Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2023

Supporting Information for

Sequential annulation of bidentate diamines for the modular access to N-

fused/helical/spiro-carbazole scaffolds

Yi Xiao, Xiya Zhang, Yuqin Wang, Kaida Li, Guixia Wang, Xiangfei Kong, Jinghua Wang*, and Shiqing Li*

Guangxi Key Laboratory of Electrochemical and Magneto–Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, P. R. China.

E-mail: lisq@glut.edu.cn

Table of Contents

1 General remarks	S3
2 General procedure for the synthesis of <i>N</i> -aminoaryl carbazoles	S4
2.1 General procedure A (GP A) for the synthesis of compounds 6 and 9	S4
2.2 General procedure B (GP B) for the synthesis of compounds 7	S5
2.3 General procedure C (GP C) of for the synthesis of compounds 8	S6
3 Procedures for diazotization/cyclization to access compounds 10–13	S7
3.1 Synthesis of ICz 10	S7
3.2 Synthesis of compound 11	S7
3.3 Synthesis of compounds 12 and 13	S8
4 Photophysical properties	S8
4.1 UV-vis absorption and fluorescence emission data	S8
4.2 Fluorescence spectra in DCM	S9
4.3 UV-vis absorption and emission spectra in different solvents	S13
4.4 Fluorescence spectra at different concentrations	S14
5 Computational Details	S15
6 X–ray crystallographic analysis of compound 12	S15
7 Experimental data for the described substances	S17
8 References	S28
9 Copies of ¹ H and ¹³ C and ¹⁹ F NMR spectra	S29

1 General remarks

NMR spectra were obtained on a BRUKER Ascend 500. The ¹H NMR (500 MHz) chemical shifts were measured relative to CDCl₃ as the internal reference (CDCl₃: $\delta = 7.26$ ppm). All ¹³C NMR spectra were recorded with complete proton decoupling. The ¹³C NMR (125 MHz) chemical shifts were given using CDCl₃ the internal standard (CDCl₃: $\delta = 77.16$ ppm). High-resolution mass spectra (HRMS) were obtained with Waters G2-xs qtof at Nth Power Test Platform For Scientific Research. Fluorescence emission spectra were obtained using Horiba Jobin Yvon-Edison Fluoromax-4 fluorescence and Hitachi F-7000 spectrometers. Melting points were determined with SGW_® X-4 and are uncorrected. The single crystal diffraction XRD measurement was conducted by Bruker D8 VENTURE METALJET Ga-Target SC-XRD at Shiyanjia lab (www.Shiyanjia.com). Quantum yield (QY) measurement was conducted by Edinburgh FLS1000.

Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. $Cu(OAc)_2 \cdot H_2O$, $Cu(OAc)_2$, NEt_3 , 2,2'-bipyridine, Na_2CO_3 and DMF were purchased from Beijing Innochem Chemical Engineering Reagent (China) Co., Ltd. TfOH and *m*-CPBA (purity of 75%) were purchased from Adamas-Beta Ltd.

All diamines **1-4** were commercially available. Cyclic diaryliodonium salts **5a-j** were known compounds and prepared according to the literature procedures.^[1]

2 General procedure for the synthesis of N-aminoaryl carbazoles

The mixture of 1,2-diamine **1** or **4** (0.2 mmol), cyclic iodonium **5** (0.25 mmol, 1.25 equiv), Cu(OAc)₂·H₂O (8.0 mg, 20 mol%), Na₂CO₃ (63.6 mg, 0.6 mmol, 3 equiv), and DMF (1 mL) was reacted at 120 °C for 24 h under N₂ atmosphere. After reaction tube was cooled down, the mixture was directly passed through a flash chromatography, eluting with petroleum ether/EtOAc (100/1 \rightarrow 60/1, v/v) to afford products **6** and **9**.

