): δ 8.64 (d, 1H,

J = 6.4 Hz), 8.23 (s, 1H), 7.96–7.88 (m, 3H), 7.82 (d, 1H, *J* = 10.2 Hz), 7.80 (d, 1H, *J* = 8.5 Hz), 7.63–7.54 (m, 2H), 7.60 (d, 1H, *J* = 6.4 Hz), 7.57 (d, 1H, *J* = 8.4 Hz), 7.43 (t, 1H, *J* = 6.8 Hz), 7.38 (d, 1H, *J* = 8.0 Hz), 7.05-7.30 (br s, 2H), 6.90 (s, 1H, H_{Mes}), 6.79 (s, 1H, H_{Mes}), 6.71 (s, 1H, H_{Mes}), 6.60 (t, 1H, *J* = 7.6 Hz,), 6.51–6.27 (br s, 2H), 6.22 (s, 1H, H_{Mes}), 2.42 (s, 3H, CH_{3Mes}), 2.30 (s, 3H, CH_{3Mes}), 2.27 (s, 3H, CH_{3Mes}), 2.24 (s, 3H, CH_{3Mes}), 2.06 (s, 3H, CH_{3Mes}), 1.22 (s, 3H, CH_{3Mes}). ¹³C-NMR (100 MHz, CDCl₃, 298 K): δ 161.0 (Cq), 144.1 (Cq), 142.4 (Cq), 141.5 (Cq), 141.1 (Cq), 140.7 (Cq), 139.9 (Cq), 138.0 (Cq), 136.5, 134.7 (Cq), 133.5 (Cq), 132.1, 131.7, 131.5 (2xC), 131.3 (Cq), 130.7 (Cq), 130.5 (Cq), 130.3 (2xC), 129.6, 129.0, 128.7 (br s), 128.5, 128.0, 127.9, 127.4 (Cq), 127.3, 126.1 (br s), 125.9, 125.8, 125.5, 124.5, 122.7 (Cq), 121.4, 119.0, 27.6, 25.5 (2 × C), 21.9, 20.9, 20.6 ppm, *C*–B were not observed and 2 C are not observable. ¹¹B-NMR (128 MHz, CDCl₃, 298 K): δ 5.3 (br s) ppm. HRMS(ESI) calcd. $C_{47}H_{41}BN^+$ (M + H⁺) 630.3327. Found 630.3321.

The enantiomers of the title compound were separated by semipreparative CSP- HPLC (IA column, *n*-hexane:isopropanol 99:1, T = 303 K, F = 18 mL/min), affording the first enantiomer *M*-5d with a retention time of 5.96 min and $[\alpha]^{20}_{D}$ –390 (c 0.1, CHCl₃) for

er >99:1, and the second enantiomer *P*-**5d** with a retention time of 8.81 min and $[\alpha]^{20}_{D}$ +404 (c 0.1, CHCl₃) for er >99:1. The absolute configuration of the reported chiral emitters was assigned by comparison of the experimental ECD spectra with our previous results,¹⁰ and further confirmed by the computed ones (see below).

Synthesis of rac-5e

Following the general procedure, starting from **4e** (0.054 mmol, 36 mg), purification by column chromatography on silica gel (toluene/cyclohexane 1:1) afforded *rac*-**5e** (14 mg, 39%) as an orange foam. ¹H-NMR (**400** MHz, CDCl₃, **298** K): 8.62 (d, 1H, J

= 6.4 Hz), 7.96 (t, 1H, J = 8.2 Hz), 7.94–7.87 (m, 2H), 7.70 (d, 1H, J = 6.4 Hz), 7.55 (d, 1H, J = 7.8 Hz), 7.52–7.30 (br s, 2H), 7.27–7.24 (m, 1H), 7.19–7.12 (m, 3H), 7.10–7.01 (m, 2H), 7.01–6.95 (m, 2H), 6.83 (s, 1H, H_{Mes}), 6.73 (s, 1H, H_{Mes}), 6.66 (s, 1H, H_{mMs}), 6.23 (s, 1H, H_{Mes}), 2.34 (s, 3H, CH_{3Mes}), 2.22 (s, 3H, CH_{3Mes}), 2.18 (s, 3H, CH_{3Mes}), 2.11 (s, 3H, CH_{3Mes}), 2.06 (s, 3H, CH_{3mes}), 1.00 (s, 3H, CH_{3Mes}) ppm. ¹³C-**NMR (100 MHz, CDCl₃, 298 K):** 159.5 (Cq), 143.4 (Cq), 142.0 (Cq), 141.6 (Cq), 140.5 (Cq), 139.3 (Cq), 138.9 (Cq), 138.8 (Cq), 137.5 (Cq), 135.9, 135.8 (Cq), 135.2 (Cq), 134.8 (Cq), 133.6 (Cq), 132.5, 132.4, 130.8 (Cq), 130.4, 130.0, 129.5, 129.3, 129.1, 128.5, 128.4 (Cq), 128.2, 128.3, 128.2, 127.6, 127.3, 127.0, 126.8, 125.6, 123.5 (Cq), 120.7, 28.1, 25.5, 25.2, 21.2, 20.8, 20.7 ppm, *C*–B were not observed. ¹¹B-**NMR (128 MHz, CDCl₃, 298 K):** δ 5.9 (br s) ppm. **HRMS (ESI)** calcd. C₄₅H₃₈BNNaS₂⁺ (M + Na⁺) 690.2431. Found 690.2407.

The enantiomers of the title compound were separated by semipreparative CSP- HPLC (IA column, *n*-hexane:isopropanol 97:3, T = 303 K, F = 18 mL/min), affording the first enantiomer *M*-**5e** with a retention time of 6.04 min and $[\alpha]^{20}_{D}$ –79 (c 0.1, CHCl₃) for er

S20

>99:1, and the second enantiomer *P*-5e with a retention time of 11.77 min and and $\left[\alpha\right]^{20}$ +70 (c 0.1, CHCl₃) for er >99:1. The absolute configuration of the reported chiral emitters was assigned by comparison of the experimental ECD spectra with our previous results,¹⁰ and further confirmed by the computed ones (see below).

Synthesis of rac-5f

Following the general procedure, starting from 4f (0.11 mmol, 72.6 mg), purification by column chromatography on silica gel (toluene/cyclohexane 1:1) afforded rac-5f (48 mg, 65%) as a yellow-orange foam. ¹H-NMR (400 MHz, CDCl₃, 298 K): δ 8.71 (d, 1H, J = 6.4 Hz), 8.41 (s, 1H), 8.04–8.00 (m, 3H), 7.95–7.89 (m, 2H), 7.87–7.83 (m, 2H), 7.80–7.74 (m, 3H), 7.67 (d, 1H, J = 6.4 Hz), 7.20–6.90 (br s, 1H), 6.92 (br s, 1H, H_{Mes}), 6.83–6.80 (m, 2H), 6.69 (br s, 1H, H_{Mes}), 6.33 (t, 2H, J = 7.5 Hz), 6.24 (t, 1H, J= 7.2 Hz), 6.16 (br s, 1H, H_{Mes}), 2.42 (s, 3H, CH_{3Mes}), 2.37 (s, 3H, CH_{3Mes}), 2.29 (br s, 8H, CH_{3Mes} overlapped), 2.01 (s, 3H, CH_{3Mes}), 1.19 (s, 3H, CH_{3Mes}) ppm. ¹³C-NMR (100 MHz, CDCl₃, 298 K): δ 160.9 (Cq), 144.1 (Cq), 142.4 (Cq), 142.0 (Cq), 140.6 (Cq), 139.8 (Cq), 139.7 (Cq), 138.9 (Cq), 136.8, 134.7 (Cq), 133.3 (Cq), 133.1 (Cq), 132.2 (2xC), 131.6 (Cq), 130.5 (Cq), 130.4 (br s), 130.2 (br s), 130.1 (Cq), 129.8 (br s), 129.3 (br s), 129.1 (br s), 128.4, 128.3, 128.0, 127.4 (Cq), 127.0, 126.90, 126.85, 125.9, 125.8, 125.4, 125.0, 124.8, 124.3 (Cq), 124.0, 123.3 (Cq), 123.0 (Cq), 119.9, 28.6, 25.7, 25.6, 21.9, 20.9, 20.6 ppm, C-B were not observed. ¹¹B-NMR (128 MHz, CDCl₃, 298 **K):** δ 5.9 (br s) ppm. **HRMS (ESI)** calcd. C₄₉H₄₀BNNa⁺ (M + Na⁺) 676.3138. Found 676.3157.

The enantiomers of the title compound were separated by semipreparative CSP- HPLC (IA column, *n*-hexane:isopropanol 97:3, T = 303 K, F = 18 mL/min), affording the first enantiomer *M*-**5f** with a retention time of 6.14 min and $[\alpha]^{20}{}_{D}$ –95 (c 0.1, CHCl₃) for er >99:1, and the second enantiomer *P*-**5f** with a retention time of 9.15 min and $[\alpha]^{20}{}_{D}$ +96 (c 0.1, CHCl₃) for er >99:1. The absolute configuration of the reported chiral emitters was assigned by comparison of the experimental ECD spectra with our previous results,¹⁰ and further confirmed by the computed ones (see below).

3. NMR spectra, HRMS, HPLC chromatograms

Figure S1. ¹H-NMR (400 MHz, CDCl₃, 298 K) for **1**.

Figure S2. ¹³C-NMR (100 MHz, CDCl₃, 298 K) for **1**.

Figure S3. ¹H-NMR (400 MHz, CD₂Cl₂, 298 K) for **3a**.

Figure S4. ¹³C-NMR (100 MHz, CD₂Cl₂, 298 K) for 3a.

Figure S5. HRMS-ESI for 3a.

Figure S7. ¹³C-NMR (100 MHz, CDCl₃, 298 K) for **3b**.

Figure S8. HRMS-ESI for 3b.

Figure S10. ¹³C-NMR (100 MHz, CDCl₃, 298 K) for **3c**.

Figure S11. HRMS-ESI for 3c.

Figure S12. ¹H-NMR (400 MHz, CDCl₃, 298 K) for **3d**.

Figure S13. ¹³C-NMR (100 MHz, CDCl₃, 298 K) for **3d**.

Figure S14. HRM-ESI for 3d.

Figure S15. ¹H-NMR (400 MHz, CDCl₃, 298 K) for **3e**.

Figure S16. ¹³C-NMR (100 MHz, CDCl₃, 298 K) for **3e**.

Figure S17. HRM-ESI for 3e.

Figure S18. ¹H-NMR (400 MHz, CDCl₃, 298 K) for **3f**.

Figure S19. ¹³C-NMR (100 MHz, CDCl₃, 298 K) for **3f**.

Figure S20. HRM-ESI for 3f.

9.5 6.5 9.0 8.5 8.0 7.5 6.0 5.5 ^{5.0}f1 (ppm) ^{4.5} 1.0 4.0 3.5 2.5 2.0 1.5

Figure S21. ¹H-NMR (400 MHz, CDCl₃, 298 K) for *rac*-4a.

Figure S22. ¹³C-NMR (100 MHz, CDCl₃, 298 K) for *rac*-4a.

0.0

0.5

Figure S23. HRM-ESI for *rac*-4a.

Figure S25. ¹³C-NMR (100 MHz, CDCl₃, 298 K) for *rac*-4b.

Figure S26. HRM-ESI for *rac*-4b.

Figure S27. ¹H-NMR (400 MHz, CDCl₃, 298 K) for *rac*-4c.

Figure S29. HRM-ESI for *rac*-4c.

wana dhadar wana a daga a dha a daga a dhalaga dhii in tara daga dhii a daga a daga a daga daga dhada a dhada a

80

50

40

Figure S31. ¹³C-NMR (100 MHz, CDCl₃, 298 K) for *rac*-4d.

190 180 170 160 150 140 130 120 110 100 90 t100m

0

Figure S32. HRM-ESI for *rac*-4d.

Figure S33. ¹H-NMR (400 MHz, CDCl₃, 298 K) for *rac*-4e.

Figure S34. ¹³C-NMR (100 MHz, CDCl₃, 298 K) for *rac*-4e.

Figure S38. HRM-ESI for *rac*-4f.

Figure S41. ¹¹B-NMR (128 MHz, CDCl₃, 298 K) for *rac*-5a.

Figure S42. HRM-ESI for *rac*-5a.

Figure S43. Chiral HPLC chromatogram for *rac*-**5a**: IA column, *n*-hexane:isopropanol 99:1, T = 303 K, F = 0.7 mL/min.

Figure S44. Chiral HPLC chromatogram for *M***-5a**: er 99:1; *n*-hexane:isopropanol 99:1, T = 303 K, F = 0.7 mL/min.

