Table of Contents

1. General Information 2
2. Experimental Procedures and Characterization of Products 2
3. Template synthesis of HiCage $\cdot 6 \mathrm{PF}_{6}$ 9
4. Crystal Data and X-Ray Molecular Structures 13
5. Physicochemical Properties of HiCage•6Cl 20
6. UV-vis Titration of with HiCage-6CI with UA 21
7. ITC Titration of with HiCage $\mathbf{6 C l}$ with Purines 22
8. NMR Titration of with HiCage $\cdot \mathbf{6 C l}$ with Purines 28
9. HRMS of Host-Guest Complexes of HiCage and UA 32
10. Crystal Data and X-Ray Molecular Structures of Complexes 33
11. Biosafety Assay 38
12. Solubility Enhancement Studies of UA 38
13. References 39
14. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra 40

1. General Information

All commercially available reagents were used as received. TLC analysis was performed on pre-coated, glass-backed silica gel plates and visualized with UV light. Flash column chromatography was performed on Silicycle Silica Flash@P60 (300-400 mesh). Anhydrous solvents (dichloromethane, chloroform, tetrahydrofuran, Dimethylformamide, Dimethyl sulfoxide, and acetonitrile) were dried by $4 \AA$ molecular sieves. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker ${ }^{\circledR}$ AVANCE III HD 400 MHz NMR spectrometer. Chemical shifts were reported in ppm with either tetramethylsilane or the residual solvent resonance an internal standard. Abbreviations are used in the description of NMR data as follows: chemical shift (δ, ppm), multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, t $=$ triplet, $\mathrm{q}=$ quadruplet $)$, coupling constant $(J, \mathrm{~Hz})$. Infrared spectra were recorded using a Thermo Fisher ${ }^{\mathbb{B}}$ Nicolet 6700 spectrometer with KBr pellets in the $4000-400 \mathrm{~cm}^{-1}$ region. UV-vis spectra were recorded using a PerkinElmer ${ }^{\circledR}$ Lambda 35 UV-vis spectrophotometer. Fluorescence spectra were recorded using an Agilent ${ }^{\circledR}$ Eclipse fluorescence spectrophotometer. Crystallographic data were collected on a Bruker ${ }^{\circledR}$ APEX-II CCD (Ga) X-ray single crystal diffractometer. Reversed-phase high performance liquid chromatography were recorded using an Agilnt ${ }^{\text {® }}$ Agilnt 1260 (C18). Isothermal titration calorimetry (ITC) experiments were performed by Malvern MicroCal PEAQITC. Mass spectrometry were recorded using a Water G2-xs TOF. Melting points were uncorrected. Rat red blood cells (5\%) purchased from Guangzhou Hongquan Biotechnology Co., Ltd.

2. Experimental Procedures and Characterization of Products

1,1'-(5-(4H-imidazol-4-yl)-1,3-phenylene)bis(1H-imidazole) $\mathbf{1}^{[1]}$ was synthesized according to literature procedures.
Synthesis of compound $3 \mathrm{a} \cdot 3 \mathrm{Br}$ and $\mathbf{3 b} \cdot \mathbf{3 B r}$.

A solution of $\mathbf{2 a}$ or $\mathbf{2 b}\left(3.96 \mathrm{~g}, 15.0 \mathrm{mmol}, 15.0\right.$ equiv.) in anhydrous acetonitrile (100 mL) was pre-heated to $50^{\circ} \mathrm{C}$. To which was added dropwise a solution of $\mathbf{1}(276 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0$ equiv.) in anhydrous dimethylformamide (20 mL) over 10 h . The mixture was allowed to react for another 14 h . After cooling to room temperature, suction filtration gave a white solid. After washed with dichloromethane, the crude product was recrystallized using methanol and water to give pure product $\mathbf{3 a} \cdot \mathbf{3 B r}$ or $\mathbf{3 b} \cdot \mathbf{3 B r}$.
$\mathbf{3 a} \cdot \mathbf{3 B r}$

Chemical Formula: $\mathrm{C}_{39} \mathrm{H}_{36} \mathrm{Br}_{6} \mathrm{~N}_{6}$; Molecular Weight: 1068.1830

3a•3Br (908 mg , yield 85%): white solid; m.p. $176-179{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 10.24(\mathrm{~s}, 3 \mathrm{H}), 8.60$ $(\mathrm{s}, 3 \mathrm{H}), 8.50(\mathrm{~s}, 3 \mathrm{H}), 8.21(\mathrm{~s}, 3 \mathrm{H}), 7.56-7.51(\mathrm{~m}, 12 \mathrm{H}), 5.61(\mathrm{~s}, 6 \mathrm{H}), 4.73(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 MHz, DMSO- $\left.d_{6}\right)$ $\delta 139.0,136.3,134.2,130.0,128.9,123.9,121.7,116.3,52.5,33.7$; IR (KBr) v 3416, 3057, 1623, 1570, 1549, 1447, 1364, 1228, 1096, 1010, 852, 767, $605 \mathrm{~cm}^{-1}$; HRMS (ESI) Calculated for $\mathrm{C}_{39} \mathrm{H}_{36} \mathrm{Br}_{5} \mathrm{~N}_{6}{ }^{+}$: 986.8872, Found: 986.8866.
$\mathbf{3 b} \cdot \mathbf{3 B r}$

Chemical Formula: $\mathrm{C}_{39} \mathrm{H}_{36} \mathrm{Br}_{6} \mathrm{~N}_{6}$; Molecular Weight: 1068.1830
$\mathbf{3 b} \cdot \mathbf{3 B r}\left(931 \mathrm{mg}\right.$, yield 87%): white solid; m.p. $185-189{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 10.31(\mathrm{~s}, 3 \mathrm{H}), 8.65$ $(\mathrm{s}, 3 \mathrm{H}), 8.54(\mathrm{~s}, 3 \mathrm{H}), 8.21(\mathrm{~s}, 3 \mathrm{H}), 7.65(\mathrm{~s}, 3 \mathrm{H}), 7.52-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.48-7.47(\mathrm{~m}, 6 \mathrm{H}), 5.62(\mathrm{~s}, 6 \mathrm{H}), 4.73(\mathrm{~s}, 6 \mathrm{H}) ;$ ${ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta 139.0,136.4,136.3,134.6,130.0,129.5,129.3,128.5,123.9,121.7,116.3,52.5$, 33.8; IR (KBr) v 3416, 3047, 1621, 1572, 1548, 1490, 1445, 1215, 1095, 769, $623 \mathrm{~cm}^{-1}$; HRMS (ESI) Calculated for $\mathrm{C}_{39} \mathrm{H}_{36} \mathrm{Br}_{5} \mathrm{~N}_{6}{ }^{+}$: 986.8872, Found: 986.8869.

Synthesis of compound p-HiCage $\cdot 6 \mathrm{PF}_{6}$.

Pyrene as template. $\mathbf{3 a} \cdot \mathbf{3 B r}(107 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv.) was dispersed in dimethylformamide solution in which $\mathbf{1}$ ($27.6 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv.) was dissolved. The mixture was kept stirring with TBAI ($11.1 \mathrm{mg}, 0.03 \mathrm{mmol}$, 0.3 equiv.) and pyrene ($121 \mathrm{mg}, 0.6 \mathrm{mmol}, 6.0$ equiv.) for 4 days at $90^{\circ} \mathrm{C}$. After cooling to room temperature, excess TBACl was added to precipitate the crude product. After filtration to remove solvent, the residue was washed with dichloromethane and then chromatographed on a silica gel column with a mixture of methanol, water and saturated ammonium chloride solution $(6: 3: 1, \mathrm{v} / \mathrm{v})$ as the mobile phase. The chromatographically pure compound was precipitated by adding $\mathrm{NH}_{4} \mathrm{PF}_{6}$ to the eluent, affording pure $p \mathbf{- H i C a g e} \cdot \mathbf{6 P F} \mathbf{6}(43.0 \mathrm{mg}, \mathbf{2 5 \%})$

Uric acid as template. $\mathbf{3 a} \cdot \mathbf{3 B r}(107 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv.) was dispersed in dimethylformamide solution in which 1 ($27.6 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv.) was dissolved. The mixture was kept stirring with TBAI ($11.1 \mathrm{mg}, 0.03$ mmol, 0.3 equiv.) and uric acid ($101 \mathrm{mg}, 0.6 \mathrm{mmol}, 6.0$ equiv.) for 4 days at $90^{\circ} \mathrm{C}$. Post-treatment and purification methods were the same as above, affording pure $p-\mathbf{H i C a g e} \cdot \mathbf{6 P F} \mathbf{6}$ ($54.3 \mathrm{mg}, 31 \%$).