Table S1. Optimization of the reaction conditions of 1a and 5a

Entry	Catalyst (x mol%)	Base (y equiv)	Solvent	Yield (%)
1	Cu(OAc) (20)	Na ₂ CO ₃ (3)	<i>i</i> -PrOH/(CH ₂ OH) ₂ (9:1)	59
2	$Cu(OAc)_2(10)$	Na ₂ CO ₃ (3)	<i>i</i> -PrOH/(CH ₂ OH) ₂ (9:1)	41
3	$Cu(OAc)_2(20)$	$NEt_3(1)$	DMF	75
4	$Cu(OAc)_2(10)$	$Na_2CO_3(3)$	<i>i</i> -PrOH	Trace
5	$Cu(OAc)_2(20)$	$Na_2CO_3(3)$	<i>i</i> -PrOH	53
6	$Cu(OAc)_2(20)$	Na_2CO_3 (3)	DMF	37
7	$Cu(OAc)_2 \cdot H_2O(20)$	$NEt_3(1)$	CH ₃ OH	39
8	$Cu(OAc)_2 \cdot H_2O(20)$	$NEt_3(1)$	CH ₃ CN	51
9	$Cu(OAc)_2 \cdot H_2O(20)$	$NEt_3(1)$	1,4-Dioxane	64
10	CuI (20)	$Na_2CO_3(3)$	DMF	65
11	CuBr (20)	$Na_2CO_3(3)$	DMF	80
12	CuCl (20)	$Na_2CO_3(3)$	DMF	72
13	Cu(OTf) ₂ (20)	$Na_{2}CO_{3}(3)$	DMF	81
14	Cu(OAc)2·H2O (20)	Na2CO3 (3)	DMF	90
15	$Cu(OAc)_2 \cdot H_2O(10)$	$Na_{2}CO_{3}(3)$	DMF	68
16	$Cu(OAc)_2 \cdot H_2O(10)$	$Na_{2}CO_{3}(2)$	DMF	76
17	Cu(OAc) ₂ ·H ₂ O (20)	$Na_2CO_3(1)$	DMF	48
18	$Cu(OAc)_2 \cdot H_2O(20)$	$NEt_3(1)$	DMF	53
19	$Cu(OAc)_2 \cdot H_2O(20)$	2,2'-bipy (0.1)/NEt ₃ (1)	DMF	Trace
20	$Cu(OAc)_2 \cdot H_2O(20)$	2,2'-bipy (0.1)/K ₂ CO ₃ (1)	DMF	32
21	$Cu(OAc)_2 \cdot H_2O(20)$	Xantphos/Cs ₂ CO ₃ (1)	DMF	ND
22	Cu(OAc) ₂ ·H ₂ O (20)	$Cs_2CO_3(1)$	DMF	71
23	$Cu(OAc)_2 \cdot H_2O(20)$	$K_{3}PO_{4}(3)$	DMF	81

Scale-up synthesis of 6a (1 mmol)

The mixture of **1a** (108 mg, 1.0 mmol), **5a** (534.9 mg, 1.25 mmol, 1.25 equiv), $Cu(OAc)_2 \cdot H_2O$ (40 mg, 20 mol%), Na_2CO_3 (318 mg, 3.0 mmol, 3 equiv), and DMF (5 mL) was reacted at 120 °C for 24 h under N_2 atmosphere. The reaction mixture was cooled down before concentrated under vacuum. The residue was purified by a silica gel (200–300 mesh) column, eluting with petroleum ether/EtOAc (100/1, v/v) to afford product **6a** as a white solid (136 mg, 75% yield).

2.2 General procedure B (GP B) for the synthesis of compounds 7

To a dry Schlenk tube was added naphthalene-1,8-diamine 2 (31.6 mg, 0.2 mmol), diaryliodonium 5 (0.25 mmol, 1.25 equiv), Cu(OAc)₂·H₂O (8.0 mg, 20 mol%), Na₂CO₃ (42.4 mg, 0.4 mmol, 2 equiv), and DMF (1 mL), the mixture was reacted at 120 °C for 24 h under air. After reaction tube was completed, the mixture was directly passed through a flash chromatography [petroleum ether/EtOAc (100/1 \rightarrow 60/1, v/v)] to afford products 7.

Table S2	2.0	ptim	ization	of	reaction	conditions	of 2	and 5a
		r · · · ·		- J				

 $Cu(OAc)_2 \cdot H_2O(10)$

Scale-up synthesis of 7a (1 mmol)

4

The mixture of **2** (158 mg, 1.0 mmol), **5a** (534.9 mg, 1.25 mmol, 1.25 equiv), $Cu(OAc)_2 \cdot H_2O$ (40 mg, 20 mol%), Na_2CO_3 (212 mg, 2.0 mmol, 2 equiv), and DMF (5 mL) was reacted at 120 °C for 24 h under air. The

 $Na_2CO_3(3)$

75%

 N_2

reaction mixture was cooled down before concentrated under vacuum. The residue was purified by a silica gel (200–300 mesh) column, eluting with petroleum ether/EtOAc (100/1, v/v) to afford product **7a** as a yellow solid (276 mg, 90% yield).