Figure S45. Chiral HPLC chromatogram for *P***-5a:** er 2:98; *n*-hexane:isopropanol 99:1, T = 303 K, F = 0.7 mL/min.

Figure S46. ¹H-NMR (400 MHz, CDCl₃, 298 K) for *rac***-5b**.

S51

--5.4

Figure S50. Chiral HPLC chromatogram for *rac*-**5b**: IA column, *n*-hexane:isopropanol 99:1, T = 303 K, F = 0.5 mL/min.

Figure S51. Chiral HPLC chromatogram for *M*-5b: er >99:1; IA column, *n*-hexane:isopropanol 99:1, T = 303 K, F = 0.5 mL/min.

Figure S52. Chiral HPLC chromatogram for *P***-5b**: er >1:99; IA column, *n*-hexane:isopropanol 99:1, T = 303 K, F = 0.5 mL/min.

Figure S53. ¹H-NMR (400 MHz, CDCl₃, 298 K) for *rac*-5c.

S54

Figure S57. Chiral HPLC chromatogram for *rac*-5c: IA column, *n*-hexane:isopropanol 99:1, T = 303 K, F = 0.7 mL/min.

Figure S58. Chiral HPLC chromatogram for *M*-5c: er >99:1; IA column, *n*-hexane:isopropanol 99:1, T = 303 K, F = 0.7 mL/min.

Figure S59. Chiral HPLC chromatogram *P*-5c: er >1:99; IA column, *n*-hexane:isopropanol 99:1, T = 303 K, F = 0.7 mL/min.

Figure S60. ¹H-NMR (400 MHz, CDCl₃, 298 K) for *rac***-5d**.

Figure S62. ¹¹B-NMR (128 MHz, CDCl₃, 298 K) for *rac*-5d.

Figure S63. HRM-ESI for *rac*-5d.

Figure S64. Chiral HPLC chromatogram for *rac*-5d: IA column, *n*-hexane:isopropanol 99:1, T = 303 K, F = 1.0 mL/min.

Figure S65. Chiral HPLC chromatogram for *M***-5d**: er >99:1; IA column, *n*-hexane:isopropanol 99:1, T = 303 K, F = 1.0 mL/min.

Figure S66. Chiral HPLC chromatogram for *P*-5d: er >1:99; IA column, *n*-hexane:isopropanol 99:1, T = 303 K, F = 1.0 mL/min.

Figure S67. ¹H-NMR (400 MHz, CDCl₃, 298 K) for *rac*-5e.

Figure S68. ¹³C-NMR (100 MHz, CDCl₃, 298 K) for *rac*-5e.

-5.9

Figure S71. Chiral HPLC chromatogram for *rac*-**5e**: IA column, *n*-hexane:isopropanol 97:3, T = 303 K, F = 1.0 mL/min.

Figure S72. Chiral HPLC chromatogram for *M*-**5e**: er >99:1; IA column, *n*-hexane:isopropanol 97:3, T = 303 K, F = 1.0 mL/min.

Figure S73. Chiral HPLC chromatogram for *P***-5e**: er >1:99; IA column, *n*-hexane:isopropanol 97:3, T = 303 K, F = 1.0 mL/min.

Figure S74. ¹H-NMR (400 MHz, CDCl₃, 298 K) for *rac*-5f.

Figure S75. ¹³C-NMR (100 MHz, CDCl₃, 298 K) for *rac*-5f.

--5.9

-25 -30

674.5

675.0

675.5

676.0

676.5

677.0

677.5

m/z

678.5

679.0

679.5

680.0

680.5

678.0

5 0 1

674.0

-65

Figure S78. Chiral HPLC chromatogram for *rac*-**5f**: IA column, *n*-hexane:isopropanol 97:3, T = 303 K, F = 1.0 mL/min.

Figure S79. Chiral HPLC chromatogram for *M*-**5**f: er >99:1; IA column, *n*-hexane:isopropanol 97:3, T = 303 K, F = 1.0 mL/min.

Figure S80. Chiral HPLC chromatogram for *P*-**5**f: er >1:99; IA column, *n*-hexane:isopropanol 97:3, T = 303 K, F = 1.0 mL/min.

4. X-ray crystallographic data

Table S1. Crystal data for 5e.

Empirical formula	$C_{45}H_{38}BNS_2$	$C_{45}H_{38}BNS_2$		
Formula weight	667.69			
Temperature	193(0) K			
Wavelength	0.56086 Å			
Crystal system Space group	monoclinic P2 ₁ /n			
Unit cell dimensions	a = 15.9459(13) Å	α= 90°		
	b = 12.9259(12) Å	$\beta = 90^{\circ}$		
	c = 17.7067(18) Å	$\gamma = 90^{\circ}$		
Volume	3570.2(6) Å ³			
Z	4			
Density (calculated)	1.242 Mg/m^3			
Absorption coefficient	0.183 mm^{-1}	0.183 mm^{-1}		
F(000)	1408.0	1408.0		
Crystal size	$0.1\times0.06\times0.06~mm^3$	$0.1\times0.06\times0.06~mm^3$		
2Θ range for data collection	3.86 to 51.46°.	3.86 to 51.46°.		
Index ranges	$-19 \le h \le 18, -15 \le k \le 18$	$-19 \leq h \leq 18, -15 \leq k \leq 15, -21 \leq l \leq 21$		
Reflections collected	64188	64188		
Independent reflections	$6792 [R_{int} = 0.1272, R_s]$	$6792 [R_{int} = 0.1272, R_{sigma} = 0.0559]$		
Refinement method	Full-matrix least-squar	Full-matrix least-squares on F ²		
Data / restraints / parameters	6792/0/448	6792/0/448		
Goodness-of-fit on F ²	1.063	1.063		
Final R indices [I>2sigma(I)]	$R_1 = 0.0579, wR_2 = 0.1$	$R_1 = 0.0579, wR_2 = 0.1184$		
R indices (all data)	$R_1 = 0.0917, wR_2 = 0.1$	$R_1 = 0.0917, wR_2 = 0.1318$		
Absolute structure parameter	0.020(3)	0.020(3)		
Extinction coefficient	n/a	n/a		
Largest diff. peak and hole	0.25 and –0.39 $e \times Å^{-3}$	0.25 and $-0.39 \text{ e} \times \text{\AA}^{-3}$		

5. Additional UV/vis-absorption/emission spectra and photophysical data

Figure 81. UV/vis absorption (full lines) and fluorescence spectra (dashed lines) of 5a (black), 5b (green), and 5c (red) in air-equilibrated acetonitrile (dye concentration 20 μ M).

Figure 82. UV/vis absorption (full lines) and fluorescence spectra (dashed lines) of 5a (black), 5b (green), and 5c (red) in air-equilibrated dichloromethane (dye concentration $20 \ \mu$ M).

Figure S83. UV/vis absorption (full lines) and fluorescence spectra (dashed lines) of **5d** (black), **5e** (red), and **5f** (blue) in air-equilibrated acetonitrile (dye concentration 20 μ M).

Figure S84. UV/vis absorption (full lines) and fluorescence spectra (dashed lines) of 5d (black), 5e (red), and 5f (blue) in air-equilibrated dichloromethane (dye concentration $20 \ \mu$ M).

Figure S85. UV/vis absorption (full lines) and fluorescence spectra (dashed lines) of **5d** (black), **5e** (red), and **5f** (blue) in air-equilibrated toluene (dye concentration 20 μ M).

Table S1. Radiative and non-radiative decay constants of 5a-d and 5f in various solvents.

	Toluene		Dichloromethane		Acetonitrile	
	$k_{\rm r}/(10^7 {\rm s}^{-1})$	$k_{\rm nr}/(10^8 {\rm s}^{-1})$	$k_{\rm r}/(10^7 {\rm s}^{-1})$	$k_{\rm nr}/(10^8 {\rm s}^{-1})$	$k_{\rm r} / (10^7 {\rm s}^{-1})$	$k_{\rm nr}/(10^8 {\rm s}^{-1})$
5a	4.2	4.3	5.1	3.1	2.7	3.6
5b	6.0	1.9	5.1	1.3	4.8	1.4
5c	4.8	7.1	4.0	6.3	3.0	1.4
5d	4.6	4.1	4.4	4.5	1.8	3.4
5f	7.1	2.5	6.3	2.4	4.2	2.1

Acetonitrile

5d

5ff

Figure S86. Decay traces and fitting results for the dyes 5a–d and 5f in various solvents.

Table S2. Detailed	fitting data	of the dyes	5a-d and	5f in	various	solvents.
--------------------	--------------	-------------	----------	--------------	---------	-----------

	$\tau_{\rm F}$ (ns), toluene	$\tau_{\rm F}$ (ns), dichloromethane	$\tau_{\rm F}$ (ns), acetonitrile
5a	2.13 (94.9%), 15.29 (5.1%)	2.74 (96.2%), 20.70 (3.8%)	2.55 (96.0%), 15.39 (4.0%)
	$\chi^2 = 1.018$	$\chi^2 = 1.112$	$\chi^2 = 1.098$
5b	3.98 (95.7%), 22.20 (4.3%)	5.54 (95.4%), 25.32 (4.6%)	5.46 (94.9%), 25.45 (5.1%)
	$\chi^2 = 1.099$	$\chi^2 = 1.108$	$\chi^2 = 1.044$
5c	8.40 (95.2%), 46.22 (4.8%)	9.71 (94.9%), 39.01 (5.1%)	5.98 (94.2%), 23.83 (5.8%)
	$\chi^2 = 1.061$	$\chi^2 = 1.027$	$\chi^2 = 1.043$
5d	2.18 (93.6%), 14.88 (6.4%)	2.04 (95.7%), 16.49 (4.3%)	2.04 (85.1%), 5.42 (9.6%)
	$\chi^2 = 1.146$	$\chi^2 = 1.352$	21.17 (5.3%)
			$\chi^2 = 1.101$
5f	3.12 (97.5%), 25.03 (2.5%)	3.36 (96.0%), 20.51 (4.0%)	4.01 (97.1%), 22.66 (2.9%)
	$\chi^2 = 1.127$	$\chi^2 = 1.204$	$\chi^2 = 1.078$

Figure S87. Left: Luminescence spectrum of compound **5d** in 2-methyltetrahydrofuran at 77 K. Right: Corresponding decay recorded at 77 K (frozen glass), monitored at 510 nm.
6. Additional chiroptical data

Figure S88. ECD spectra (in mdeg) of the dyes **5a–f** in acetonitrile (dye concentration *ca.* 1 μ M; air-equilibrated solutions). The black spectra correspond to the *M*-enantiomers and the red spectra to the *P*-enantiomers.

7. Electrochemical data

Figure S89. Cyclic voltammograms of **5a**–**f** *versus* saturated calomel electrode (SCE) as the reference and 0.2 M Bu₄NPF₆ in dichloromethane with a scan rate of 200 mV/s.

	$E_{\mathrm{ox}}\left(\mathrm{V}\right)$	$E_{\rm red}$ (V)
5 a	+1.10	-1.56
5b	+0.94	-1.59
5c	+0.56, +1.27	-1.64
5d	+0.91	-1.46
5e	+0.97, +1.24	-1.44
5f	+1.05	-1.42

Table S2. Redox potentials of 5a, 5b, 5c, 5d, 5e, and 5f in dichloromethane, estimated from the corresponding onset of their respective anodic and cathodic peaks, and recorded *versus* saturated calomel electrode (SCE).

8. Theoretical calculations

To model the investigated compounds, we have relied on Time-Dependent Density Functional Theory (TD-DFT) and a wavefunction coupled-cluster (CC) approach. We have used exact dye structures. We have optimized and computed the vibrational frequencies of the dyes in their ground electronic state, and likewise for their first excited state using TD-DFT for the latter. The optimization and vibrational calculations were performed with the M06-2X functional¹¹ and the 6-31G(d) atomic basis set, including solvent effects (DCM was used) using the Polarizable Continuum Model (PCM), using the standard linear-response (LR) version of PCM for the TD-DFT part.¹² For the modelling of the absorption/ECD spectra, we computed 50 excited-states at the M06-2X/6-31+G(d,p) level on the optimal ground-state geometry, modeling the solvent effects using the LR-PCM approach in its non-equilibrium limit. Next, the obtained "stick" transitions were convoluted.