$p-\mathrm{HiCage} \cdot \mathbf{6 P F}_{6}$

Chemical Formula: $\mathrm{C}_{54} \mathrm{H}_{48} \mathrm{~F}_{36} \mathrm{~N}_{12} \mathrm{P}_{6}$; Molecular Weight: 1734.8471
p-HiCage•6PF6: white solid; m.p. $>300^{\circ} \mathbf{C}$; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 9.40(\mathrm{~s}, 6 \mathrm{H}), 8.36(\mathrm{t}, J=1.8 \mathrm{~Hz}, 6 \mathrm{H})$, $8.32(\mathrm{t}, J=1.9 \mathrm{~Hz}, 6 \mathrm{H}), 8.19(\mathrm{~s}, 6 \mathrm{H}), 7.43(\mathrm{~s}, 12 \mathrm{H}), 5.58(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 MHz, DMSO- $\left.d_{6}\right) \delta 135.8,135.5$, 135.1, 129.0, 125.2, 120.6, 116.1, 52.6; IR (KBr) v 3641342831563117309516271573155511821099838559
cm^{-1}; HRMS (ESI) Calculated for $\mathrm{C}_{54} \mathrm{H}_{48} \mathrm{~F}_{30} \mathrm{~N}_{12} \mathrm{P}_{5}{ }^{+}: 1589.2328$, Found: 1589.2326 .

Synthesis of compound m-HiCage $\cdot \mathbf{6 P F} 6$.

No template. 3b•3Br ($107 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv.) was dispersed in dimethylformamide solution in which $\mathbf{1}$ (27.6 $\mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv.) was dissolved. The mixture was kept stirring with TBAI ($11.1 \mathrm{mg}, 0.03 \mathrm{mmol}, 0.3$ equiv.) for 4 days at $50{ }^{\circ} \mathrm{C}$. After cooling to room temperature, excess TBACl was added to precipitate the crude product. After filtration to remove solvent, the residue was washed with dichloromethane and then chromatographed on a silica gel column with a mixture of methanol, water and saturated ammonium chloride solution $(6: 3: 1, \mathrm{v} / \mathrm{v})$ as the mobile phase. The chromatographically pure compound was precipitated by adding $\mathrm{NH}_{4} \mathrm{PF}_{6}$ to the eluent, affording pure m-HiCage $\cdot \mathbf{6 P F} \mathbf{6}$ ($24.6 \mathrm{mg}, 14 \%$).

Uric acid as template. $\mathbf{3 b} \cdot \mathbf{3 B r}(107 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv.) was dispersed in dimethylformamide solution in which 1 ($27.6 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv.) was dissolved. The mixture was kept stirring with TBAI ($11.1 \mathrm{mg}, 0.03$ mmol, 0.3 equiv.) and uric acid ($101 \mathrm{mg}, 0.6 \mathrm{mmol}, 6.0$ equiv.) for 4 days at $50^{\circ} \mathrm{C}$. Post-treatment and purification methods were the same as above, affording pure m-HiCage $\cdot \mathbf{6 P F} \mathbf{6}$ ($44.1 \mathrm{mg}, 25 \%$).
m-HiCage \cdot. $^{\left(P F_{6}\right.}$

Chemical Formula: $\mathrm{C}_{54} \mathrm{H}_{48} \mathrm{~F}_{36} \mathrm{~N}_{12} \mathrm{P}_{6}$; Molecular Weight: 1734.8471
p-HiCage•6PF 6 : white solid; m.p. $>300{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 9.57(\mathrm{~s}, 6 \mathrm{H}), 8.32(\mathrm{~s}, 6 \mathrm{H}), 8.25(\mathrm{t}, J$ $=1.8 \mathrm{~Hz}, 6 \mathrm{H}), 8.22(\mathrm{t}, J=2.0 \mathrm{~Hz}, 6 \mathrm{H}), 7.71-7.64(\mathrm{~m}, 9 \mathrm{H}), 6.66(\mathrm{~s}, 3 \mathrm{H}), 5.66(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}(101 \mathrm{MHz}, \mathrm{DMSO}-$
d6) $\delta 136.1,135.4,135.1,129.9,129.1,125.1,121.1,115.1,52.6$; IR (KBr) v 3640344031613095162715781556

Synthesis of compound o-HiCage $\cdot 6 \mathrm{PF}_{6}$.

A solution of $\mathbf{1}$ ($55.2 \mathrm{mg}, 0.2 \mathrm{mmol} 1.0$ equiv.), $\mathbf{2 c}(79.2 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.) and TBAI ($11.1 \mathrm{mg}, 0.03 \mathrm{mmol}$, 0.15 equiv.) was stirred at $50^{\circ} \mathrm{C}$ for 4 days. After cooling to room temperature, excess TBACl was added to precipitate the crude product. After filtration to remove solvent, the residue was washed with dichloromethane and then chromatographed on a silica gel column with a mixture of methanol, water and saturated ammonium chloride solution ($6: 3: 1, \mathrm{v} / \mathrm{v}$) as the mobile phase. The chromatographically pure compound was precipitated by adding $\mathrm{NH}_{4} \mathrm{PF}_{6}$ to the eluent, affording pure o-HiCage-6PF 6

Chemical Formula: $\mathrm{C}_{54} \mathrm{H}_{48} \mathrm{~F}_{36} \mathrm{~N}_{12} \mathrm{P}_{6}$; Molecular Weight: 1734.8471
o-HiCage $\mathbf{6 P F}$ (33.2 mg , yield 19%): white solid; m.p. $>300^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.72(\mathrm{~s}, 6 \mathrm{H})$, $8.15(\mathrm{~s}, 12 \mathrm{H}), 7.97(\mathrm{t}, J=4.7 \mathrm{~Hz}, 6 \mathrm{H}), 7.86(\mathrm{t}, J=4.5, \mathrm{~Hz}, 6 \mathrm{H}), 7.70(\mathrm{~s}, 6 \mathrm{H}), 5.82(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}(101 \mathrm{MHz}$, DMSO- d_{6}) δ 135.6, 134.3, 131.6, 123.9, 120.5, 113.2, 51.4; IR (KBr) v3439 3147308629851622157315451192 $1105838561 \mathrm{~cm}^{-1}$; HRMS (ESI) Calculated for $\mathrm{C}_{54} \mathrm{H}_{48} \mathrm{~F}_{24} \mathrm{~N}_{12} \mathrm{P}_{4}{ }^{2+}: 722.1341$, Found: 722.1337.

Synthesis of compound $p-\mathrm{HiCage} \cdot 6 \mathrm{Cl}, m-\mathrm{HiCage} \cdot \mathbf{6 C l}$ and $o-\mathrm{HiCage} \cdot 6 \mathrm{Cl}$.

HiCage $\cdot \mathbf{6 P F} \mathbf{P F}_{6}$ was dissolved in water followed by the addition of excess TBACl , resulting in the precipitation of pure HiCage-6Cl that was collected by filtration as a white solid.
p-HiCage-6CI

Chemical Formula: $\mathrm{C}_{54} \mathrm{H}_{48} \mathrm{Cl}_{6} \mathrm{~N}_{12}$; Molecular Weight: 1077.1620
p-HiCage•6Cl: white solid; m.p. $285-287^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 8.01(\mathrm{~s}, 6 \mathrm{H}), 8.00(\mathrm{~s}, 6 \mathrm{H})$, $7.97(\mathrm{~s}, 6 \mathrm{H}), 7.58(\mathrm{~s}, 12 \mathrm{H}), 5.56(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 137.5,135.4,130.8,125.2,122.3,119.3$, 54.2, (δ 39.4, DMSO as internal reference); IR (KBr) v3424 3130307816241569154713511215117911041095 $\mathrm{cm}^{-1} ;$ HRMS (ESI) Calculated for $\mathrm{C}_{54} \mathrm{H}_{48} \mathrm{Cl}_{5} \mathrm{~N}_{12}{ }^{+}: 1041.2533$, Found: 1041.2527.
m-HiCage $\mathbf{6 C l}$

m-HiCage-6Cl: white solid; m.p. $279-282{ }^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 8.07(\mathrm{~s}, 6 \mathrm{H}), 8.04(\mathrm{~d}, J=$ $2.1 \mathrm{~Hz}, 6 \mathrm{H}), 7.88(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 6 \mathrm{H}), 7.76(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H}), 7.70(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.41(\mathrm{~s}, 3 \mathrm{H}), 5.57(\mathrm{~s}, 12 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathrm{D}_{2} \mathrm{O}$) $\delta 137.6,134.7,131.5,131.1,129.4,124.4,122.5,118.3,53.9$. (839.4, DMSO as internal reference); IR (KBr) v $34203133305816251573155214911444136711991094 \mathrm{~cm}^{-1} ;$ HRMS (ESI) Calculated for $\mathrm{C}_{54} \mathrm{H}_{48} \mathrm{Cl}_{5} \mathrm{~N}_{12}{ }^{+}: 1041.2533$, Found: 1041.2533

Chemical Formula: $\mathrm{C}_{54} \mathrm{H}_{48} \mathrm{Cl}_{6} \mathrm{~N}_{12}$; Molecular Weight: 1077.1620
o-HiCage-6Cl: white solid; m.p. $262-265{ }^{\circ} \mathrm{C}$ (decomp.); ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 8.17(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 6 \mathrm{H}$), $8.08(\mathrm{~s}, 6 \mathrm{H}), 7.90(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 12 \mathrm{H}), 7.84(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 6 \mathrm{H}), 5.81(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 137.1$, 135.3, 133.1, 131.6, 125.3, 121.8, 115.2, 52.9. (8 39.4, DMSO as internal reference); IR (KBr) v 342431273077 $29841622157415451330122611911094 \mathrm{~cm}^{-1}$; HRMS (ESI) Calculated for $\mathrm{C}_{54} \mathrm{H}_{48} \mathrm{Cl}_{5} \mathrm{~N}_{12}{ }^{+}: 1041.2533$, Found: 1041.2539.