2.3 General procedure C (GP C) of for the synthesis of compounds 8

The mixture of [1,1'-biaryl]-2,2'-diamine **3** (0.2 mmol), diaryliodonium **5** (0.25 mmol, 1.25 equiv), CuBr (2.8 mg, 10 mol%), NEt₃ (84 μ L, 3 equiv), and DMF (1 mL) was reacted at 120 °C for 24 h under N₂. After reaction tube was cooled down, the mixture was directly passed through a flash chromatography [petroleum ether/EtOAc (100/1 \rightarrow 80/1, v/v)] to afford products **8**.

Table S3. Optimization of reaction conditions of 3b and 5a

3b	H_2 + OTf H_2 + 5a	CuBr (10 mol%) NEt ₃ (3 equiv) DMF N ₂ , 120 °C, 24h				
Entry	Catalyst (x mol%)	Base (y equiv)	Yield (%)			
1	Cu(OAc) ₂ ·H ₂ O (10)	$NEt_3(1)$	18			
2	$Cu(OAc)_2 \cdot H_2O(20)$	$NEt_3(1)$	16			
3	Cu(OAc) ₂ ·H ₂ O (10)	NEt ₃ (2)	12			
4	Cu(OAc) ₂ (20)	$NEt_3(3)$	26			
5	$Cu(OAc)_2$ (10)	$NEt_3(3)$	21			
6	CuBr (10)	NEt ₃ (3)	33			

3 Procedures for diazotization/cyclization to access compounds 10-13

3.1 Synthesis of ICz 10

Compound **10** was synthesized according to the modified literature procedures.^[2] To a solution of 9-(2aminophenyl)-9*H*-carbazole **6a** (129.2 mg, 0.5 mmol) in acetic acid (1.3 mL) and sulfuric acid (130 μ L) mixture was added dropwise an aqueous solution of NaNO₂ (51.8 mg, 0.75 mmol, 1.5 equiv, in 1.5 mL water) at 0 °C. After 30 min, the mixture was heated to 130 °C for 2 h. The reaction mixture was cooled to room temperature and poured into water (10 mL), giving a large amount of precipitate. The precipitate was collected by filtration and washed with methanol to give the crude product, which was purified on a silica gel (200–300 mesh) column and eluted with petroleum ether/EtOAc (100/1, v/v) to obtain product **10** as a white solid (71.1 mg, 60% yield).

3.2 Synthesis of compound 11

To a solution of **7a** (154.6 mg, 0.5 mmol) in acetic acid (5 mL) a was added dropwise an aqueous solution of NaNO₂ (120.8 mg, 1.75 mmol, 3.5 equiv, in 3.0 mL water). The temperature of the mixture was maintained below 0 °C for 30 min. After then, the reaction was stirred at 40 °C for 2 h. After being cooled down to room temperature, the mixture was extracted with CH_2Cl_2 (3 × 30 mL). The combined organic phase was dried by Na₂SO₄, and filtered. After removing the volatile components from the filtrate, the crude product was purified on a silica gel (300–400 mesh) column and eluted with petroleum ether to obtain product **11** as a yellowish-green solid (80.1 mg, 55% yield).

3.3 Synthesis of compounds 12 and 13

The operation was according to the modified literature procedures.^[3] To a solution of **8b** (87.2 mg, 0.2 mmol) in acetic acid (2 mL) a was added dropwise an aqueous solution of NaNO₂ (64.2 mg, 0.93 mmol, 4.65 equiv, in 3 mL water). The temperature of the mixture was maintained below 0 °C for 30 minutes before adding urea (51.3 mg, 0.86 mmol, 4.27 equiv). Then heating the tube to 40 °C for 2 hours. After being cooled down to room temperature, the mixture was extracted with $CH_2Cl_2(3 \times 30 \text{ mL})$. The combined organic phase was dried by Na₂SO₄, and filtered. After removing the volatile components from the filtrate, the crude product was purified on a silica gel (200–300 mesh) column and eluted with petroleum ether/EtOAc (120/1, v/v) to obtain product **12** as a gray solid (35 mg, 42% yield); going on eluting with $CH_2Cl_2/methanol (15/1, v/v)$, to obtain product **13** as a yellow solid (53.5 mg, 56% yield).