To obtain more accurate description of the lowest the vertical absorption as well as emission wavelengths, additional TD-DFT and CC calculations were performed on the optimal ground and excited state geometries. The TD-DFT calculations were done both in gas phase and in solution at the TD-M06-2X/6-311+G(2d,p) level, using the cLR model^{12,13} for the solution calculation, so as to accounts for both *linear-response* and *state-specific* solvent effects. All DFT and TD-DFT calculations were performed with Gaussian 16, using default algorithms but improved convergence thresholds for both ground state energies and residual forces.¹⁴

We also computed the transition energies in gas-phase at the second-order coupledcluster level, CC2,¹⁵ with the *aug*-cc-pVDZ atomic basis set. These latter calculations were performed with the Turbomole package,¹⁶ applying the RI approximation and freezing the core electrons. It was then possible to obtain corrected vertical fluorescence energies, we simply use

$$\Delta E^{\text{fluo}} = \Delta E_{\text{Gas}}^{\text{CC2}} + \left(\Delta E_{\text{cLR}^2 - \text{PCM}}^{\text{TD} - \text{DFT}} - \Delta E_{\text{Gas}}^{\text{TD} - \text{DFT}}\right)$$

and similarly for the absorption. On that basis, one can further determine 0-0 energies using a similar composite scheme which accounts for the difference of ZPVE between the two states.¹⁷

Figure S90. Simulated UV/vis-absorption spectra at the LR(neq)-PCM(DCM)-M06-2X/6-31+G(d,p) level. To obtain this Figure the "stick" vertical transitions were simply convoluted using a Gaussian broadening function with FWHM of 0.4 eV. Note that for **5e**, two quasi-energetic conformers exist (< 1 kcal mol⁻¹ difference) and the calculated UV/vis spectrum is the average of the results obtained for the two conformers

Figure S91. Simulated ECD spectra of the *M*-enantiomer; see caption of Figure S66 for details, and comparison with corresponding experimental spectra in dichloromethane. Note that for 5e, two quasi-energetic conformers exist (< 1 kcal mol⁻¹ difference) and the calculated ECD spectrum is the average of the results obtained for the two conformers

9. Atomic coordinates

Below we list the Cartesian coordinates (in Å), as obtained by DFT/TD-DFT.

5a (gro	ound-state)		
C (gro	-1.9682990	-0.5779510	-2.8494360
C	-0.8754550	0.2097610	-3.3120400
С	0.2251530	0.4325290	-2.5264480
C	0.2730520	-0.0422650	-1.1874270
C	-0.8972470	-0.5831790	-0.6625250
C	-1.9832490	-1,0135310	-1.4958750
н	-0.9030120	0.5787380	-4.3346260
н	1.0624800	0.9777820	-2.9465690
C	1.0221880	-1, 1953780	2,2884790
C	0.1695210	-1,7117530	3,2154910
C	-1 2326210	-1 5648870	3 0242240
C	-1 7114000	-0 9734390	1 8178560
C	-0 7396120	-0 7788940	0 7778220
н	2 0988240	-1 1762800	2 4122260
н	0.5505660	-2.1608570	4,1253600
N	0 5597030	-0 7069800	1 1077460
B	1,4504620	-0.0105830	-0.0498470
C	2,7917550	-0.9479050	-0.1939880
C	3 9860450	-0.6405880	0 5044430
C	2 7914470	-2 1453480	-0 9538440
C	5,1220420	-1,4490980	0.3698290
C	3.9453910	-2.9238470	-1.0701750
C	5.1353070	-2.5838450	-0.4320500
H	6.0236800	-1.1814030	0.9188910
Н	3,9083560	-3.8336290	-1.6676640
С	1.7092440	1.6045340	0.1823210
С	1.1695410	2.4268180	1.2018630
С	2.4620110	2.2589370	-0.8273750
С	1.3150160	3.8184900	1.1464330
С	2.5863970	3.6506730	-0.8466610
С	1.9996740	4.4599510	0.1201700
Н	0.8854490	4.4203150	1.9458000
Н	3.1704950	4.1132850	-1.6415800
С	6.3797810	-3.4181210	-0.5992650
Н	6.9174140	-3.1432030	-1.5138980
Н	7.0664980	-3.2787230	0.2402870
Н	6.1373260	-4.4824430	-0.6724160
С	4.1398360	0.5422910	1.4436580
Н	4.3144240	1.4783690	0.9023590
Н	3.2573270	0.7086360	2.0666340
Н	4.9932370	0.3758610	2.1075870
С	1.5544670	-2.6737460	-1.6493890
Н	0.7038100	-2.7410050	-0.9640540
Η	1.2400170	-2.0381760	-2.4830800
Η	1.7448630	-3.6752040	-2.0452760
С	0.5088400	1.8996050	2.4629430
Η	-0.3923930	1.3068810	2.2887200
Η	1.1974000	1.2703200	3.0377380
Η	0.2233710	2.7343920	3.1083070
С	2.1012260	5.9627850	0.0582350

Н	1.2886180	6.3890950	-0.5412410
Н	2.0389650	6.4060250	1.0562290
Н	3.0436000	6.2780740	-0.3991080
С	3.2749570	1.5238930	-1.8789780
Н	4.2873600	1.3301630	-1.5012490
н	2.8697260	0.5537180	-2.1612660
н	3 3725730	2 1372580	-2 7804920
C	-3 0061070	_0 9799940	-3 7271790
C	-3 9831350	_1 8/89350	-3 3074420
U U	-2 0022500	-1.0409330	-3.3074420
п II	-2.9922390	-0.0129240	-4.7501750
п	-4./030//0	-2.1092120	-3.9902100
C	-2.9850040	-1.936/260	-1.1019620
C	-3.9503130	-2.3524810	-1.9884140
H	-2.9761020	-2.3408450	-0.094/040
Н	-4.6968490	-3.0736280	-1.6694980
С	-3.0781810	-0.5382540	1.7511510
С	-3.9310450	-0.9140380	2.7713350
H	-4.9597030	-0.5678150	2.7467280
С	-2.1517940	-1.9433520	4.0324900
С	-3.4848390	-1.6580260	3.8836040
Н	-1.7779970	-2.4297510	4.9280140
Н	-4.1940660	-1.9374480	4.6559190
С	-3.5801680	0.4194450	0.7285340
С	-4.8406050	0.2355890	0.1489160
С	-2.8319010	1.5459960	0.3656580
С	-5.3274820	1.1340550	-0.7944270
Н	-5.4230620	-0.6440790	0.4091590
С	-3.3183630	2.4462850	-0.5767900
Н	-1.8577780	1.7224310	0.8133270
С	-4.5645360	2.2398510	-1.1648740
Н	-6.2984790	0.9634170	-1.2487760
Н	-2.7202050	3.3100640	-0.8495140
Н	-4.9402410	2.9381290	-1.9062240
5 a (e	xcited-state)		
C (C	-1 9384840	-0 4638540	-2 8710550
C	-0 8623030	0 3781960	-3 2740700
C	0.2482090	0 5640440	-2 1689670
C	0.2402090	-0 0075250	_1 1897530
C	-0.8659060	-0 6237900	-0 6758610
C	-1 9339590	-1 0164620	-1 5585860
	-1.9339390		-1.5505000
H	-0.8944810	0.81/40/0	-4.26/8940
H	1.0715590	1.1500840	-2.8611000
C	1.0356410	-1.4245260	2.1558060
C	0.1600020	-2.0015450	3.0558850
С	-1.2439570	-1.7920020	2.9221540
С	-1.7200110	-1.0938300	1.7594140
С	-0.7468310	-0.8640430	0.7197190
H	2.1124370	-1.4571860	2.2976190
Η	0.5479740	-2.5285850	3.9203530
Ν	0.6096940	-0.7977240	1.0587240
В	1.4906660	-0.0097250	-0.0238640
С	2.8720710	-0.8705770	-0.2099940
С	4.0452520	-0.5519880	0.5159550
С	2.9279080	-2.0197040	-1.0366790
С	5.2187680	-1.2958560	0.3426390

С	4.1169040	-2.7367120	-1.1915700
С	5.2873000	-2.3785850	-0.5271240
Н	6.1038140	-1.0223610	0.9155550
Н	4.1246160	-3.6113250	-1.8406720
С	1.6579540	1.6028290	0.2663170
С	1.0481920	2.3335550	1.3206020
С	2.3768390	2.3606910	-0.7003400
С	1.0855960	3.7334580	1.3293730
C	2.3914040	3,7537770	-0.6557750
C	1.7267320	4,4696020	0.3396470
н	0.6050480	4,2643030	2,1495660
н	2 9484650	4 2996690	-1 4165190
C	6 5714430	-3 1404210	-0 7363950
н	7 1234390	-2 7513810	-1 5997030
н	7 2271990	-3 0598130	0 1351520
ч	6 3781350	-4 2005760	-0 9245870
C	4 1174930	0 5733420	1 5304630
ч	4 2258600	1 5538120	1 0541370
и П	3 2214010	0 6292090	2 1550570
и П	1 9782440	0.4245140	2.1330370
C	1 7133970	-2 5573/30	-1 7640380
U U	0 8561510	-2 6655170	_1 0908510
п u	1 3963440	-1 9054860	-2 5845000
и П	1 9313640	-3 5424530	-2 1865420
п	1.9515040	-3.5424550	-2.1003420
U U	-0 45245100	1 0756930	2.3439100
и П	1 1376710	1 0/16630	2.5271550
и П	0 1117980	2 4656530	3 2/03/00
C	1 7118720	5 9761410	0 3417760
с ц	0 9/10690	6 3627040	-0 33/9780
н	1 5009220	6 3692060	1 3401020
н	2 6708190	6 3828600	0 0069250
C	2.0700190	1 7256780	-1 7640380
ч	4 2636860	1 5608180	-1 3669720
н	2 9039270	0 7519280	-2 1049490
ч	3 3444440	2 3894160	-2 6297790
C	-2 9791790	-0 8060180	-3 7556870
C	-3 9507370	-1 7249960	-3 3870690
н	-2 9972040	-0 3564310	-4 7448840
н	-4 7359250	-1 9928920	-4 0865730
C	-2 9128320	-1 9655790	-1 2168020
C	-3 9041860	-2 3232040	-2 1223940
н	-2 8788870	-2 4398690	-0 2407930
н	-4 6435720	-3 0673660	-1 8448620
C	-3 0621320	-0 6364140	1 7386620
C	-3 9326540	-1 0697190	2 7485340
н	-4 9648030	-0 7326080	2 7219030
C	-2.1538680	-2.1968260	3,9148280
C	-3 4964170	-1 8663360	3 8079880
H	-1.7845100	-2.7553180	4.7698090
H	-4.2001060	-2.1819050	4,5712100
C	-3.5687700	0.3427020	0.7410210
C	-4.8201260	0.1594850	0.1423470
C	-2.8284320	1.4839980	0.4030800
C	-5.3102040	1.0751460	-0.7857670
H	-5.3994510	-0.7287640	0.3816320

С	-3.3163650	2.3992440	-0.5226120
Н	-1.8570580	1.6564960	0.8580190
С	-4.5579350	2.1963900	-1.1252630
н	-6.2765120	0.9044350	-1.2504630
Н	-2.7239450	3,2743280	-0.7720530
H	-4.9351670	2.9083710	-1.8526970
5b	(ground-state)		
С	1.9656910	-1.5903540	-2.1517220
С	0.8679410	-2.4623890	-1.8297600
С	-0.2482860	-1.9895000	-1.1750890
С	-0.2910660	-0.6577560	-0.6986360
С	0.8693970	0.1084890	-0.7811370
С	1.9596970	-0.2678440	-1.6374810
Н	-1.0946480	-2.6451400	-1.0291730
С	-1.0850640	2.7576730	0.5952640
С	-0.2472450	3.8173350	0.7629710
С	1,1594120	3.5940060	0.7556660
C	1,6536760	2.2884180	0.4680590
С	0.6939690	1.3406270	-0.0322170
Н	-2 1625370	2 8264660	0 6950400
н	-0.6409610	4 8035010	0 9799210
N	-0 6088260	1 5357670	0.2400470
R	-1 4743310	0 1845740	0.2400470
с С	-2 8/13810	0.6234230	-0 7306830
C		0.0234230	-0.0360860
C	-2 9620490	0.9221220	-0.0309800 -2.1277970
C	-2.0020400	1 2014770	-2.1377070
C	-5.2005220	1.2014//0	-0.7550660
C	-4.0392480	1.1518010	-2.8015130
C	-5.2329630	1.3//3420	-2.1211460
H	-6.1051090	1.5013220	-0.1/01200
H	-4.0181230	1.2700610	-3.8839900
C	-1.6770450	-0.6596970	1.4/216/0
С	-1.1232710	-0.3590340	2.7421050
С	-2.3824860	-1.8862830	1.3658530
С	-1.1978720	-1.2854100	3.7894560
С	-2.4398820	-2.7826690	2.4366220
С	-1.8291590	-2.5175740	3.6571940
Η	-0.7569070	-1.0234620	4.7500100
Η	-2.9895660	-3.7149880	2.3102670
С	-6.5020330	1.7216080	-2.8585540
Η	-7.0108500	0.8164130	-3.2091970
Η	-7.2008070	2.2625540	-2.2143460
Η	-6.2955260	2.3394570	-3.7374650
С	-4.1699000	0.9032170	1.4751020
Η	-4.2981080	-0.1115570	1.8664560
Η	-3.2938250	1.3191030	1.9793630
Η	-5.0420940	1.4905340	1.7770200
С	-1.6235610	0.6541280	-2.9969750
Н	-0.7892760	1.2416600	-2.6015870
Η	-1.2784460	-0.3825020	-3.0624330
Η	-1.8281310	1.0037210	-4.0128020
С	-0.5266360	0.9859710	3.1175550
Η	0.3642100	1.2637570	2.5491490
Н	-1.2544910	1.7933540	2.9817230
Н	-0.2446810	0.9828060	4.1736950