3. Template synthesis of HiCage $\mathbf{6 P F} 6$

Table S1. Reaction of $\mathbf{3 a} \cdot \mathbf{3 B r}$ with $\mathbf{1 .}^{\boldsymbol{a}}$

a. A mixture of $\mathbf{1}(27.6 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv. $), \mathbf{3 a} \cdot \mathbf{3 B r}(107 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv. $)$ and TBAI ($11.1 \mathrm{mg}, 0.03$ mmol, 0.3 equiv.) was kept stirring with template ($0.6 \mathrm{mmol}, 6.0$ equiv.) for 4 days.

Table S2. Reaction of $\mathbf{3 b} \cdot \mathbf{3 B r}$ with $\mathbf{1 .}^{\boldsymbol{a}}$

a. A mixture of $\mathbf{1}(27.6 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv. $), \mathbf{3 b} \cdot \mathbf{3 B r}(107 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv.) and $\mathrm{TBAI}(11.1 \mathrm{mg}, 0.03$ $\mathrm{mmol}, 0.3$ equiv.) was kept stirring with template ($0.6 \mathrm{mmol}, 6.0$ equiv.) for 4 days.

Table S3. The binding constants (K_{a}) for complexation of p-HiCage and m-HiCage with pyrene, naphthalene and coronene.

	Pyrene $\left(\mathrm{M}^{-1}\right)^{a}$	Naphthalene $\left(\mathrm{M}^{-1}\right)^{a}$	Coronene $\left(\mathrm{M}^{-1}\right)^{b}$
p-HiCage	$(3.83 \pm 0.09) \times 10^{2}$	$(2.12 \pm 0.04) \times 10$	<5
m-HiCage	<5	<5	<5

\boldsymbol{a}. The binding constants was determined by NMR titration. \boldsymbol{b}. The binding constants was determined by fluorescence titration.

Figure S1 (Left) ${ }^{1} \mathrm{H}$ NMR titration spectra ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 25^{\circ} \mathrm{C}$,) recorded for a solution of p-HiCage•6PF $\mathbf{6}_{\mathbf{6}}$ (0.9799 mM) and pyrene with variable concentrations ($0-9.50$ equiv.). (Right) Plot of the chemical shift of p HiCage $\cdot \mathbf{6 P F} \mathbf{6}$ as a function of $[\mathrm{G}] / p-\mathrm{HiCage} \cdot \mathbf{6 P F}$.

Figure S2 (Left) ${ }^{1} \mathrm{H}$ NMR titration spectra ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 25^{\circ} \mathrm{C}$,) recorded for a solution of \boldsymbol{p}-HiCage•6PF $\mathbf{6}_{\mathbf{6}}$ $(1.038 \mathrm{mM})$ and naphthalene with variable concentrations ($0-37.50$ equiv.). (Right) Plot of the chemical shift of p HiCage $\cdot \mathbf{6 P F}_{6}$ as a function of $[\mathrm{G}] / p-\mathrm{HiCage} \cdot \mathbf{6 P F}{ }_{6}$.

Figure $\mathbf{S 3}$ (Left) Fluorescence titration spectra at $25^{\circ} \mathrm{C}$ of coronene $(24.14 \mu \mathrm{M})$ with addition of 0-17.20 equiv. of $p-\mathbf{H i C a g e} \cdot \mathbf{6 P F} \mathbf{6}$ in $\mathrm{CH}_{3} \mathrm{CN}$. (Right) Plot of a.u. (426 nm) against [p-HiCage•6PF ${ }_{6}$]/[coronene].

Figure S4 (Left) ${ }^{1} \mathrm{H}$ NMR titration spectra ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 25^{\circ} \mathrm{C}$,) recorded for a solution of m-HiCage•6PF $\mathbf{6}_{6}$ (1.095 mM) and pyrene with variable concentrations ($0-12.43$ equiv.). (Right) Plot of the chemical shift of m HiCage•6PF ${ }_{6}$ as a function of [G] $/ \mathrm{m}$-HiCage $\cdot \mathbf{6 P F}$.

Figure S5 (Left) ${ }^{1} \mathrm{H}$ NMR titration spectra ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 2{ }^{\circ} \mathrm{C}$,) recorded for a solution of m-HiCage $\mathbf{6 P F} \mathbf{P}_{\mathbf{6}}$ (1.095 mM) and naphthalene with variable concentrations ($0-35.59$ equiv.). (Right) Plot of the chemical shift of m $\mathbf{H i C a g e} \cdot \mathbf{6 P F}{ }_{6}$ as a function of $[\mathrm{G}] / \mathrm{m}$ - $\mathbf{H i C a g e} \cdot \mathbf{6 P F} \mathbf{6}$.

Figure S6 (Left) Fluorescence titration spectra at $25^{\circ} \mathrm{C}$ of coronene $(24.14 \mu \mathrm{M})$ with addition of 0-18.14 equiv. of m-HiCage $\mathbf{6 P F} \mathbf{6}$ in $\mathrm{CH}_{3} \mathrm{CN}$. (Right) Plot of a.u. (426 nm) against [m-HiCage• $\mathbf{6 P F} \mathbf{6}$]/[coronene].

4. Crystal Data and X-Ray Molecular Structures

High-quality single crystals of products p-HiCage $\cdot \mathbf{6 P F}$ 6,m-HiCage $\cdot \mathbf{6 P F}{ }_{6} p-\mathbf{H i C a g e} \cdot \mathbf{6 C I}, m-\mathrm{HiCage} \cdot \mathbf{6 C l}$ and o HiCage•Cl were obtained by slow vapor diffusion of methanol or isopropanol into the acetonitrile solution of p HiCage $\cdot \mathbf{6 P F}$ 6 , and m-HiCage $\cdot \mathbf{6 P F}$. or aqueous solution of p - $\mathrm{HiCage} \cdot \mathbf{6 C l}, m$ - $\mathrm{HiCage} \cdot \mathbf{6 C l}$ and $o-\mathrm{HiCage} \cdot \mathbf{6 C l}$.

Crystal data and X-ray molecular structures with their CCDC numbers are reported as follows. CIFs and CheckCIFs are provided in separated files as Supplementary Information. Following each Table of crystal data and structure refinement for compounds, we also provide explanations for any A- level alerts in the CheckCIF output. ${ }^{[2-3]}$

Table S4. Crystal data and structure refinement for p-HiCage $\cdot \mathbf{6 P F} \mathbf{F}_{6}$.