4 Photophysical properties

4.1 UV-vis absorption and fluorescence emission data

Compd.	λ_{max} (Emission)	FWHM
6a	365 nm	45 nm
6b	359 nm	44 nm
6c	410 nm	68 nm
6d	369 nm	49 nm
6e	365 nm	41 nm
6f	369 nm	51 nm
6g	353 nm	43 nm
6h	381 nm	51 nm
6i	393 nm	48 nm
6j	373 nm	53 nm
6k	360 nm	55 nm
7a	424 nm	66 nm
7b	422 nm	65 nm
7c	423 nm	68 nm
7d	424 nm	66 nm
7e	424 nm	66 nm
8 a	383 nm	76 nm

Table S4. Photophysical data in CH_2Cl_2 (10 μ M).

8b	463 nm	89 nm
8c	456 nm	81 nm
8d	461 nm	84 nm
9	364 nm	42 nm

4.2 Fluorescence spectra in DCM

S12

4.3 UV-vis absorption and emission spectra in different solvents

Compd.	Solvent	$\lambda_{max}(absorption)$	$\lambda_{\max}(\text{Emission})$	QY
10	DCM	360 nm	375 nm	0.36
10	THF	362 nm	379 nm	0.37
10	Toluene	364 nm	371 nm	0.36
11	DCM	441 nm	482 nm	0.61
11	THF	439 nm	481 nm	0.63
11	Toluene	443 nm	485 nm	0.45
12	DCM	354 nm	505 nm	0.05
12	THF	351 nm	503 nm	0.05
12	Toluene	353 nm	504 nm	0.09
13	DCM	371 nm	402 nm	0.05
13	THF	/ (insoluble)	403 nm	0.06
13	Toluene	/ (insoluble)	404 nm	0.02

Table S5. Photophysical data in different solvents (10 µM).

Figure S1. Normalized absorption spectra of compounds (A) **10**, (B) **11**, (C) **12**, and (D) **13** in CH₂Cl₂ (DCM), THF and toluene.

Figure S2. Normalized emission spectra of compounds (A) 10, (B) 11, (C) 12, and (D) 13 in CH₂Cl₂ (DCM), THF and toluene.

4.4 Fluorescence spectra at different concentrations

Figure S3. Emission spectra of compounds (A) 10, (B) 11, and (C) 12 in toluene and (D) 13 in DCM at different concentrations $(10^{-5}, 10^{-4}, 10^{-3}, 10^{-2} M)$.

5 Computational Details

The theoretical calculations were performed via the Gaussian 16 suite of programs.^[4] The structures of the studied molecules (denoted by A, B, C, and D) were fully optimized at the B3LYP-D3BJ/6-31G* level of theory. The solvent effect was included in the calculations using the solvation model based on the density (SMD) model. The vibrational frequencies of the optimized structures were carried out at the same level. The structures were characterized as a local energy minimum on the potential energy surface by verifying that all the vibrational frequencies were real. The molecular orbital levels of studied compounds were investigated via theoretical calculations, including the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). The GaussView package^[5] was used to plot the color-filled iso-surface graphs to visualize the molecular orbitals.

6 X-ray crystallographic analysis of compound 12

Crystallographic data for **12** have been deposited with the Cambridge Crystallographic Data Centre as deposition number 2300973. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing <u>data_request@ccdc.cam.ac.uk</u>, or by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB21EZ, UK; fax: +44 1223 336033.

General crystal growing conditions of **12**: X-ray quality single crystal of **12** was grown from the cosolvent of DCM and hexane (1:4, v/v) at room temperature by slow evaporation for 3 days.

Figure S4 ORTEP diagram of 12 (CCDC 2300973). Thermal ellipsoids are shown at the 50% probability level.

Table S6 Crystal data and structure refinement for 230612ZH_ZHCZ299138_ZCS_0m.

Identification code	230612ZH_ZHCZ299138_ZCS_0m
Empirical formula	C32H19N
Formula weight	417.48
Temperature/K	193.00
Crystal system	orthorhombic
Space group	Pca21
a/Å	12.987(2)
b/Å	21.072(3)
c/Å	7.5399(9)
α/°	90
β/°	90
$\gamma^{\prime \circ}$	90
Volume/Å3	2063.4(5)
Z	4
pcalcg/cm3	1.344
µ/mm–1	0.378
F(000)	872.0
Crystal size/mm3	$0.3 \times 0.2 \times 0.1$
Radiation	$GaK\alpha \ (\lambda = 1.34138)$
2⊖ range for data collection/°	6.956 to 108.112
Index ranges	$-15 \leq h \leq 15, -25 \leq k \leq 15, -9 \leq 1 \leq 7$
Reflections collected	13080
Independent reflections	3005 [Rint = 0.0948, Rsigma = 0.0930]
Data/restraints/parameters	3005/4/250
Goodness-of-fit on F2	1.114
Final R indexes [I>= 2σ (I)]	R1 = 0.0892, wR2 = 0.2250
Final R indexes [all data]	R1 = 0.1514, wR2 = 0.2696
Largest diff. peak/hole / e Å-3	0.32/-0.39
Flack parameter	-1.9(10)