С	-1.8529750	-3.5162310	4.7861790
Н	-0.9894570	-4.1895120	4.7362470
Н	-1.8215460	-3.0165130	5.7586850
Н	-2.7531910	-4.1364210	4.7480130
С	-3.2167120	-2.2761540	0.1573530
Н	-4.2559450	-1.9529340	0.3023870
Н	-2.8904830	-1.8250440	-0.7777690
Н	-3.2277360	-3.3648300	0.0367330
С	3.0028510	-2.0122630	-3.0156990
С	3.9756760	-1.1280140	-3.4199060
Н	2.9975180	-3.0346500	-3.3763980
Н	4.7603030	-1.4510470	-4.0965520
С	2.9544010	0.6266240	-2.1041470
С	3.9303200	0.2102490	-2.9799510
Н	2.9319070	1.6630410	-1.7835750
Н	4.6719130	0.9202040	-3.3337130
С	3.0207960	1.9769200	0.7726290
С	3.8645380	3.0168210	1.1154480
Н	4.8945250	2.7917760	1.3746570
С	2.0684520	4.6269940	1.0884020
С	3.4045890	4.3456030	1.2225260
Н	1.6854000	5.6274450	1.2640630
Н	4.1050880	5.1315730	1.4856620
С	3.5298280	0.5830730	0.8925470
С	4.7954470	0.2460720	0.3998800
С	2.7806810	-0.4023910	1.5475820
С	5.2873630	-1.0488910	0.5286590
Н	5.3793840	0.9967880	-0.1258360
С	3.2721330	-1.6971380	1.6785110
Н	1.8020330	-0.1642760	1.9544970
С	4.5242910	-2.0266630	1.1636940
Н	6.2630570	-1.2961540	0.1220940
Н	2.6728130	-2.4472770	2.1850600
Н	4.9043920	-3.0390000	1.2587710
0	1.0017030	-3.7263090	-2.2830200
С	-0.0556680	-4.6368070	-2.0293040
Н	-0.2354030	-4.7357410	-0.9536040
Н	-0.9772510	-4.3136680	-2.5249810
Η	0.2667330	-5.5925900	-2.4396660
5b	(excited-state)		
С	1.9872270	-1.4917770	-2.1941410
С	0.9049920	-2.3873020	-1.8771360
С	-0.2368950	-1.9304330	-1.2132640
С	-0.3169690	-0.6282240	-0.7269750
С	0.8717810	0.1774010	-0.7829760
С	1.9520070	-0.1711230	-1.6710690
Н	-1.0706310	-2.6077040	-1.0869620
С	-1.0779130	2.7424380	0.5886710
С	-0.2163110	3.7954590	0.8226640
С	1.1908120	3.5693590	0.9042140
С	1.6832550	2.2531840	0.5979780
С	0.7300220	1.3434950	0.0224570
Н	-2.1569790	2.8574150	0.6458270
Н	-0.6178310	4.7779380	1.0451430
Ν	-0.6354300	1.5221000	0.2797130

В	-1.5005380	0.1883860	0.0760830
С	-2.8688020	0.6483880	-0.7067070
С	-4.0646310	0.9322130	-0.0022780
С	-2.8918100	0.8665220	-2.1072370
С	-5.2249770	1.3178170	-0.6847810
С	-4.0688350	1.2461860	-2.7575850
С	-5.2600780	1.4557490	-2.0677900
Н	-6.1267400	1.5270460	-0.1107990
Н	-4.0495620	1.3982360	-3.8360000
С	-1.7102090	-0.7274600	1.4337250
С	-1.1453860	-0.4743230	2.7088540
С	-2.4171280	-1.9501660	1.2857360
С	-1.2170530	-1.4368510	3.7245360
С	-2.4686110	-2.8846730	2.3212970
С	-1.8516810	-2.6612480	3.5500390
Н	-0.7683710	-1.2117060	4.6909240
Н	-3.0181870	-3.8128970	2.1660430
С	-6.5294040	1.8283610	-2.7910700
Н	-7.0528500	0.9359530	-3.1529720
Н	-7.2169600	2.3676770	-2.1334490
Н	-6.3207220	2.4580210	-3.6610480
С	-4.1779390	0.8739540	1.5094080
Н	-4.2940310	-0.1511250	1.8772980
Н	-3.2959470	1.2845360	2.0086900
Н	-5.0493510	1.4484690	1.8374880
С	-1.6556500	0.7427910	-2.9736750
Н	-0.8085590	1.2917880	-2.5489650
Н	-1.3344220	-0.2963530	-3.0973900
Н	-1.8515280	1.1510850	-3.9693410
С	-0.5279950	0.8515920	3.1112240
Н	0.3614890	1.1216080	2.5357280
Η	-1.2378070	1.6785510	2.9931560
Н	-0.2365980	0.8201260	4.1646950
С	-1.8755800	-3.7018550	4.6404310
Н	-1.0914650	-4.4524480	4.4876800
Н	-1.7112360	-3.2503400	5.6227990
Н	-2.8324040	-4.2321800	4.6622710
С	-3.2493520	-2.2869720	0.0605930
H	-4.2795030	-1.9333380	0.1987920
H	-2.8963990	-1.8223860	-0.8590780
H	-3.2924660	-3.3715400	-0.0868180
C	3.0327730	-1.8764310	-3.0498520
С	3.9920140	-0.9542310	-3.4410500
H	3.0652200	-2.8952760	-3.4195130
H	4./863950	-1.255/110	-4.1159530
C	2.9209440	0.7501000	-2.1044430
C	3.9220880	0.36/4320	-2.9858010
H	2.8708430	1.7765680	-1./550630
H	4.6544520	1.0964250	-3.31/3190
C	3.UZXX39U 2.0045470	1.933U98U	U.92U615U
	3.88454/0	2.9685/2U	1.32U42/U
п	4.91/893U	Z./Z64U3U	1.33157000
C	2.UXJ362U 2.42100E0	4.3/03/30	1.315/98U
U U	3.4318U3U 1 7020750	4.2//4/0U 5.5600000	1.40/2210 1 5110100
н П	L./UJ8/JU 4 1041740	J.J08293U	1.0002420
п	4.⊥∠4⊥/4∪	J.UJZU600	1.0003430

C	2 5127200	0 5200700	0 0217220
C	5.5457200	0.3388700	0.9317230
С	4.8054260	0.2440060	0.4027090
С	2.7995320	-0.5051880	1.4990340
С	5 3015750	-1 0570150	0 4162080
	5.2076250	1 0205200	0 0572010
п	5.3070350	1.0365260	-0.0373010
С	3.2926950	-1.8052230	1.5120500
Η	1.8211670	-0.3043180	1.9268580
С	4,5443620	-2.0883880	0.9661530
н	6 2759880	-1 2651420	-0 0152580
11	0.2759000	1.2001420	1 0507500
н	2.6964890	-2.5986030	1.9527590
Η	4.9259670	-3.1046490	0.9708650
0	1.0539410	-3.6352020	-2.3290900
С	0.0186810	-4.5817280	-2.0871700
U U	-0 1608370		_1 0132880
п	-0.1000370	-4.0090450	-1.0132000
Н	-0.9049590	-4.2/966/0	-2.5901110
Η	0.3763810	-5.5220640	-2.5020820
5c	(ground-state)		
C	2 1/258/0	-1 /295300	-1 8757230
C	2.1423040	-1.4295500	-1.0757250
C	1.1854090	-2.4084150	-1.4015120
С	-0.0208380	-1.9712320	-0.8855990
С	-0.2511590	-0.6033450	-0.6020090
С	0.8289160	0.2659100	-0.7158210
C	1 9739830	-0 0688480	-1 5139840
	0 7760470	2 7008500	0 6265710
п	-0.7760470	-2.7008500	-0.6263710
С	-1.3736500	2.8093590	0.4656870
С	-0.6227520	3.9341570	0.6250330
С	0.7965760	3.8188020	0.6742690
С	1.3957720	2.5472900	0.4431000
C	0 5251040	1 5126630	-0 0168980
	0.5251040	1.9120090	0.0400500
H	-2.4561990	2.8048580	0.5220760
Η	-1.0969100	4.8942070	0.7924970
Ν	-0.7977310	1.6126130	0.1789260
В	-1.5439680	0.1828340	0.0320940
С	-2.8820270	0.4784680	-0.8745760
C	_1 1271920	0 7776790	-0 2684280
c	4.1271920	0.7770730	0.2004200
C	-2.83/9880	0.5279930	-2.2912820
С	-5.2610920	1.0359810	-1.0500140
С	-3.9906360	0.7810440	-3.0383510
С	-5.2243950	1.0210440	-2.4386480
Н	-6.2023170	1.2600820	-0.5499480
ц	-3 9190030	0 8044890	-/ 12/8/80
	1 0000050	0.0044050	1 4017070
C	-1.8000050	-0.6019570	1.401/0/0
С	-1.348/210	-0.2183140	2.7480570
С	-2.4400210	-1.8656480	1.3649930
С	-1.4743440	-1.0896420	3.8372700
С	-2.5468490	-2.7067650	2,4757170
C	-2 0514500	-2 3495410	3 7255200
	2.0314300	2.3433410	1 011 00 4 0
Н	-1.114/990	-0./624120	4.8116840
Η	-3.0426590	-3.6698450	2.3581800
С	-6.4631660	1.2581210	-3.2645830
Н	-6.9055670	0.3101060	-3.5912970
н	-7.2240500	1.7965800	-2.6927690
 Ц	-6 2356/10	1 9370160	_/ 16/5/00
11 C	0.200410	1.03/2100	4.1040490
C	-4.3459040	0.8463/20	1.2323000
Η	-4.4711270	-0.1490670	1.6722320

Н	-3.5143990	1.3137360	1.7652500
Н	-5.2506330	1.4228290	1.4469800
С	-1.5573910	0.3421900	-3.0773830
Н	-0.7736450	1.0277700	-2.7405140
Н	-1.1535910	-0.6707330	-2.9813170
Н	-1.7363250	0.5329940	-4.1392500
С	-0.8042380	1.1582270	3.0834000
Н	0.0960470	1.4339800	2.5287900
Н	-1.5483660	1.9383570	2.8878200
Н	-0.5561000	1.2103650	4.1467710
С	-2.1324540	-3.2877690	4.9028930
Н	-1.2667930	-3.9595010	4.9335380
Н	-2.1531470	-2.7374470	5.8478960
Н	-3.0283550	-3.9133520	4.8506380
С	-3.1364720	-2.3601240	0.1083580
Н	-4.1755660	-2.0071430	0.0877720
Н	-2.6820140	-2.0137950	-0.8193140
Н	-3.1593590	-3.4549320	0.0957600
С	3.1758010	-1.7823580	-2.7765500
С	4.0125620	-0.8252230	-3.3038870
Н	3.2623440	-2.8179020	-3.0897050
Н	4.7834520	-1.1079570	-4.0137780
С	2.8423430	0.8962410	-2.0791910
С	3.8387240	0.5281690	-2.9537820
Н	2.6961440	1.9456970	-1.8416400
Н	4.4800630	1.2872910	-3.3913110
С	2.7738800	2.3472300	0.7890810
С	3.5271900	3.4565150	1.1249390
Н	4.5644940	3.3175700	1.4139840
С	1.6156110	4.9252260	1.0040430
С	2.9645480	4.7483270	1.1845650
Н	1.1545890	5.8987110	1.1395780
Η	3.5957050	5.5917720	1.4453720
С	3.3831300	0.9974540	0.9476690
С	4.6711920	0.7405310	0.4666920
С	2.6948320	-0.0305890	1.6050430
С	5.2437220	-0.5207920	0.6038440
H	5.2094180	1.5245440	-0.0592040
С	3.2610940	-1.2941860	1.7345010
Н	1.7011130	0.1475260	2.0060520
С	4.5359100	-1.5452220	1.2288020
H	6.2373470	-0.7059730	0.2077170
H	2.7052970	-2.0810790	2.2353010
H	4.9767380	-2.5328740	1.3264860
C	0.3877320	-4.7037550	-1.436/330
H	0.0372900	-4.7874870	-0.3950100
H 	-0.4517490	-4.4016440	-2.0671910
H	0./31/440	-5.6891300	-1./611280
N	1.4853550	-3./640210	-1.5854010
C	2.6823340	-4.2399020	-0.8877640
H	3.0346520	-3.1620830	-1.3586/40
H	3.4/53480	-3.4935/20	-0.929/450
Н	2.4018330	-4.44/2430	0.1/12/50
5 c ((aited state)		
sc (ex	circu-state)	1 050/040	1 0040000
C	Z.ZU398/U	-⊥.∠⊃♡७∠4U	-1.924686U