Empirical formula	$\mathrm{C}_{62} \mathrm{H}_{65} \mathrm{~F}_{36} \mathrm{~N}_{15} \mathrm{O}_{2} \mathrm{P}_{6}$
Formula weight	1922.11
Temperature/K	173
Crystal system	triclinic
Space group	$\mathrm{P}-1$
a / \AA	$13.4665(4)$
b / \AA	$14.5992(5)$
c / \AA	$23.4728(7)$
$\alpha /{ }^{\circ} \mathrm{o}$	$87.8340(10)$
β / o	$74.7390(10)$

$\gamma /{ }^{\circ}$	65.6540(10)
Volume/ \AA^{3}	4043.0(2)
Z	2
$\rho_{\text {cald }} / \mathrm{g} / \mathrm{cm}^{3}$	1.579
μ / mm^{-1}	1.604
$F(000)$	1944.0
Crystal size/ $/ \mathrm{mm}^{3}$	$0.3 \times 0.3 \times 0.2$
Radiation	$\mathrm{GaK} \alpha(\lambda=1.34138)$
2Θ range for data collection/ ${ }^{\circ}$	5.8 to 102.68
Index ranges	$-15 \leq \mathrm{h} \leq 15,-16 \leq \mathrm{k} \leq 16,-27 \leq 1 \leq 27$
Reflections collected	75671
Independent reflections	$12834\left[\mathrm{R}_{\text {int }}=0.0326, \mathrm{R}_{\text {sigma }}=0.0267\right]$
Data/restraints/parameters	12834/0/1097
Goodness-of-fit on F^{2}	1.049
Final R indexes [$\mathrm{I}>=2 \sigma(\mathrm{I})$]	$\mathrm{R}_{1}=0.0902, \mathrm{wR}_{2}=0.2270$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0926, \mathrm{wR}_{2}=0.2284$
Largest diff. peak/hole / e \AA^{-3}	1.44/-0.99
CCDC number	2294230

Figure S7. X-ray molecular structure of p - HiCage $\cdot \mathbf{6 P F} \mathbf{6}$ with side (A) and top (B) views. (C) The molecules is depicted in stick-ellipsoid style at 50\% probability level for all atoms. The other anions and all solvent molecules in a unit cell were omitted for clarity.

Table S5. Crystal data and structure refinement for $p-\mathbf{H i C a g e} \cdot \mathbf{6 C l}$.
Empirical formula

$$
\mathrm{C}_{114} \mathrm{H}_{114} \mathrm{Cl}_{12} \mathrm{~N}_{24} \mathrm{O}_{3}
$$

Formula weight	2293.69
Temperature/K	173
Crystal system	triclinic
Space group	P-1
a / \AA	11.2346(6)
b / \AA	15.4678(9)
c/ \AA	19.7552(11)
$\alpha /{ }^{\circ}$	85.950(2)
$\beta /{ }^{\circ}$	86.117(2)
$\gamma^{/ 0}$	73.280(2)
Volume/ \AA^{3}	3275.6(3)
Z	1
$\rho_{\text {cald }} / \mathrm{g} / \mathrm{cm}^{3}$	1.163
μ / mm^{-1}	1.824
$F(000)$	1194.0
Crystal size $/ \mathrm{mm}^{3}$	$0.3 \times 0.2 \times 0.1$
Radiation	$\mathrm{Ga} \mathrm{K} \alpha(\lambda=1.34138)$
2Θ range for data collection/ ${ }^{\circ}$	6.334 to 96.646
Index ranges	$-12 \leq \mathrm{h} \leq 12,-17 \leq \mathrm{k} \leq 17,-21 \leq 1 \leq 19$
Reflections collected	26671
Independent reflections	$9309\left[\mathrm{R}_{\text {int }}=0.0491, \mathrm{R}_{\text {sigma }}=0.0522\right]$
Data/restraints/parameters	12834/0/1097
Goodness-of-fit on F^{2}	1.046
Final R indexes $[1>=2 \sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0848, \mathrm{wR}_{2}=0.2285$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0972, \mathrm{wR}_{2}=0.2413$
Largest diff. peak/hole / e \AA^{-3}	1.31/-0.83
CCDC number	2294231

CheckCIF shows a B-level alert for p-HiCage-6Cl.
PROBLEM: THETM01_ALERT_3_B The value of sine(theta_max)/wavelength is less than 0.575 .
Calculated $\sin ($ theta_max $) /$ wavelength $=0.5568$.
RESPONSE: Weak absorption in high angle of the single crystal causes this problem.

Figure S8. X-ray molecular structure of p-HiCage-6Cl with side (A) and top (B) views. (C) The molecules is depicted in stick-ellipsoid style at 50% probability level for all atoms. The other anions and all solvent molecules in a unit cell were omitted for clarity.

Table S6. Crystal data and structure refinement for m-HiCage. $\mathbf{6 P F} 6$.

Empirical formula	$\mathrm{C}_{54} \mathrm{H}_{48} \mathrm{~F}_{36} \mathrm{~N}_{12} \mathrm{P}_{6}$
Formula weight	1734.86
Temperature/K	173
Crystal system	trigonal
Space group	P3
a / \AA	19.6656(12)
b/ \AA	19.6656(12)
c/Å	10.8033(10)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma^{/ 0}$	120
Volume/ \AA^{3}	3618.3(6)
Z	2
$\rho_{\text {cald }} / \mathrm{g} / \mathrm{cm}^{3}$	1.592
μ / mm^{-1}	1.717
$F(000)$	1740.0
Crystal size/mm ${ }^{3}$	$0.11 \times 0.09 \times 0.08$
Radiation	$\mathrm{Ga} \mathrm{K} \alpha(\lambda=1.34138)$
2Θ range for data collection/ ${ }^{\circ}$	7.118 to 118.846

Index ranges	$-25 \leq \mathrm{h} \leq 25,-25 \leq \mathrm{k} \leq 23,-13 \leq 1 \leq 13$
Reflections collected	50191
Independent reflections	$10537\left[\mathrm{R}_{\text {int }}=0.0692, \mathrm{R}_{\text {sigma }}=0.0504\right]$
Data/restraints/parameters	$10537 / 25 / 733$
Goodness-of-fit on F^{2}	1.072
Final R indexes [I>=2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0997, \mathrm{wR}_{2}=0.2658$
Final R indexes [all data]	$\mathrm{R}_{1}=0.1139, \mathrm{wR}_{2}=0.2780$
Largest diff. peak/hole /e \AA^{-3}	$0.93 /-0.54$
CCDC number	2294232

CheckCIF shows a B-level alert for m-HiCage-6PF 6 .
PROBLEM: PLAT340_ALERT_3_B Low Bond Precision on C-C Bonds. 0.01893 Ang.
RESPONSE: This is likely related to the weak diffraction of the crystal.

Figure S9. X-ray molecular structure of $m-\mathbf{H i C a g e} \cdot \mathbf{6 P F} \mathbf{6}$ with side (A) and top (B) views. (C) The molecules is depicted in stick-ellipsoid style at 50\% probability level for all atoms. The other anions and all solvent molecules in a unit cell were omitted for clarity.

Table S7. Crystal data and structure refinement for $m-\mathrm{HiCage} \cdot \mathbf{6 C l}$.

Empirical formula	$\mathrm{C}_{114} \mathrm{H}_{114} \mathrm{Cl}_{12} \mathrm{~N}_{24} \mathrm{O}_{3}$
Formula weight	2293.69
Temperature/K	173
Crystal system	triclinic
Space group	$\mathrm{P}-1$
a / \AA	$10.0332(4)$
b / \AA	$15.2646(6)$

c/ \AA	21.4545(8)
$\alpha{ }^{\circ}$	110.7920(10)
$\beta /{ }^{\circ}$	93.975(2)
$\gamma /{ }^{\circ}$	91.492(2)
Volume/ \AA^{3}	3059.9(2)
Z	1
$\rho_{\text {calc }} / \mathrm{g} / \mathrm{cm}^{3}$	1.245
μ / mm^{-1}	1.952
$F(000)$	1194.0
Crystal size $/ \mathrm{mm}^{3}$	$0.05 \times 0.015 \times 0.01$
Radiation	$\mathrm{Ga} \mathrm{K} \alpha(\lambda=1.34138)$
2Θ range for data collection/ ${ }^{\circ}$	7.658 to 99.45
Index ranges	$-11 \leq \mathrm{h} \leq 11,-17 \leq \mathrm{k} \leq 17,-24 \leq 1 \leq 24$
Reflections collected	27047
Independent reflections	$9374\left[\mathrm{R}_{\text {int }}=0.0425, \mathrm{R}_{\text {sigma }}=0.0471\right]$
Data/restraints/parameters	9374/42/729
Goodness-of-fit on F^{2}	1.054
Final R indexes $[\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0703, \mathrm{wR}_{2}=0.1885$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0918, \mathrm{wR}_{2}=0.2085$
Largest diff. peak/hole /e \AA^{-3}	1.16/-0.75
CCDC number	2294233

CheckCIF shows two B-level alerts for m-HiCage $\mathbf{6 C l}$.
PROBLEM: PLAT420_ALERT_2_B D-H Bond Without Acceptor O026--H026. Please Check.
RESPONSE: Here there is disorder in isopropyl alcohol and no hydrogen bond acceptors nearby.
PROBLEM: THETM01_ALERT_3_B The value of sine(theta_max)/wavelength is less than 0.575 . Calculated $\sin ($ theta_max $) /$ wavelength $=0.5688$.

RESPONSE: Weak absorption in high angle of the single crystal causes this problem.
A

Figure S10. X-ray molecular structure of m-HiCage• $\mathbf{6 C l}$ with side (A) and top (B) views. (C) The molecules is depicted in stick-ellipsoid style at 50\% probability level for all atoms. The other anions and all solvent molecules in a unit cell were omitted for clarity.