С	1.2760570	-2.2857780	-1.4751310
С	0.0005480	-1.8764990	-1.0017800
С	-0.2677210	-0.5636460	-0.6505540
С	0.8372070	0.3425210	-0.6644060
C	1,9782920	0.0784760	-1.5046040
н	-0 7419690	-2 6401210	-0 8095510
C	-1 3779690	2 7583230	0.0090910
C	-0 6152150	2.7505250	0.000000
C		2 7505220	0.0707000
C	1 4070020	3.7595520	0.9991960
C	1.40/9030	2.4899910	0.6989740
C	0.5515110	1.5092470	0.1041260
Н	-2.4638700	2.7883800	0.60/5480
Н	-1.1019850	4.8142170	1.0932490
Ν	-0.8282440	1.5755410	0.2932230
В	-1.5733080	0.1745800	0.0407940
С	-2.8998680	0.5383370	-0.8627130
С	-4.1611400	0.7736020	-0.2618440
С	-2.8261410	0.7206450	-2.2670070
С	-5.2819850	1.0862290	-1.0416940
С	-3.9656910	1.0256150	-3.0158570
С	-5.2158060	1.1929110	-2.4259400
Н	-6.2356000	1.2597860	-0.5445620
Н	-3.8699280	1.1512850	-4.0936360
С	-1.8614810	-0.7427230	1.3826910
C	-1,4329790	-0.4601050	2,7017070
C	-2 4902680	-1 9979580	1 1759920
C	-1 5767070	-1 4117560	3 7196670
C	-2 6138110	-2 9243800	2 2145010
C	-2.0130110 -2.1471710	-2.6605400	2.2140010
	-2.14/1/10	-2.6605490	3.4993000
H	-1.2353800	-1.1005230	4.7230250
H	-3.1000590	-3.8/88/60	2.0135510
C	-6.4411100	1.4858270	-3.2543090
Н	-6.8943080	0.5607650	-3.6289270
Η	-7.2013130	2.0086880	-2.6670340
Н	-6.1947690	2.1023060	-4.1239200
С	-4.3989760	0.7281150	1.2362940
Н	-4.5116960	-0.2975550	1.6042410
Н	-3.5775290	1.1711900	1.8054560
Н	-5.3144300	1.2748040	1.4821430
С	-1.5235660	0.6332760	-3.0345940
Н	-0.7494120	1.2661050	-2.5873580
Н	-1.1233240	-0.3851600	-3.0630650
Н	-1.6710890	0.9650020	-4.0664490
С	-0.8815240	0.8844590	3.1369450
Н	0.0242740	1.1836380	2.6028880
Н	-1.6122010	1.6873750	2.9849990
н	-0 6410220	0 8611640	4 2035800
C	-2 2498070	-3 6867710	4 5994440
U U	_1 3974950	-1 3759520	1.5991110
ц Ц	-0 0630500 -0 0630500	-3 0116600	JOUT / UU
п U	-2.2039300	-7.20000 -4.20020E0	J. J04043U
п С	-3.13/2390	-4.2093030	4.4909030
	-3.1500180	-2.3906480	-0.1348020
H	-4.1895450	-2.0390310	-0.15/3300
H	-2.6696260	-1.9652470	-1.0161860
H	-3.1681430	-3.4808560	-0.2394830
С	3.2190290	-1.5094320	-2.8672370

С	3,9983870	-0.4777360	-3.3662660
н	3,3642560	-2.5137790	-3.2500790
ч	4 7636730	-0 6929490	-4 1049430
C	2 7754100	1 1100570	2 0200520
C	2.7734190	1.1109570	-2.0209550
C	3.///4130	0.8390550	-2.9455270
Н	2.5/65540	2.1346630	-1./260560
H	4.3756580	1.6488560	-3.3506990
С	2.7755920	2.2748580	1.0352430
С	3.5407570	3.3717520	1.4445000
Н	4.5878620	3.2132970	1.6877750
С	1.6131330	4.8241410	1.4277710
С	2.9782980	4.6386630	1.6112650
Н	1.1530890	5.7884230	1.6235420
н	3 6013860	5 4658370	1 9358340
C	3 3821130	0 9187040	1 0532620
C	4 6492570	0.6030050	1.0002020
C	4.0403570	0.0938030	1 6204010
C	2.7058640	-0.16/1830	1.6294810
C	5.2108230	-0.5798750	0.4945170
H	5.1766860	1.5203850	0.0330370
С	3.2635930	-1.4407440	1.6217090
Н	1.7258730	-0.0178810	2.0744410
С	4.5181160	-1.6539160	1.0499400
Н	6.1867930	-0.7343430	0.0442720
Н	2.7177000	-2.2679180	2.0663260
Н	4.9551490	-2.6482860	1.0447480
С	0.5622700	-4.6197620	-1.4240410
Н	0.2570700	-4.7445680	-0.3758590
н	-0.3115440	-4.3607340	-2.0242650
н	0 9649650	-5 5669360	-1 7869770
N	1 5934820	-3 6028700	-1 5649790
C	2 9/89/00	-4 1010210	-1 3/93210
U U	3 32/1590	-4 6307510	-2 2314270
11 TT	2 6197200	2 2706970	2.2314270
п	3.0107290	-3.2/900/0	-1.0991470
п	2.9295460	-4.8028380	-0.3089780
5d (g	round-state)		
С	-1.9977050	-0.7663210	-2.1800540
С	-0.8516300	-0.4697710	-2.9890820
С	0.3829010	-0.2969590	-2.4366170
С	0.5654840	-0.3134450	-1.0162960
С	-0.5740080	-0.3392170	-0.2277310
С	-1.8616480	-0.7348360	-0.7498720
Н	1.2297040	-0.1336890	-3.0929970
С	1.6704780	-0.4051480	2.5506990
C	0.9083310	-0.3693150	3.6775860
C	-0 4514180	0 0392650	3 5811920
C	_1 0092990	0 3043000	2 2956210
C	-0.2122620	_0_0000250	1 1647020
	-0.2125020	-0.0000250	2 5566420
л II	2./3490/U 1. 3479600		2.0000430
H	1.34/2600	-0.5/50090	4.64/00/0
N	1.1142330	-0.2311330	1.3231360
В	1.9060830	-0.19///40	-0.0848940
C	2.9958540	-1.423/850	-0.0090850
C	4.3258670	-1.2014200	0.4262260
С	2.6369850	-2.7653650	-0.2951850
С	5.2441750	-2.2575470	0.4882770

С	3.5813960	-3.7922890	-0.2287840
С	4.9030300	-3.5594240	0.1426190
Н	6.2589900	-2.0503910	0.8248470
Н	3.2701620	-4.8096210	-0.4616430
С	2.5077900	1.2888220	-0.4825470
С	2.3198340	2.5078670	0.2147510
C	3 1904100	1 3671780	-1 7243740
C	2 7206230	3 7226480	-0 3543370
C	3 5778180	2 5996970	-2 257/180
C	3 3322/10	3 8006070	-1 6007980
	2 5500450	1 6400040	-1.0007900
п	2.5566450	4.6409040	0.2000500
П	4.0967200	2.6161800	-3.2152670
	5.9156770	-4.6/58060	0.1/34160
H	6.3289400	-4.8590730	-0.8249800
H	6./513820	-4.4351120	0.8363340
Н	5.4643020	-5.6120890	0.5148650
С	4.8613670	0.1507460	0.8615490
Н	5.1236670	0.7831870	0.0065520
Н	4.1441890	0.7218680	1.4564070
Н	5.7637020	0.0125610	1.4644130
С	1.2243280	-3.1750450	-0.6542470
Н	0.4994410	-2.8143880	0.0821490
Н	0.9107830	-2.7823730	-1.6267600
Н	1.1471000	-4.2651270	-0.6938860
С	1.7955080	2.6060880	1.6361330
Н	0.7789440	2.2294090	1.7716550
Н	2.4347460	2.0532900	2.3334620
Н	1.7961960	3.6502040	1.9596010
С	3.7108460	5.1255580	-2.2121010
Н	2.9061060	5.5107720	-2.8488450
Н	3.9061960	5.8766090	-1.4413380
Н	4.6045610	5.0335260	-2.8361090
С	3.6538370	0.1510770	-2.5077230
Н	4.6548280	-0.1511690	-2.1736050
Н	3.0211290	-0.7269710	-2.3889000
н	3 7216540	0 3903470	-3 5738390
C	-3 2127760	-1 1347270	-2 7547860
C	-4 2993290	-1 5377370	-1 9696720
н	-3 3072450	-1 1393670	-3 8386690
C	-2 9236430	-1 1912880	0 0267220
C	-4 1371440	-1 5923210	-0 5478580
с u	-2 8269/90	-1 2454000	1 1075120
C	-2 2596630	1 0056800	2 2120830
C	-2.2390030	1 1027420	2.2129030
	2.9/90040	1 7452520	2 2205400
п	-3.9137030	1.7455520	3.3303490
C	-1.23/0220	0.2383890	4./4198/0
C	-2.49/4130	0.7677060	4.6322980
н	-0.8128590	-0.0060940	5./108030
Н	-3.1023010	0.9298/30	5.5185030
C	-2./43/550	1.666/230	0.9709660
C	-4.0965520	1.6011610	0.6176030
C	-1.8720760	2.4016490	0.1587930
С	-4.5606040	2.2225210	-0.5369090
Н	-4.7800490	1.0165780	1.2281510
С	-2.3358820	3.0265250	-0.9947890
Н	-0.8206910	2.4830650	0.4197030

С	-3.6798050	2.9333590	-1.3501740
Н	-5.6086560	2.1393770	-0.8075610
Н	-1.6429660	3.5864950	-1.6149480
Н	-4.0393780	3.4131720	-2.2550600
H	-0.9804430	-0.4446860	-4.0684610
С	-5.5531510	-1.9230770	-2.5377960
С	-6.5834220	-2.3330440	-1.7410150
Н	-5.6676940	-1.8815700	-3.6177960
H	-7.5330330	-2.6213300	-2.1806580
C	-5.2364340	-2.0329050	0.2522520
C	-6.4225510	-2.3880040	-0.3243580
H	-5.1091260	-2.0/05660	1.3314030
п	-7.2331030	-2./1556/0	0.2931220
5d (ez	xcited-state)		
С	-1.9815280	-0.6407430	-2.2157190
С	-0.8533230	-0.2938920	-2.9976300
С	0.4072360	-0.1618670	-2.4208830
С	0.6054640	-0.2746840	-1.0418860
С	-0.5706400	-0.3466080	-0.2163620
С	-1.8395760	-0.7249560	-0.7811500
H	1.2482950	0.0238520	-3.0799040
C	1.6486420	-0.5558910	2.5051170
C	0.8769410	-0.5681800	3.6422480
C	-0.4/32020	-0.1115450	3.5846/90
C	-1.0333390	0.2253140	2.30/8240
C	-0.2412620	-0.1339/00	1.1519910
H	2.7108040	-0.7804420	2.5243370
H	1.3188230	-0.8321230	4.5963140
N D	1.13312/0	-0.2801510	1.3003010
Б С	1.930314U 2 0/12700	-0.1791200 -1.2069540	-0.0603330
C	3.0413/00	-1.3900340 -1.1022140	-0.0527900
C	2 6887970	-2 7312310	-0.3760710
C	2.0007570	-2 2330020	0.3700710
C	3 6392970	-2.2330020	-0.3/95320
C	4 9624310	-3 5246870	0.0193250
н	6 3111490	-2 0315940	0.0105200
н	3 3321970	-4 7663470	-0 6108990
C	2.5307660	1,3178170	-0.4470510
C	2.3175410	2,5083350	0.2923920
C	3.2246860	1.4518750	-1.6793990
С	2.7151860	3.7484710	-0.2228180
С	3.6054710	2.7058850	-2.1600570
С	3.3425110	3.8788100	-1.4567290
Н	2.5352080	4.6434090	0.3710360
Н	4.1343240	2.7666470	-3.1108730
С	5.9825540	-4.6348170	0.0066090
Н	6.3875560	-4.7860100	-1.0005740
Н	6.8232390	-4.4085380	0.6684240
Н	5.5408760	-5.5840410	0.3244810
С	4.8862460	0.1571150	0.8795310
Н	5.1365170	0.8329740	0.0545300
Н	4.1566920	0.6846900	1.4999620
Н	5.7912190	0.0078180	1.4760900
С	1.2728920	-3.1359820	-0.7286500