Table S8. Crystal data and structure refinement for $o-H i C a g e \cdot 6 C I . ~$

Empirical formula	$\mathrm{C}_{54} \mathrm{H}_{48} \mathrm{Cl}_{6} \mathrm{~N}_{12}$
Formula weight	1077.74
Temperature/K	273
Crystal system	triclinic
Space group	P-1
a / \AA	12.9419(12)
b/ \AA	15.2839(15)
c/A	20.9548(18)
$\alpha /{ }^{\circ}$	93.055(5)
$\beta /{ }^{\circ}$	98.472(5)
$\gamma /{ }^{\circ}$	108.395(5)
Volume/ \AA^{3}	3868.2(6)
Z	2
$\rho_{\text {cald }} / \mathrm{g} / \mathrm{cm}^{3}$	0.925
μ / mm^{-1}	2.296
$F(000)$	1116.0
Crystal size/ $/ \mathrm{mm}^{3}$	$0.04 \times 0.03 \times 0.03$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54178)$
2Θ range for data collection/ ${ }^{\circ}$	4.288 to 140.14

Index ranges	$-15 \leq \mathrm{h} \leq 15,-18 \leq \mathrm{k} \leq 18,-25 \leq 1 \leq 24$
Reflections collected	63339
Independent reflections	$14366\left[\mathrm{R}_{\text {int }}=0.1079, \mathrm{R}_{\text {sigma }}=0.0871\right]$
Data/restraints/parameters	$14366 / 37 / 649$
Goodness-of-fit on F^{2}	1.226
Final R indexes [I>=2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.1368, \mathrm{wR}_{2}=0.2995$
Final R indexes [all data]	$\mathrm{R}_{1}=0.2041, \mathrm{wR}_{2}=0.3286$
Largest diff. peak/hole /e \AA^{-3}	$1.24 /-1.16$
CCDC number	2294234

CheckCIF shows a B-level alert for o-HiCage-6CI.
PROBLEM: PLAT340_ALERT_3_B Low Bond Precision on C-C Bonds. 0.01102 Ang.
RESPONSE: This is likely related to the weak diffraction of the crystal.

Figure S11. X-ray molecular structure of o-HiCage-6CI with side (A) and top (B) views. (C) The molecules is depicted in stick-ellipsoid style at 50% probability level for all atoms. The other anions and all solvent molecules in a unit cell were omitted for clarity.

5. Physicochemical Properties of HiCage-6CI

UV-vis absorption spectra was recorded with water as the solvent. The $\boldsymbol{\varepsilon}$ of $\mathbf{H i C a g e} \mathbf{- 6 C I}$ was determined by five concentrations of each compound (p-HiCage $\mathbf{6 C l}$: $2.032 \times 10^{-3}, 4.065 \times 10^{-3}, 6.097 \times 10^{-3}, 8.129 \times 10^{-3}, 1.016 \times$ $10^{-2}, 1.219 \times 10^{-2} \mathrm{mM} ; m$-HiCage $\mathbf{6 C l}$: $2.041 \times 10^{-3}, 4.083 \times 10^{-3}, 6.124 \times 10^{-3}, 8.165 \times 10^{-3}, 1.021 \times 10^{-2}, 1.225 \times$ $10^{-2} \mathrm{mM}$; o-HiCage $\left.6 \mathbf{C l}: 2.062 \times 10^{-3}, 4.124 \times 10^{-3}, 6.186 \times 10^{-3}, 8.248 \times 10^{-3}, 1.031 \times 10^{-2}, 1.237 \times 10^{-2} \mathrm{mM}\right)$.

There was no obvious signal in the fluorescence spectrum. The temperature was 298 K .

Figure S12. UV-vis Spectra of HiCage•6CI from 200 to 800 nm .

6. UV-vis Titration of with HiCage 6 Cl with UA

Figure S13. UV-vis titration spectra at $25^{\circ} \mathrm{C}$ of UA $\left(4.595 \times 10^{-2} \mathrm{mM}\right)$ with addition of $0-8.08$ equiv. of p HiCage $\mathbf{6 C l}$ in water. The inset show a plot of $\mathbf{A}(320 \mathrm{~nm})$ against $[p-\mathbf{H i C a g e} \cdot \mathbf{6 C l}] /[\mathbf{U A}]$.

Figure S14. UV-vis titration spectra at $25^{\circ} \mathrm{C}$ of UA $\left(4.657 \times 10^{-2} \mathrm{mM}\right)$ with addition of $0-7.12$ equiv. of m -

HiCage $\mathbf{6 C l}$ in water. The inset show a plot of $\mathbf{A}(320 \mathrm{~nm})$ against $[m-\mathbf{H i C a g e} \cdot \mathbf{6 C l}] /[\mathbf{U A}]$.

Figure S15. UV-vis titration spectra at $25^{\circ} \mathrm{C}$ of UA $\left(4.657 \times 10^{-2} \mathrm{mM}\right)$ with addition of $0-5.18$ equiv. of o HiCage $\mathbf{6 C l}$ in water. The inset show a plot of $\mathbf{A}(320 \mathrm{~nm})$ against $[o-\mathbf{H i C a g e} \cdot \mathbf{6 C l}] /[\mathbf{U A}]$.

7. ITC Titration of with HiCage $\mathbf{6 C l}$ with Purines

Table S9. The thermodynamic parameters for the association of p-HiCage $\mathbf{6 C l}$ or m-HiCage-6Cl with Purines via ITC in water at $25^{\circ} \mathrm{C}$.

Host	Guest	$K_{\mathrm{a}}\left(\mathbf{M}^{-1}\right)$	- $\boldsymbol{H} \boldsymbol{H}\left(\mathrm{kcal} \cdot \mathrm{mol}^{-1}\right.$)	$T \Delta S\left(\mathrm{kcal} \cdot \mathrm{mol}^{-1}\right)$	$-\Delta G\left(\mathrm{kcal} \cdot \mathrm{mol}^{-1}\right)$
p-HiCage	UA	$(2.61 \pm 0.06) \times 10^{4}$	1.23 ± 0.01	4.80	6.03
p-HiCage	UA Na	$(1.94 \pm 0.07) \times 10^{4}$	1.19 ± 0.02	4.66	5.85
$m-H i C a g e ~$	UA	$(5.86 \pm 0.30) \times 10^{4}$	3.03 ± 0.04	3.47	6.50
$m-H i C a g e$	UA Na	$(4.32 \pm 0.16) \times 10^{4}$	2.96 ± 0.03	3.36	6.32
Both	Ade	$-{ }^{-}$	$-{ }^{-}$	$-{ }^{-}$	$-{ }^{-}$
Both	Caf	$-{ }^{a}$	${ }^{-}{ }^{\text {a }}$	$-{ }^{-}$	$-{ }^{-}$
Both	HX	${ }^{-}$	$-{ }^{\text {a }}$	${ }^{-}$	${ }^{-}$
Both	Purine	$-{ }^{a}$	${ }^{\text {a }}$	${ }^{\text {a }}$	$-^{a}$

a. The heat effect for complexation was too small to fit.

Figure S16. ITC titration of UA $(0.1250 \mathrm{mM}$ in $280 \mu \mathrm{~L}$ of water) upon the addition of \boldsymbol{p} - $\mathbf{H i C a g e} \cdot \mathbf{6 C l}$ (The 1.998 mM solution was divided into 19 drops, the first drop was $2 \mu \mathrm{~L}$, the remaining 18 drops were $4 \mu \mathrm{~L}$, and the data of the first drop was not collected); The right figure is water with addition of p - $\mathbf{H i C a g e} \cdot \mathbf{6 C l}$ (Same as above).

Figure S17. ITC titration of UA $(0.1403 \mathrm{mM}$ in $280 \mu \mathrm{~L}$ of water) upon the addition of m-HiCage-6CI (The 1.994 mM solution was divided into 19 drops, the first drop was $2 \mu \mathrm{~L}$, the remaining 18 drops were $4 \mu \mathrm{~L}$, and the data of the first drop was not collected); The right figure is water with addition of m - $\mathbf{H i C a g e} \cdot \mathbf{6 C l}$ (Same as above).

Figure S18. ITC titration of UA Na $(0.2010 \mathrm{mM}$ in $280 \mu \mathrm{~L}$ of water) upon the addition of $\boldsymbol{p - H i C a g e} \cdot \mathbf{6 C l}$ (The 1.998 mM solution was divided into 19 drops, the first drop was $2 \mu \mathrm{~L}$, the remaining 18 drops were $4 \mu \mathrm{~L}$, and the data of the first drop was not collected); The right figure is water with addition of $p \mathbf{- H i C a g e} \cdot \mathbf{6 C l}$ (Same as above).