Н	0.5527460	-2.7611080	0.0063410
Н	0.9606580	-2.7529220	-1.7054430
Н	1.1874210	-4.2262070	-0.7541600
С	1 7549920	2 5400800	1 7008620
U U	0 7394020	$2 \cdot 1 / 1 \cdot 1 \cdot 2 \cdot 0$	1 7825260
11 11	2 2720860	1 0590240	2 2042520
п	2.3730800	1.9580240	2.3942330
Н	1.7345790	3.5694300	2.0691600
С	3.7188940	5.2286310	-2.0121940
Н	2.9428650	5.6085830	-2.6867780
Н	3.8477250	5.9642840	-1.2132250
Н	4.6498420	5.1766940	-2.5846080
С	3.6947200	0.2660090	-2.5029110
Н	4.6893470	-0.0551150	-2.1673340
н	3.0542340	-0.6114890	-2.4229810
ч	3 7772250	0 5444840	-3 5585480
C II	2 2145960	0.0426720	2 7047650
C	-3.2143000	-0.9426730	-2.7947650
C	-4.3040320	-1.4086060	-2.0286510
Н	-3.3360370	-0.8318430	-3.8702650
С	-2.8878390	-1.2353510	-0.0325980
С	-4.1297300	-1.5904620	-0.6231090
Н	-2.7691100	-1.3767380	1.0387550
С	-2.2691180	0.9305280	2.2736200
С	-2.9898520	1.0820090	3.4599390
н	-3.9353230	1.6153790	3.4273740
C	-1 2374510	0 0636140	4 7546460
C	-2 /989980	0 6241240	1 6868230
U U	-0 8086050		5 7081650
п	-0.8080050	-0.2301770	5.7001050
H	-3.0884660	0.7588830	5.58/9260
С	-2./995850	1.5843370	1.0484800
С	-4.1511180	1.4542320	0.7109820
С	-1.9745280	2.3560120	0.2199320
С	-4.6610490	2.0459260	-0.4424040
Н	-4.8001270	0.8467310	1.3371770
С	-2.4821390	2.9501990	-0.9298930
Н	-0.9233810	2.4800620	0.4655950
С	-3.8263010	2.7914890	-1.2698440
н	-5 7076300	1 9102850	-0 6983160
и П	-1 8254680	3 5388570	-1 5631280
11 TT	1 2170760	2 2480820	2 1724070
п	-4.21/9/00	3.2480830	-2.1/340/0
н	-0.9735300	-0.2069370	-4.0/41310
С	-5.5580300	-1./196890	-2.6105750
С	-6.5926170	-2.1918450	-1.8319040
Н	-5.6897960	-1.5814630	-3.6800460
Н	-7.5495700	-2.4261970	-2.2865900
С	-5.2036290	-2.0825400	0.1483230
С	-6.4162140	-2.3758370	-0.4439730
Н	-5.0641020	-2.2173950	1.2176370
Н	-7.2384970	-2.7487580	0.1576230
5e (gi	round-state)		
С	-1.7479450	-1.1208300	-1.9823230
С	-0.7229950	-0.7258730	-2.8515360
С	0.5347570	-0.4021860	-2.3577780
С	0.7684480	-0.3519410	-0.9801030
С	-0.3586570	-0.4610340	-0.1431760
С	-1.5787450	-0.9969660	-0.6050140

Н	1.3297780	-0.2100190	-3.0693020
С	1.9492760	-0.2442670	2.5747390
С	1.2088680	-0.1699110	3.7156700
С	-0.1638930	0.1901560	3.6274180
С	-0.7594500	0.3452570	2.3407640
С	0.0239830	-0.1033100	1.2292250
Н	3.0222590	-0.3971090	2.5644310
Н	1.6768330	-0.2975660	4.6850510
Ν	1.3555430	-0.1718630	1.3541400
В	2.1207540	-0.1285040	-0.0788000
С	3.2714660	-1.2969870	0.0105690
С	4.6029810	-0.9930500	0.3901430
С	2.9706070	-2.6662870	-0.2055530
С	5.5758430	-1.9987870	0.4553510
С	3.9688010	-3.6411430	-0.1375520
С	5.2901250	-3.3282480	0.1699730
Н	6.5897740	-1.7286720	0.7469870
Н	3.7011330	-4.6814620	-0.3164920
С	2.6362640	1.3766070	-0.5213820
С	2.4052290	2.6047030	0.1449350
С	3.2789580	1.4528040	-1.7852240
С	2.7302260	3.8213130	-0.4690120
С	3.5906830	2.6858860	-2.3627520
С	3.3047830	3.8927290	-1.7324670
Н	2.5352210	4.7464370	0.0710360
Н	4.0809160	2.6996320	-3.3356590
С	6.3600510	-4.3897450	0.2009770
Н	6.7651850	-4.5684090	-0.8015860
Н	7.1935080	-4.0941730	0.8443110
Н	5.9641490	-5.3419640	0.5661060
С	5.0839800	0.3972720	0.7651870
Н	5.2916350	1.0131710	-0.1163790
Н	4.3570680	0.9527890	1.3629700
Н	6.0085200	0.3217260	1.3450550
С	1.5672750	-3.1670510	-0.4778090
H	0.8601230	-2.8147480	0.2801470
H	1.1834690	-2.8377580	-1.4481050
H	1.5500010	-4.2602550	-0.4642150
C	1.9064910	2.7204610	1.5/39880
H	0.9157000	2.2914480	1./435640
H	2.5922280	2.2318070	2.2/488/0
H	1.8509320	3.7732220	1.8626390
C	3.6030050	5.2154/80	-2.3912160
H	2.7800480	5.5251600	-3.0455/90
H	3./459540	6.0051130	-1.6481190
H	4.504/520	5.15/1020	-3.00/8200
C	3.//286/0	0.2375590	-2.5512690
H	4.7958210	-0.0118260	-2.2408180
H	3.1829700	-0.6634050	-2.3907620
п С	3./980580	U.43U9/5U 1 4500550	-3.6246520
C	-4.4/40300	-1.409U00U	-1.394/320
C	-4.29384UU -2.0109650	-1.400102U	-0.2098/90
	-2.UI9065U	1.UZZ38ZU	2.2280920
U U	-2.1099410	1.230313U	3.3924960
п С	-0.0277450	1.042U00U 0.1609560	J.JJ1421U A 7000//0
\cup	-0.92//430	0.4000360	4./000440

С	-2.1955320	0.9677060	4.6651210
Н	-0.4796050	0.2967820	5.7636520
н	-2.7831790	1,1920000	5.5493580
C	-2 5291840	1 5769610	0 9443080
C	-3 8980990	1 5467070	0 6625190
C	-1 6720270	2 1012150	0.0023190
C	-1.205/120	2.1912130	-0 5205020
	4.5954120	1 0012000	1 27/1000
н С	-4.5764760	1.0912800	1.5741990
	-2.1680340	2.7010320	-1.1/62460
H	-0.6084050	2.2691690	0.2225600
C	-3.5290330	2.6143070	-1.46/4030
H	-5.4581080	1.9671840	-0.7495370
Н	-1.4848470	3.1629900	-1.8821550
Н	-3.9109370	2.9965820	-2.4088900
Н	-0.8965810	-0.7643260	-3.9232590
С	-5.7371070	-1.1872770	-2.1283420
С	-6.8255330	-0.9876950	-1.2853280
Н	-5.8621610	-1.1517130	-3.2062330
Н	-7.8054380	-0.7944210	-1.7091680
С	-5.3898420	-1.2594780	0.6323090
С	-6.6542330	-1.0377630	0.0973050
Н	-5.2408310	-1.2665920	1.7086990
Н	-7.5002080	-0.8893350	0.7602600
S	-2.7100430	-1.7694870	0.5292390
S	-3.1658190	-1.9053670	-2.7041020
5e (ground	l-state, second c	conformer)	
C	2.0839420	0.4225460	-1.9699720
C	0 9805560	0 5657940	-2 8204320
C	-0.3138920	0 5262030	-2 3190320
C	-0 5462440	0.3020550	-0 9573570
C	0.5402440	-0.0427980	-0 1693860
C	1 0001770	-0.0427980	-0.6104250
U U	1.0901770 -1.1209540	0.1330090	-0.0194330
H C	-1.1300340	0.7211700	-3.003/940
C	-1.6453350	0.140/360	2.6220250
C	-0.923/460	-0.2396920	3./145650
C	0.2940420	-0.9494480	3.5306320
C	0.7809310	-1.1560/80	2.2059470
C	0.1217580	-0.4164760	1.1/52/00
H	-2.6323170	0.5856940	2.6792250
H	-1.3104980	-0.0740800	4.7135750
Ν	-1.1277590	0.0206590	1.3720090
В	-1.8955790	0.3493620	-0.0212340
С	-2.6758060	1.7696760	0.2337160
С	-4.0459390	1.8109080	0.5951990
С	-1.9951610	3.0131360	0.1819140
С	-4.6983580	3.0349500	0.7865500
С	-2.6808500	4.2153310	0.3741280
С	-4.0441270	4.2540060	0.6529580
Н	-5.7527160	3.0298550	1.0591970
Н	-2.1268480	5.1512990	0.3193560
С	-2.7973790	-0.9150930	-0.5848160
С	-2.9050810	-2.2159770	-0.0335520
С			
	-3.4322460	-0.7050060	-1.8367220
С	-3.4322460 -3.5240910	-0.7050060 -3.2457830	-1.8367220 -0.7540920
C C	-3.4322460 -3.5240910 -4.0471780	-0.7050060 -3.2457830 -1.7560040	-1.8367220 -0.7540920 -2.5208680

С	-4.0826830	-3.0500270	-2.0118970
Н	-3.5829860	-4.2350350	-0.3030740
Н	-4.5192770	-1.5506940	-3.4811580
С	-4.7747900	5.5623840	0.8163400
Н	-5.1249960	5.9397920	-0.1512120
Н	-5.6511310	5.4496570	1.4608220
Н	-4.1251600	6.3287040	1.2491260
С	-4.8968570	0.5761170	0.8302270
Н	-5.2403280	0.1232500	-0.1055950
Н	-4.3610210	-0.2074750	1.3724400
Н	-5.7806890	0.8454030	1.4158280
С	-0.4995050	3.1255390	-0.0333320
Н	0.0567960	2.4671050	0.6415930
Н	-0.1994220	2.8637750	-1.0523760
Н	-0.1705200	4.1505360	0.1585880
С	-2.4903230	-2.5849810	1.3800190
Н	-1.4224650	-2.4765680	1.5864800
Н	-3.0227130	-1.9774220	2.1198530
Н	-2.7473550	-3.6285020	1.5792170
С	-4.7015000	-4.1852850	-2.7868340
Н	-3.9765700	-4.6342000	-3.4755320
Н	-5.0524950	-4.9766940	-2.1185450
Н	-5.5494350	-3.8406800	-3.3859950
С	-3.5997570	0.6635830	-2.4736870
Н	-4.5602800	1.1001690	-2.1697540
Н	-2.8385780	1.3868940	-2.1884820
Н	-3.6112330	0.5781770	-3.5650870
С	4.3137510	1.8623440	-1.4696520
С	4.0838430	1.6789220	-0.1025830
С	1.8026750	-2.1392340	1.9772110
С	2.4407520	-2.6729730	3.0789340
Н	3.1928170	-3.4413420	2.9291210
С	0.9994640	-1.5056910	4.6260480
С	2.0813920	-2.3162140	4.3973950
Η	0.6485040	-1.3070150	5.6337110
Н	2.6208950	-2.7544140	5.2306580
С	2.0726930	-2.7292500	0.6356720
С	3.3813110	-3.0403880	0.2469220
С	1.0218890	-3.0494770	-0.2348700
С	3.6365370	-3.6228090	-0.9903660
H	4.20/6430	-2.7885670	0.9053040
С	1.2762490	-3.6318680	-1.4/1/680
H	-0.0067140	-2.8417820	0.0472300
С	2.5851810	-3.9143280	-1.8569190
H	4.659/100	-3.8388270	-1.2809/20
H	0.4467590	-3.8648530	-2.1320570
H	2./846/00	-4.3621520	-2.8253590
H	1.1524150	0.7749790	-3.8/206/0
С	5.0165530	2.9827430	-1.9143/00
C	5.51/6950	3.8982210	-0.993/620
H	5.1/1162U	3.1282460	-2.9/89650
н	0.U/0508U	4./600/60	-1.3432960
C	4.5550630	2.6207720	0.8141340
C	5.2852830	3./186180	0.3688460
H	4.3546490	2.4839690	1.8/224/0
Н	5.6611210	4.4401370	1.0867570

S	3.2789620	0.2125270	0.5021310
S	5.7227280	0.6324800	-2.0295450
5e (ez	cited-state)		
С	-1.8471640	-0.0949730	-2.1085160
С	-0.7673990	0.3584470	-2.8752660
С	0.5246100	0.3091780	-2.3460040
С	0.7759360	-0.0700600	-1.0174180
С	-0.3534320	-0.2427170	-0.1847620
С	-1.6318500	-0.4793920	-0.7608860
Н	1.3408860	0.6035320	-2.9966870
С	1.9004180	-0.9273270	2.4521430
С	1.1423110	-1.0905730	3.5759400
С	-0.2173160	-0.6208610	3.5927470
С	-0.7749620	-0.1027010	2.3830860
С	0.0109220	-0.2954260	1.1912960
Н	2.9617430	-1.1560610	2.4282700
Н	1.5862200	-1.4837170	4.4828310
Ν	1.3759560	-0.4801970	1.2914770
В	2.1372810	-0.1761470	-0.0799670
С	3.2129650	-1.3994290	-0.2834000
С	4.5615330	-1.2806760	0.1307410
С	2.8146180	-2.6608470	-0.7912390
С	5.4611290	-2.3399790	-0.0456300
С	3.7383660	-3.6950530	-0.9595420
С	5.0796810	-3.5501290	-0.6132980
H	6.4920010	-2.2133970	0.2827820
Н	3.3957600	-4.6489400	-1.3586860
С	2.7452810	1.3524570	-0.2347090
С	2.5898430	2.4174530	0.6876640
С	3.3946080	1.6618460	-1.4592260
С	3.0057930	3.7118920	0.3554900
С	3.7968950	2.9668670	-1.7544900
С	3.5939770	4.0196040	-0.8677590
Н	2.8737440	4.5073900	1.0875400
Н	4.2923160	3.1624330	-2.7050920
С	6.0711440	-4.6641550	-0.8358660
Н	6.4609630	-4.6465030	-1.8601540
Н	6.9251710	-4.5761200	-0.1583680
Н	5.6094420	-5.6438790	-0.6809010
С	5.1251490	-0.0424900	0.8025390
Н	5.3592650	0.7484400	0.0816230
Н	4.4296430	0.3937390	1.5246500
Н	6.0480690	-0.2966490	1.3325420
С	1.3748690	-2.9745590	-1.1382870
H	0.7013300	-2.7169560	-0.3134870
Н	1.0281070	-2.4217110	-2.0176970
H	1.2593640	-4.0421670	-1.3463110
C	2.0775190	2.2412250	2.1053110
H	1,0580610	1.8532620	2.1639430
н	2 7077310	1,5480750	2 6734540
н	2 0957060	3,2016550	2 6279320
C	3 9883870	5,4317110	-1 2183020
н	3 1782810	5,9491510	-1 7452970
н	4 2185570	6 0136500	-0 3212200
н	4,8650180	5.4481060	-1.8725270

С	3.7960500	0.6084500	-2.4760280
Н	4.7898900	0.2103180	-2.2338390
Н	3.1291740	-0.2528650	-2.5095800
Н	3.8524060	1.0478720	-3.4773480
С	-4.5334880	-0.8309180	-1.8227100
С	-4.2262220	-1.4828600	-0.6166160
С	-2.0173990	0.5975740	2.4340430
С	-2.7534530	0.5674380	3.6213400
Н	-3.7007700	1.0970200	3.6626970
С	-0.9903680	-0.6148780	4.7649690
С	-2.2618030	-0.0607020	4.7666830
H	-0.5706470	-1.0383160	5.6729970
H	-2.8555090	-0.0642850	5.6754050
C	-2.5090040	1.45/0310	1.3220540
C	-3.8542290	1.4208270	0.9332900
C	-1.6488440	2.3337260	0.6453860
C	-4.3190580	2.2033640	-0.1213270
н	-4.5355090	0.7398230	1.4385770
U U	-2.111//00	3.1214880	-0.4036250
п	-0.6011510	2.3030000	0.92/0020
U U	-5.3613200	2 1358440	-0.7964360
п u	-3.3013200 -1.4231990	2.1330440	-0.4203010
п u	-3 8052980	3 6585290	-1 6259510
и П	-0 9371970	0 7141150	-3 8865890
C	-5 8692760	-0 7975310	-2 2646130
C	-6.8669380	-1,4118560	-1.5348770
Н	-6.1061880	-0.2853550	-3.1925370
Н	-7.8907930	-1.3761460	-1.8900410
C	-5.2541960	-2.1129550	0.1121790
С	-6.5568520	-2.0803780	-0.3403800
Н	-5.0087460	-2.6104580	1.0459000
Н	-7.3388430	-2.5635190	0.2344870
S	-2.6573120	-1.5459760	0.1329330
S	-3.3839630	-0.1034960	-2.9127130
5e (ex	cited-state, second cont	former)	
С	1.9635510	0.4571970	-1.9038410
С	0.8861770	0.3912920	-2.7993830
С	-0.4108780	0.2587920	-2.3082930
С	-0.6419820	0.1548440	-0.9329380
С	0.4708850	-0.0577640	-0.0632250
С	1.7608880	0.2869760	-0.5266910
H	-1.2270920	0.2/38060	-3.019/410
C	-1.7574990	0.1113030	2.68/1260
C	-1.0354840	-0.2354640	3./89/910
C	0.2330620	-0.901/990	3.6356120
C	0.7562550	-1.0011140	2.3103000
ч	-2 761/2/0	-0.5906340 0 5200100	1.2003220 2 7/0/060
Н	-1 1163670	-0 0852650	2.7494000 2 7811200
N	-1,2536270	-0.0126970	1 4370030
B	-2.0081840	0.2461040	0.0825500
C	-2.8995190	1.5872980	0.2195800
С	-4.2732910	1.5056070	0.5423990
С	-2.3242520	2.8757960	0.1328140

С	-5.0362890	2.6685330	0.6914060
С	-3.1165050	4.0167990	0.2780940
С	-4.4828720	3.9368800	0.5394960
Н	-6.0918290	2.5789890	0.9436200
Н	-2.6492130	4,9973640	0.2003470
C	-2 6296790	-1 0623630	-0 6224130
C	-25089090	-2 4122560	-0 1274190
C	-2.2226450	-0.0018560	
C	-3.2220430	-0.9040300	-1.9537750
C	-2.0009090	-3.4002040	-0.9576490
C	-3.5164430	-2.0108980	-2./110930
C	-3.2/22/10	-3.31/32/0	-2.2651620
H	-2.7090660	-4.4962820	-0.56/2310
Н	-3.9506990	-1.8662000	-3.6979230
С	-5.3278600	5.1797150	0.6595080
H	-5.6756420	5.5141610	-0.3245620
H	-6.2123990	4.9999350	1.2768030
Н	-4.7607980	6.0038240	1.1019060
С	-4.9851020	0.1858280	0.7677350
H	-5.2120610	-0.3324510	-0.1710540
Н	-4.3902890	-0.5066320	1.3717550
Н	-5.9323040	0.3528770	1.2880600
С	-0.8411380	3.0757680	-0.0883460
Н	-0.2489310	2.4865510	0.6204260
Н	-0.5290470	2.7709180	-1.0933370
Н	-0.5751760	4.1283920	0.0418240
С	-2.2253160	-2.7475450	1.3191730
н	-1 2035750	-2 5325290	1 6404700
и	-2 8860510	-2 1852900	1 9871780
и П	-2 4071450	-3 8116800	1 4877270
C II	-3 5265300	-4 4944560	-3 1603340
U U	-2 6798710	-1 6103290	_3 8/10390
	-2.0790710	-4.0403290 5.4144610	-3.0419300
п 	-3.0522400	-3.4144010	-2.3049230
H	-4.4155590	-4.3372290	-3.///40/0
C	-3.60/8600	0.4452170	-2.4949200
H	-4.5693290	0.7655590	-2.0756880
H	-2.8983570	1.2381240	-2.2569380
H	-3.7212160	0.3823390	-3.5807150
С	4.1237760	2.0562820	-1.4735480
С	3.8610120	2.0069460	-0.1012150
С	1.8514310	-1.9747420	2.1221630
С	2.5212680	-2.4587070	3.2468440
Н	3.3597960	-3.1339260	3.1039380
С	0.9343920	-1.4212650	4.7337690
С	2.0929950	-2.1579240	4.5419770
Н	0.5459100	-1.2505850	5.7337750
Н	2.6359100	-2.5532960	5.3944660
С	2.2414340	-2.5123010	0.7869260
С	3.5899200	-2.6357970	0.4305420
С	1.2744210	-2.9657540	-0.1215250
C	3,9602050	-3.1612390	-0.8047900
- H	4.3544130	-2.2820790	1,1165440
C	1.6404120	-3,4903660	-1 3555290
ч	0.2214200	-2 8963200	0 1303170
C	2 ARK7330	-3 5836160	_1 7060100
с ц	5 0110700	_3 2206/10	_1 0650000
п u	0 0602000 J.UII3/30	-3.229041U -3.0066470	-1.0052000 -2.0425100
п	0.0092080	-3.02034/0	-2.0425120

Н	3.2741670	-3.9855480	-2.6734980
Н	1.0650260	0.5005700	-3.8632190
С	4.8380340	3.1292150	-2.0104910
С	5.3158160	4.1338680	-1.1757050
Н	5.0172490	3.1692880	-3.0804620
Н	5.8807040	4.9587030	-1.5971830
С	4.3127220	3.0388320	0.7260000
С	5.0511640	4.0894610	0.1924150
Н	4.0879120	3.0063940	1.7876340
Н	5.4086830	4.8797640	0.8441360
S	3.0557470	0.6135300	0.6438660
S	3.5820140	0.7570470	-2.5570030
5f (gi	round-state)		
С	2.3252520	-1.5911770	-0.0755520
С	1.4320070	-2.2904780	0.7858100
С	0.0845780	-1.9115440	0.8440040
С	-0.3926260	-0.8087770	0.1384500
С	0.5641620	0.0081460	-0.5008220
С	1.8864810	-0.4234800	-0.7524460
Н	-0.5803190	-2.5244390	1.4445310
С	-2.2152710	1.9084450	-1.6854500
С	-1.7024280	2.9802020	-2.3522650
С	-0.3430830	3.3418490	-2.1412630
С	0.4758270	2.5106240	-1.3214000
С	-0.0779240	1.2370540	-0.9596930
Н	-3.2640390	1.6353170	-1.7095810
Н	-2.3396720	3.5986170	-2.9737890
Ν	-1.4102010	1.0775070	-0.9739300
В	-1.8949460	-0.1782060	-0.0663540
С	-3.0221200	-0.9603790	-0.9698040
С	-4.4075950	-0.7067680	-0.8091100
С	-2.6594700	-1.8646850	-2.0004110
С	-5.3552620	-1.3938930	-1.5783620
С	-3.6327280	-2.5364740	-2.7441730
С	-4.9942530	-2.3349660	-2.5350720
Н	-6.4114220	-1.1764880	-1.4255220
H	-3.3151470	-3.2290360	-3.5223730
С	-2.3494440	0.2442480	1.4644550
C	-2.2//4890	1.5233350	2.06/9860
C	-2.7417990	-0.8305230	2.3052940
C	-2.5002960	1.6768990	3.4428090
C	-2.9602920	-0.6364840	3.0/10330
	-2.8211810	0.6099240	4.2/34/00
п u	-2.4310000	2.0743130 -1 1001510	3.0/41//0
п	-3.2369740	-1.4094040	4.20009/0
	-6.0295850	-3.0982480	-3.3212980
п	-0.2309410	-4.0732000	-2.0030010
л U	-5.6020000	-2.JJJ42UU _3 2027640	-3.3030980
п С	-J.0230290 -/ 0770//0	-3.203/04U 0.3103/30	-4.3430000 0 1636100
U U	-4.9//0440 -5 01/3100	0.3102430 -0 0743830	U.LUSULUU 1 1003710
п u	-J.UI43IUU -/ 3022370	-0.0/43030 1 2327/30	1.1003/1U 0.2036770
л Ц	-4.5922570 -5 0071050	1.232/430 0 571/0/0	0.2030770 _0 1331330
C	_1 2200280	-2 122700	-2 2867500
с ц	-1.2200200 -0.6667080	-2.132/000 -1 2031/10	-2.300/390
11	0.000/000	T.2001410	2.JJZIUJU