Figure S19. ITC titration of UA Na $(0.2010 \mathrm{mM}$ in $280 \mu \mathrm{~L}$ of water) upon the addition of m-HiCage•6Cl (The 1.994 mM solution was divided into 19 drops, the first drop was $2 \mu \mathrm{~L}$, the remaining 18 drops were $4 \mu \mathrm{~L}$, and the data of the first drop was not collected); The right figure is water with addition of $m-\mathbf{H i C a g e} \cdot \mathbf{6 C l}$ (Same as above).

Figure S20. ITC titration of $\mathbf{A d e}(0.2111 \mathrm{mM}$ in $280 \mu \mathrm{~L}$ of water) upon the addition of \boldsymbol{p} - $\mathbf{H i C a g e} \cdot \mathbf{6 C l}$ (The 2.166 mM solution was divided into 19 drops, the first drop was $2 \mu \mathrm{~L}$, the remaining 18 drops were $4 \mu \mathrm{~L}$, and the data of the first drop was not collected); The right figure is water with addition of p - $\mathbf{H i C a g e} \cdot \mathbf{6 C l}$ (Same as above).

Figure S21. ITC titration of Ade (0.2111 mM in $280 \mu \mathrm{~L}$ of water) upon the addition of m-HiCage $\mathbf{6 C l}$ (The 2.227 mM solution was divided into 19 drops, the first drop was $2 \mu \mathrm{~L}$, the remaining 18 drops were $4 \mu \mathrm{~L}$, and the data of the first drop was not collected); The right figure is water with addition of m - $\mathbf{H i C a g e} \cdot \mathbf{6 C l}$ (Same as above).

Figure S22. ITC titration of Caf $(0.2086 \mathrm{mM}$ in $280 \mu \mathrm{~L}$ of water) upon the addition of \boldsymbol{p}-HiCage•6Cl (The 2.166 mM solution was divided into 19 drops, the first drop was $2 \mu \mathrm{~L}$, the remaining 18 drops were $4 \mu \mathrm{~L}$, and the data of the first drop was not collected); The right figure is water with addition of p - $\mathbf{H i C a g e} \cdot \mathbf{6 C l}$ (Same as above).

Figure S23. ITC titration of Caf $(0.2086 \mathrm{mM}$ in $280 \mu \mathrm{~L}$ of water) upon the addition of m-HiCage-6CI (The 2.227 mM solution was divided into 19 drops, the first drop was $2 \mu \mathrm{~L}$, the remaining 18 drops were $4 \mu \mathrm{~L}$, and the data of the first drop was not collected); The right figure is water with addition of m - $\mathbf{H i C a g e} \cdot \mathbf{6 C l}$ (Same as above).

Figure S24. ITC titration of $\mathbf{H X}(0.2033 \mathrm{mM}$ in $280 \mu \mathrm{~L}$ of water) upon the addition of p-HiCage-6CI (The 2.166 mM solution was divided into 19 drops, the first drop was $2 \mu \mathrm{~L}$, the remaining 18 drops were $4 \mu \mathrm{~L}$, and the data of the first drop was not collected); The right figure is water with addition of p-HiCage $\mathbf{6 C l}$ (Same as above).

Figure S25. ITC titration of $\mathbf{H X}(0.2033 \mathrm{mM}$ in $280 \mu \mathrm{~L}$ of water) upon the addition of m-HiCage•6Cl (The 2.227 mM solution was divided into 19 drops, the first drop was $2 \mu \mathrm{~L}$, the remaining 18 drops were $4 \mu \mathrm{~L}$, and the data of the first drop was not collected); The right figure is water with addition of m - $\mathbf{H i C a g e} \cdot \mathbf{6 C l}$ (Same as above).

Figure S26. ITC titration of Purine (0.2164 mM in $280 \mu \mathrm{~L}$ of water) upon the addition of $p-\mathbf{H i C a g e} \cdot \mathbf{6 C l}$ (The 2.166 mM solution was divided into 19 drops, the first drop was $2 \mu \mathrm{~L}$, the remaining 18 drops were $4 \mu \mathrm{~L}$, and the data of the first drop was not collected); The right figure is water with addition of $\mathbf{p - H i C a g e} \cdot \mathbf{6 C l}$ (Same as above).

Figure S27. ITC titration of Purine (0.2164 mM in $280 \mu \mathrm{~L}$ of water) upon the addition of m-HiCage•6Cl (The 2.227 mM solution was divided into 19 drops, the first drop was $2 \mu \mathrm{~L}$, the remaining 18 drops were $4 \mu \mathrm{~L}$, and the data of the first drop was not collected); The right figure is water with addition of m - $\mathbf{H i C a g e} \cdot \mathbf{6 C l}$ (Same as above).

8. NMR Titration of with HiCage 6 Cl with Purines

Figure S28 (Top) ${ }^{1} \mathrm{H}$ NMR titration spectra ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}$,) recorded for a solution of p - $\mathbf{H i C a g e} \cdot \mathbf{6 C l}$ (0.3062 mM) and UA Na with variable concentrations ($0-3.32$ equiv.). The left is full spectra and the right is partial spectra. (Bottom) Plot of the chemical shift of $p-\mathbf{H i C a g e} \cdot \mathbf{6 C l}$ as a function of $[\mathrm{G}] / p-\mathbf{H i C a g e} \cdot \mathbf{6 C l}$ (left) and Job's plot (right).

Figure S29 (Left) ${ }^{1} \mathrm{H}$ NMR titration spectra $\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}\right.$,) recorded for a solution of p - $\mathbf{H i C a g e} \cdot \mathbf{6 C l}$ (0.4083 mM) and Ade with variable concentrations ($0-13.36$ equiv.). (Right) Plot of the chemical shift of p HiCage $\cdot \mathbf{6 C l}$ as a function of $[\mathrm{G}] / p-\mathrm{HiCage} \cdot \mathbf{6 C l}$.

Figure S30 (Left) ${ }^{1} \mathrm{H}$ NMR titration spectra $\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}\right.$,) recorded for a solution of p-HiCage. $\mathbf{6 C l}$ (0.4083 mM) and Caf with variable concentrations ($0-12.74$ equiv.). (Right) Plot of the chemical shift of p HiCage $\cdot \mathbf{6 C l}$ as a function of $[\mathrm{G}] / p-\mathrm{HiCage} \cdot \mathbf{6 C l}$.

Figure S31 (Left) ${ }^{1} \mathrm{H}$ NMR titration spectra ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}$,) recorded for a solution of p-HiCage. $\mathbf{6 C l}$ (0.4083 mM) and $\mathbf{H X}$ with variable concentrations ($0-12.74$ equiv.). (Right) Plot of the chemical shift of p $\mathbf{H i C a g e} \cdot \mathbf{6 C l}$ as a function of $[\mathrm{G}] / p-\mathrm{HiCage} \cdot \mathbf{6 C I}$.

Figure S32 (Left) ${ }^{1} \mathrm{H}$ NMR titration spectra ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}$,) recorded for a solution of p-HiCage. $\mathbf{6 C l}$ (0.4083 mM) and Purine with variable concentrations ($0-13.22$ equiv.). (Right) Plot of the chemical shift of p $\mathbf{H i C a g e} \cdot \mathbf{6 C l}$ as a function of $[\mathrm{G}] / p-\mathrm{HiCage} \cdot \mathbf{6 C I}$.

Figure S33 (Top) ${ }^{1} \mathrm{H}$ NMR titration spectra ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}$,) recorded for a solution of m-HiCage $\mathbf{6 C l}$ $(0.3006 \mathrm{mM})$ and UA Na with variable concentrations ($0-2.71$ equiv.). The left is full spectra and the right is partial spectra. (Bottom) Plot of the chemical shift of m - $\mathbf{H i C a g e} \cdot \mathbf{6 C l}$ as a function of $[\mathrm{G}] / m-\mathrm{HiCage} \cdot \mathbf{6 C l}$ (left) and Job's plot (right).

Figure S34 (Left) ${ }^{1} \mathrm{H}$ NMR titration spectra ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}$,) recorded for a solution of m-HiCage-6Cl (0.5010 mM) and Ade with variable concentrations ($0-10.00$ equiv.). (Right) Plot of the chemical shift of m HiCage $\cdot \mathbf{6 C l}$ as a function of $[\mathrm{G}] / \mathrm{m}$-HiCage $\cdot \mathbf{6 C l}$.

Figure S35 (Left) ${ }^{1} \mathrm{H}$ NMR titration spectra $\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}\right.$, $)$ recorded for a solution of m-HiCage•6Cl
(0.5010 mM) and Caf with variable concentrations ($0-10.38$ equiv.). (Right) Plot of the chemical shift of m HiCage $\mathbf{6 C l}$ as a function of $[\mathrm{G}] / m-\mathrm{HiCage} \cdot \mathbf{6 C l}$.

Figure S36 (Left) ${ }^{1} \mathrm{H}$ NMR titration spectra $\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}\right.$, $)$ recorded for a solution of m-HiCage•6Cl (0.5010 mM) and HX with variable concentrations ($0-7.85$ equiv.). (Right) Plot of the chemical shift of m HiCage $\cdot \mathbf{6 C l}$ as a function of $[\mathrm{G}] / \mathrm{m}-\mathrm{HiCage} \cdot \mathbf{6 C l}$.

Figure S37 (Left) ${ }^{1} \mathrm{H}$ NMR titration spectra $\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}\right.$,) recorded for a solution of m-HiCage. $\mathbf{6 C l}$ (0.5010 mM) and Purine with variable concentrations ($0-12.97$ equiv.). (Right) Plot of the chemical shift of m HiCage $\cdot \mathbf{6 C l}$ as a function of $[\mathrm{G}] / \mathrm{m}$-HiCage $\cdot \mathbf{6 C l}$.

9. HRMS of Host-Guest Complexes of HiCage and UA

Table S10. HRMS of Complexes of HiCage and UA

Complex	Calcd. $(\mathbf{m} / \mathbf{z})$	Found $(\mathbf{m} / \mathbf{z})$
$[p-\mathbf{H i C a g e} \cdot \mathbf{2 P F} \mathbf{6}+\mathbf{U A}-2 H]^{2+}$	660.1762	660.1761
$[p-\mathbf{H i C a g e} \cdot \mathbf{C l}+\mathbf{U A}-3 H]^{2+}$	532.1926	532.1928
$\left[m-\mathbf{H i C a g e} \cdot \mathbf{P F} \mathbf{F}_{6}+\mathbf{U A}-3 H\right]^{2+}$	587.1902	587.1904
$[m-\mathbf{H i C a g e} \cdot \mathbf{C l}+\mathbf{U A}-3 H]^{2+}$	532.1926	532.1924

Figure S38. HRMS (ESI) of a mixture of p-HiCage•6PF $\mathbf{6}$ and UA.

Figure S39. HRMS (ESI) of a mixture of p-HiCage•6CI and UA.

Figure S40. HRMS (ESI) of a mixture of m-HiCage• $\mathbf{6 P F}$. and UA.

Figure S41. HRMS (ESI) of a mixture of m-HiCage•6CI and UA.

10. Crystal Data and X-Ray Molecular Structures of Complexes

High-quality single crystals of $\mathbf{U A} \mathbf{N a} \subset m-\mathbf{H i C a g e}^{\mathbf{6}} \mathbf{6 C}$ and pyrene $\subset p-\mathrm{HiCage}^{\mathbf{6 P F}} \mathbf{F}_{6}$ were obtained by diffusion of methanol or ether into the aqueous solution of $m-\mathbf{H i C a g e} \cdot \mathbf{6 C l}$ with $\mathbf{U A ~} \mathbf{N a}$, acetonitrile solution of $p-\mathbf{H i C a g e}^{\mathbf{6 P P}} \mathbf{6}$ with pyrene. Single crystals of UA Na $\subset p$-HiCage-6CI were obtained by diffusion of 1,4-dioxane into the aqueous solution of p-HiCage $\cdot \mathbf{6 C l}$ with $\mathbf{U A} \mathbf{N a}$.

Crystal data and X-ray complex structures with their CCDC numbers are reported as follows. CIFs and CheckCIFs are provided in separated files as Supplementary Information. Following each Table of crystal data and structure refinement for compounds, we also provide explanations for any A-level alerts in the CheckCIF output. ${ }^{[2-3]}$

Table S11. Crystal data and structure refinement for complex of UA Na $\subset m-\mathbf{H i C a g e} \cdot \mathbf{6 C l}$.

Empirical formula	$\mathrm{C}_{59} \mathrm{H}_{51} \mathrm{Cl}_{5} \mathrm{~N}_{16} \mathrm{O}_{3}$
Formula weight	1209.41
Temperature/K	273
Crystal system	triclinic
Space group	$\mathrm{P}-1$
a / \AA	$13.0417(9)$
b / \AA	$18.1648(12)$
c / \AA	$19.7566(14)$
$\alpha /{ }^{\circ}$	$108.285(4)$
$\beta /{ }^{\circ}$	$102.532(5)$
$\gamma /{ }^{\circ}$	$94.231(4)$

Volume $/ \AA^{3}$	$4287.0(5)$
Z	2
$\rho_{\text {calc }} / \mathrm{g} / \mathrm{cm}^{3}$	0.937
μ / mm^{-1}	1.876
$\mathrm{~F}(000)$	1252.0
Crystal size $/ \mathrm{mm}^{3}$	$0.02 \times 0.02 \times 0.01$
Radiation	$\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54178)$
2Θ range for data collection $/ \mathrm{o}$	5.184 to 118.61
Index ranges	$-14 \leq \mathrm{h} \leq 14,-20 \leq \mathrm{k} \leq 17,-21 \leq 1 \leq 21$
Reflections collected	33520
Independent reflections	$12214\left[\mathrm{R}_{\text {int }}=0.0711, \mathrm{R}_{\text {sigma }}=0.0856\right]$
Data/restraints $/$ parameters	$12214 / 0 / 785$
Goodness-of-fit on F^{2}	1.029
Final R indexes [I>=2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.1031, \mathrm{wR}_{2}=0.2983$
Final R indexes [all data]	$\mathrm{R}_{1}=0.1453, \mathrm{wR}_{2}=0.3357$
Largest diff. peak/hole $/ \mathrm{e} \AA \AA^{-3}$	$1.27 /-0.38$
CCDC number	2294236

CheckCIF shows a B-level alert for UA Na $\subset m$-HiCage-6Cl.
PROBLEM: THETM01_ALERT_3_B The value of sine(theta_max)/wavelength is less than 0.575 .
Calculated $\sin ($ theta_max $) /$ wavelength $=0.5577$.
RESPONSE: Weak absorption in high angle of the single crystal causes this problem.
A

C

Figure S42. X-ray complex structure of UA Na $\subset m$-HiCage-6Cl with side (A) and top (B) views. (C) The molecules is depicted in stick-ellipsoid style at 50\% probability level for all atoms. The other anions and all solvent molecules in a unit cell were omitted for clarity.

Table S12. Crystal data and structure refinement for complex of UA Na $\subset p$ - HiCage $\mathbf{6 C l}$.

Empirical formula	$\mathrm{C}_{221} \mathrm{H}_{195} \mathrm{Cl}_{23} \mathrm{~N}_{52} \mathrm{O}_{3}$
Formula weight	4442.63
Temperature/K	173
Crystal system	triclinic
Space group	P-1
a / \AA	19.556(2)
b/A	20.524(2)
c/A	21.612(2)
$\alpha /{ }^{\circ}$	85.958(4)
$\beta /{ }^{\circ}$	89.024(4)
$\gamma^{/ 0}$	68.616(4)
Volume/ \AA^{3}	8056.7(15)
Z	1
$\rho_{\text {cald }} / \mathrm{g} / \mathrm{cm}^{3}$	0.916
μ / mm^{-1}	1.424
$F(000)$	2300
Crystal size $/ \mathrm{mm}^{3}$	$0.3 \times 0.2 \times 0.02$
Radiation	$\mathrm{CaK} \alpha(\lambda=1.34139)$
2Θ range for data collection/ ${ }^{\circ}$	5.552 to 100
Index ranges	$-22 \leq \mathrm{h} \leq 20,-23 \leq \mathrm{k} \leq 23,-23 \leq 1 \leq 24$
Reflections collected	37972
Independent reflections	$23836\left[\mathrm{R}_{\text {int }}=0.0664, \mathrm{R}_{\text {sigma }}=0.0855\right]$
Data/restraints/parameters	23836/135/1414
Goodness-of-fit on F^{2}	0.998
Final R indexes $[1>=2 \sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.1407, \mathrm{wR}_{2}=0.2981$
Final R indexes [all data]	$\mathrm{R}_{1}=0.1758, \mathrm{wR}_{2}=0.3172$
Largest diff. peak/hole / e \AA^{-3}	1.59/-0.87
CCDC number	2297784

CheckCIF shows five B-level alerts for UA Na $\subset p$-HiCage-6Cl.