Н	-0.6779510	-2.6911630	-1.6174150
Н	-1.1818600	-2.7133020	-3.3127280
С	-2.0751780	2.8194760	1.3034730
ч	-1 1284580	2 8845290	0 7615040
тт тт	_2 9729490	2.0010200	0.5700120
п	-2.0730400	2.9781990	1 0040420
Н	-2.1056110	3.6655490	1.9949420
С	-3.0108400	0.7925380	5.7578450
Н	-2.0933930	0.5494820	6.3060970
Н	-3.2737970	1.8262390	5.9995650
Н	-3.8006710	0.1392540	6.1404920
С	-3.0631650	-2.2233720	1.7914480
н	-4.1270530	-2.2889360	1.5283830
н	-2 5144210	-2 5071130	0 8951520
и П	-2 8710390	-2 9691290	2 5605840
	-2.0710390	-2.9091290	2.3093040
C	3.6565520	-2.0707710	-0.2361660
C	4.5252150	-1.4313550	-1.1810290
С	2.7695070	0.1703270	-1.7219550
С	4.0169660	-0.3195460	-1.9350640
Н	2.4153660	1.0068090	-2.3151270
Н	4.6599580	0.1314830	-2.6863840
С	1.7301470	3.0194040	-0.8420550
С	2,1984090	4,2020490	-1.3808110
н	3 1312500	4 6137630	-1 0079720
C	0 1021010	1 5272710	-2 6706270
C	1 4501200	4.00000	-2.0790370
	1.4591300	4.9333920	-2.3351120
H	-0.4263430	5.1413850	-3.3360230
Н	1.8725280	5.8528410	-2.7366330
С	2.4618630	2.4220170	0.3085600
С	3.8567000	2.3156960	0.2822730
С	1.7780460	2.0029950	1.4571190
С	4.5486700	1.7720020	1.3598780
Н	4.3973780	2.6219730	-0.6091250
С	2.4686570	1,4608090	2.5356640
н	0 6962440	2 0899800	1 5114980
C	3 8558550	1 3365180	2 /875350
	5.000000	1 6771060	1 2122560
п	1 0100550	1 1247220	1.5125560
H	1.9189550	1.134/330	3.4129990
Н	4.3942810	0.9044050	3.3251630
С	1.9276610	-3.4268460	1.5200650
С	3.2068860	-3.8525750	1.3831460
Н	1.2420130	-3.9412520	2.1879950
Н	3.5677010	-4.7102080	1.9446240
С	4.1175040	-3.1988300	0.4774130
С	5.4304420	-3.6445610	0.2925890
н	5 7826080	-4 5014720	0 8605220
C	6 2785280	-3 0069600	-0 6105320
C	5 9202920	-1 0157200	-1 2450020
	7.000000	-1.9157200	-1.3439930
H	7.2930600	-3.3685500	-0./4441/0
Η	6.4893910	-1.4272960	-2.0586930
5f (ex	cited-state)		
С	2.3622040	-1.4397810	-0.4206360
С	1.5084260	-2.2785710	0.3528280
С	0.1094570	-1.9646820	0.4445310
С	-0.4274830	-0.8236240	-0.0991380
С	0.5184420	0.1458790	-0.5875370
	-		•

С	1.8632550	-0.2299330	-0.9565800
Н	-0.5141410	-2.6772300	0.9784720
С	-2.2127720	2.2630790	-1.1765110
C	-1 6737920	3 4690590	-1.5703950
C	-0 3137480	3 7743710	-1 2629050
C	0 4962650	2 7490020	-0 6801740
C	-0 0793010	1 4226850	-0 6598030
	2 2722500	2 0450620	1 2740270
п	-3.2722390	2.0439630	-1.2/402/0
н	-2.3102510	4.2240070	-2.0167760
N	-1.4619480	1.2853210	-0.6553620
В	-1.9368920	-0.14/4160	-0.0983610
С	-3.0859800	-0.6705780	-1.1529760
С	-4.4619430	-0.4200470	-0.9258340
С	-2.7545750	-1.3143840	-2.3720640
С	-5.4326150	-0.8658630	-1.8321670
С	-3.7489380	-1.7520930	-3.2505400
С	-5.1030830	-1.5575120	-2.9917140
Н	-6.4808820	-0.6563860	-1.6231180
Н	-3.4543200	-2.2486290	-4.1741610
С	-2.3718140	-0.1678270	1.4917960
С	-2.2826820	0,9058940	2,4096430
C	-2 7748190	-1 4220660	2 0183330
C	-2 5229570	0 6993330	3 7743420
C	-3 0070140	-1 5901950	3 3856/00
C	-2 86070140	-1.5901950	1 2026400
	-2.8697920	-0.5452460	4.2920400
H	-2.4442540	1.54/2460	4.4533470
н	-3.3131310	-2.5702920	3./505880
С	-6.1629570	-2.0691280	-3.9340660
Н	-6.3957140	-3.1208420	-3.7314000
Н	-7.0922350	-1.5016650	-3.8315800
Н	-5.8336610	-2.0041890	-4.9753940
С	-4.9920330	0.3415420	0.2750520
Н	-5.0429220	-0.2878480	1.1702210
Н	-4.3694600	1.2007830	0.5376220
Н	-6.0014650	0.7074430	0.0644820
С	-1.3244880	-1.5390870	-2.8155090
Н	-0.7385310	-0.6148040	-2.7707550
Н	-0.8055950	-2.2737270	-2.1919570
Н	-1.3019170	-1.8984090	-3.8482550
С	-2.0222170	2.3452160	2.0058660
н	-1 0703590	2 4959880	1 4896970
н	-2 8035430	2 7227330	1 3361600
и П	-2 0174990	2 9853970	2 8023030
	-2.01/4990	2.9053970	Z.0923930
	-3.0002000	-0.7506650	5.7712500
H	-2.1610690	-1.09/6310	6.25/3/20
Н	-3.3/9/550	0.1/91180	6.2633620
Н	-3.8520390	-1.5026230	5.9606910
С	-3.0757870	-2.6285400	1.1467440
Η	-4.1142230	-2.5917620	0.7934210
Н	-2.4549980	-2.6922000	0.2526300
Н	-2.9542450	-3.5523160	1.7216350
С	3.7023090	-1.8265570	-0.6770170
С	4.5121070	-1.0457790	-1.5469350
С	2.6569910	0.5005510	-1.8666000
С	3.9430900	0.0998030	-2.1636250
Н	2.2458280	1.3901110	-2.3348460

Н	4.5445790	0.6737590	-2.8630200
С	1.7476360	3.0913350	-0.1032990
С	2.2447600	4.3787870	-0.3127920
Н	3.2038360	4.6446300	0.1222280
С	0.2309270	5.0600520	-1.4531200
С	1.5105750	5.3440960	-1.0122380
Н	-0.3771470	5.8247490	-1.9272070
Н	1.9293950	6.3346300	-1.1582070
С	2.5015300	2.1607550	0.7813050
С	3.8776690	1.9777860	0.6134030
С	1.8520500	1.4517090	1.8010460
С	4.5796330	1.0745940	1.4079080
Н	4.3915730	2.5117830	-0.1818810
С	2.5524850	0.5533290	2.5993240
Н	0.7861300	1.5872080	1.9619350
С	3.9171950	0.3523470	2.3979760
Н	5.6418020	0.9231150	1.2398810
Н	2.0270590	0.0043910	3.3748960
Н	4.4602900	-0.3628520	3.0080850
С	2.0564670	-3.4394110	0.9444180
С	3.3787490	-3.7808680	0.7631020
Н	1.4102030	-4.0736150	1.5450960
Н	3.7825590	-4.6732830	1.2328910
С	4.2317760	-2.9973430	-0.0661740
С	5.5739980	-3.3464680	-0.3157210
Н	5.9829700	-4.2373080	0.1531680
С	6.3695460	-2.5730640	-1.1597160
С	5.8501100	-1.4430530	-1.7767370
Н	7.3994160	-2.8620540	-1.3413200
Н	6.4685230	-0.8492500	-2.4440440

10. References

- [1] A. Ros, B. Estepa, R. López-Rodríguez, E. Álvarez, R. Fernández and J. M. Lassaletta, Use of Hemilabile N,N Ligands in Nitrogen-Directed Iridium-Catalyzed Borylations of Arenes, *Angew. Chem. Int. Ed.*, 2011, 50, 11724-11728.
- [2] H. R. Snyder and F. W. Wyman, Synthesis and Reactions of Some Substituted Naphthaleneboronic Acids, J. Am. Chem. Soc., 1948, 70, 234-237.
- [3] X. Gao, Y. Zhang and B. Wang, New Boronic Acid Fluorescent Reporter Compounds. 2. A Naphthalene-Based On–Off Sensor Functional at Physiological pH, Org. Lett., 2003, 24, 4615-4618.
- [4] H. Kang, H. Lee, H. Shin, S. Kang, B. Kim and J. Park, New Emitting Materials Based on HTL Moiety with High Hole Mobility for OLEDs, *Mol. Cryst. Liq. Cryst.*, 2015, 618, 47-54.
- [5] G. M. Sheldrick, A Short History of SHELX, *Acta Cryst.*, 2008, A64, 112-122.
- [6] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: A Complete Structure Solution, Refinement and Analysis Program, J. Appl. Cryst. 2009, 42, 339-341.
- [7] V. F. Pais, M. M. Alcaide, R. López-Rodríguez, D. Collado, F. Nájera, E. Pérez-Inestrosa, E. Álvarez, J. M. Lassaletta, R. Fernández, A. Ros and U. Pischel, Strongly Emissive and Photostable Four-Coordinate Organoboron N,C Chelates and Their Use in Fluorescence Microscopy, *Chem. Eur. J.*, 2015, 21, 15369-15376.
- [8] W. H. Melhuish, A Standard Fluorescence Spectrum for Calibrating Spectrofluorophotometers, *J. Phys. Chem.*, 1960, **64**, 762-764.

- [9] W. H. Melhuish, Quantum Efficiencies of Fluorescence of Organic Substances:
 Effect of Solvent and Concentration of the Fluorescent Solute, *J. Phys. Chem.*, 1961, 65, 229-235.
- [10] Z. Domínguez, R. López-Rodríguez, E. Álvarez, S. Abbate, G. Longhi, U. Pischel and A. Ros, Azabora[5]helicene Charge-Transfer Dyes Show Efficient and Spectrally Variable Circularly Polarized Luminescence, *Chem. Eur. J.*, 2018, 24, 12660-12668.
- [11] Y. Zhao and D. G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals, *Theor. Chem. Acc.*, 2008, 120, 215-241.
- [12] R. Cammi and B. Mennucci, Linear response theory for the polarizable continuum model, J. Chem. Phys., 1999, 110, 9877-9886.
- [13] C. A. Guido, A. Chrayteh, G. Scalmani, B. Mennucci and D. Jacquemin, Simple Protocol for Capturing Both Linear-Response and State-Specific Effects in Excited-State Calculations with Continuum Solvation Models, J. Chem. Theory Comput., 2021, 17, 5155-5164.
- [14] M. J. Frisch, et al., Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford CT, 2016
- [15] O. Christiansen, H. Koch and P. Jorgensen, The second-order approximate coupled cluster singles and doubles model CC2, *Chem. Phys. Lett.*, 1995, 243, 409-418.

- [16] TURBOMOLE V7.5 2020, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989 – 2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com
- [17] D. Jacquemin, I. Duchemin and X. Blase, 0–0 Energies Using Hybrid Schemes: Benchmarks of TD-DFT, CIS(D), ADC(2), CC2, and BSE/*GW* formalisms for 80 Real-Life Compounds, *J. Chem. Theory Comput.*, 2015, 11, 5340-5359.