PROBLEM: THETM01_ALERT_3_B The value of sine(theta_max)/wavelength is less than 0.575 .
Calculated $\sin ($ theta_max $) /$ wavelength $=0.5711$.
RESPONSE: Weak absorption in high angle of the single crystal causes this problem.
PROBLEM: PLAT029_ALERT_3_B diffrn measured fraction theta full value Low. 0.948 Why?
RESPONSE: The crystal quality is poor. Severe polycrystallinity and disorder lead to missing data points at some angles, resulting in low data completeness.

| PROBLEM:PLAT260_ALERT_2_B Large Average Ueq of Residue Including Cl7 | 0.457 Check | |
| ---: | :--- | :--- | :--- |
| PLAT260_ALERT_2_B Large Average Ueq of Residue Including | Cl8 | 0.365 Check |

RESPONSE: Severe polycrystallinity and disorder in this crystal leading to weak diffraction, further causes this problem.

PROBLEM: PLAT340_ALERT_3_B Low Bond Precision on C-C Bonds. 0.01246 Ang.
RESPONSE: This is likely related to the weak diffraction of the crystal.

Figure S43. X-ray complex structure of $\mathbf{U A} \mathbf{N a} \subset p-\mathbf{H i C a g e} \cdot \mathbf{6 C l}$ with side (A) and top (B) views. (C) The molecules is depicted in stick-ellipsoid style at 50\% probability level for all atoms. The other anions and all solvent molecules in a unit cell were omitted for clarity.

Table S13. Crystal data and structure refinement for complex of pyrene $\subset p-\mathbf{H i C a g e} \cdot \mathbf{6 P F} \mathbf{6}$.

Empirical formula	$\mathrm{C}_{78} \mathrm{H}_{70} \mathrm{~F}_{36} \mathrm{~N}_{16} \mathrm{P}_{6}$
Formula weight	2101.32
Temperature/K	175
Crystal system	monoclinic
Space group	$\mathrm{P}_{1} / \mathrm{m}$
a / \AA	$14.7282(4)$
b / \AA	$20.4680(6)$
c / \AA	$15.7127(4)$
$\alpha /{ }^{\circ}$	90

Figure S44. X-ray complex structure of pyrene $\subset p$ - $\mathbf{H i C a g e} \cdot \mathbf{6 P F} 6$ with side (A) and top (B) views. (C) The molecules is depicted in stick-ellipsoid style at 50% probability level for all atoms. The other anions and all solvent molecules in a unit cell were omitted for clarity.

11. Biosafety Assay

Cell cytotoxicity. Cytotoxicity was evaluated by cell counting kit-8 (CCK-8) assay. H9C2 cells and L02 cells were seeded in 96-well plate ($\sim 10^{4}$ cells and $200 \mu \mathrm{~L}$ culture medium in per well) and were incubated for 24 hours at 310 K containing $5 \% \mathrm{CO}_{2}$. Then the culture medium was removed and $200 \mu \mathrm{~L}$ culture medium containing p - $\mathbf{H i C a g e} \cdot \mathbf{6 C l}$ or m-HiCage $\mathbf{6 C l}$ at different concentration was added $(60-180 \mu \mathrm{~g} / \mathrm{mL})$. The culture was removed after 24 h and $200 \mu \mathrm{~L}$ fresh culture medium containing 10% CCK-8 was added. The cells were incubated for another 1 hour and the cell cell survival rate was evaluated by absorbance at 450 nm and 600 nm using Allsheng AMR-100 microplate reader.

Hemolysis experiment. Human red blood cells were made by centrifuging from human whole blood in a $3000 \mathrm{r} / \mathrm{min}$ centrifuge for 15 min and then diluted to 5%. Rat red blood cells preserved in Alsever's solution (5\%) were centrifuged in a $1000 \mathrm{r} / \mathrm{min}$ centrifuge for 10 min to obtain red blood cells. Cells were diluted with equal volume of isotonic saline. The mixed solution $(140 \mu \mathrm{~L})$ were mixed with saline $(560 \mu \mathrm{~L}$, negative control), deionized water $(560 \mu \mathrm{~L}$, positive control), $\boldsymbol{p} \mathbf{- H i C a g e} \cdot \mathbf{6 C l}$ or m-HiCage $\cdot \mathbf{6 C l}$ solution at different concentrations $(60-180 \mu \mathrm{~g} / \mathrm{mL})$. After incubation for 1 h at 310 K , the samples were centrifugated at $10000 \mathrm{r} / \mathrm{min}$ for 10 min at 277 K and the supernatants were obtained, and their hemolysis ratio was evaluated by absorbance at 545 nm using Biotek Synergy H1 microplate reader.

12. Solubility Enhancement Studies of UA

Solubility enhancement studies were carried out using the phase solubility method. ${ }^{[4]}$ Excess UA was dispersed in p HiCage $\cdot \mathbf{6 C l}(1 \mathrm{mM})$ and $m-\mathrm{HiCage} \cdot \mathbf{6 C l}(1 \mathrm{mM})$ in water, and the mixture was stired at room temperature for 24 h . After reaching equilibrium, the mixture was filtered through a $0.45 \mu \mathrm{~m}$ filter. The resulting filtrate was diluted to 50% and the concentration of UA was determined by HPLC under the following conditions: a mobile phase of 5% $\mathrm{CH}_{3} \mathrm{CN}$ and $95 \% \mathrm{H}_{2} \mathrm{O}$ containing 0.1% TFA, a flow rate of $1.0 \mathrm{ml} / \mathrm{min}$ and a detection of 292 nm at $30^{\circ} \mathrm{C}$

Table S14. Solubility enhancement of UA

Host	$\mathbf{S}_{\text {peak }}(\mathbf{m A U} * \mathbf{s})(\mathbf{5 0 \%})$	$\mathbf{C}_{\mathbf{U A}}(\mathbf{m M})$	Enhancement rate
p-HiCage $\mathbf{6 C l}(1 \mathrm{mM})$	2992	0.5011	1.26
m-HiCage $\mathbf{6 C l}(1 \mathrm{mM})$	3336	0.5587	1.41
-	2358	0.3968	1

13. References

[1] A. Rit, T. Pape, and F. Ekkehardt Hahn, J. Am. Chem. Soc. 2010, 132, 4572.
[2] O. V. Dolomanov, L. J. Bourhis, , R. J. Gildea, , J. A. K. Howard, , H. J. Puschmann, Appl. Cryst. 2009. 42, 339.
[3] G. M. Sheldrick, Acta Cryst. 2015, C71, 3-8.
[4] Binding Constants. K. A. Connors, Wiley, 1987.

14. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

${ }^{1} \mathrm{H}$ NMR spectra of p-HiCage $\cdot 6 \mathrm{PF}_{6}$

${ }^{13} \mathrm{C}$ NMR spectra of p-HiCage $\cdot 6 \mathrm{PF}_{6}$

${ }^{1} \mathrm{H}$ NMR spectra of p-HiCage $\cdot 6 \mathrm{CI}$

${ }^{13} \mathbf{C}$ NMR spectra of p-HiCage $\cdot \mathbf{6 C l}$ with DMSO as internal reference (δ 39.4)
 ~

${ }^{1} \mathrm{H}$ NMR spectra of m-HiCage $\cdot \mathbf{6 P F} 6$

$\underbrace{\text { NNN~NN }}$
$\xrightarrow{2}$

${ }^{13} \mathrm{C}$ NMR spectra of m-HiCage $\cdot 6 \mathrm{PF}_{6}$
No Now
$\underbrace{\text { UGM, }}$

${ }^{1} \mathrm{H}$ NMR spectra of m-HiCage $\cdot 6 \mathrm{Cl}$

${ }^{13} \mathrm{C}$ NMR spectra of m-HiCage $\cdot \mathbf{6 C l}$ with DMSO as internal reference (δ 39.4)

${ }^{1} \mathrm{H}$ NMR spectra of $o-\mathrm{HiCage} \cdot \mathbf{6 P F} \mathbf{6}$

${ }^{13} \mathrm{C}$ NMR spectra of $o-\mathrm{HiCage} \cdot 6 \mathrm{PF}_{6}$

す¢	- ${ }^{\circ}$
	へั่
-5\%	

${ }^{1} \mathrm{H}$ NMR spectra of o-HiCage $\cdot \mathbf{6 C I}$

${ }^{13} \mathrm{C}$ NMR spectra of o-HiCage $\cdot 6 \mathrm{Cl}$

~~

${ }^{1} \mathbf{H}$ NMR spectra of $\mathbf{3 a} \cdot \mathbf{3 B r}$

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 a} \cdot \mathbf{3 B r}$

ベ

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 b} \cdot \mathbf{3 B r}$

${ }^{13} \mathbf{C}$ NMR spectra of $\mathbf{3 b} \cdot \mathbf{3 B r}$