7 Experimental data for the described substances

2-(9H-carbazol-9-yl)aniline (6a)

White solid (46.5 mg, 90% yield). Purification via a silica (100–200 mesh) gel column (petroleum ether/EtOAc = 80/1, v/v). M.p.: 105–107 °C. ¹H NMR (500 MHz, CDCl₃): δ = 8.16 (d, *J* = 7.5 Hz, 2H), 7.42 (t, *J* = 7.5 Hz, 2H), 7.35–7.26 (m, 4H), 7.19 (d, *J* = 8.0 Hz, 2H), 6.97 (d, *J* = 8.0 Hz, 1H), 6.92 (t, *J* = 7.5 Hz, 1H), 3.55 (s, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 144.1, 140.7, 129.8, 129.7, 126.1, 123.5, 122.4, 120.5, 120.0, 119.0, 116.7, 110.3 ppm. HRMS (ESI) *m*/*z*: calcd for C₁₈H₁₅N₂ ([M + H]⁺) 259.1230, found 259.1229.

2-(2-methoxy-9H-carbazol-9-yl)aniline (6b)

Yellow solid (23.1 mg, 40% yield). Purification via a silica (100–200 mesh) gel column (petroleum ether/EtOAc = 30/1, v/v). M.p.: 47–49 °C. ¹H NMR (500 MHz, CDCl₃): δ = 8.04 (d, *J* = 8.0 Hz, 1H), 8.01 (d, *J* = 8.5 Hz, 1H), 7.33 (t, *J* = 7.5 Hz, 2H), 7.27–7.24 (m, 2H, cover the solvent), 7.12 (d, *J* = 8.0 Hz, 1H), 6.97 (d, *J* = 8.0 Hz, 1H), 6.93–6.89 (m, 2H), 6.64 (s, 1H), 3.83 (s, 3H), 3.58 (s, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 159.5, 144.2, 142.2, 140.8, 129.8, 124.8, 123.7, 122.4, 121.2, 120.1, 119.6, 119.0, 117.2, 116.7, 110.0, 108.8, 94.2. 55.8 ppm. HRMS (ESI) *m/z*: calcd for C₁₉H₁₇N₂O ([M + H]⁺) 289.1335, found 289.1340.

9-(2-aminophenyl)-9H-carbazole-2-carbonitrile (6c)

White solid (23.2 mg, 41% yield). Purification via a silica (100–200 mesh) gel column (petroleum ether/EtOAc = 50/1, v/v). M.p.: 164–166 °C. ¹H NMR (500 MHz, CDCl₃): δ = 8.20 (t, *J* = 8.5 Hz, 2H), 7.55–

7.49 (m, 3H), 7.39–7.35 (m, 2H), 7.25–7.22 (m, 2H), 7.00 (d, J = 8.5 Hz, 1H), 6.94 (t, J = 7.5 Hz, 1H), 3.54 (s, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 143.9$, 142.0, 139.8, 130.5, 129.5, 128.2 (2C), 126.9, 123.3, 122.4, 121.4, 121.2, 121.1, 120.1, 119.3, 117.0, 114.7, 110.9, 108.7 ppm. HRMS (ESI) *m/z*: calcd for C₁₉H₁₄N₃ ([M + H]⁺) 284.1182, found 284.1183.

2-(2-chloro-9H-carbazol-9-yl)aniline (6d)

White solid (35.0 mg, 60% yield). Purification via a silica (100–200 mesh) gel column (petroleum ether/EtOAc = 50/1, v/v). M.p.: 46–48 °C. ¹H NMR (500 MHz, CDCl₃): δ = 8.11 (d, *J* = 7.5 Hz, 1H), 8.04 (d, *J* = 8.0 Hz, 1H), 7.42 (t, *J* = 7.8 Hz, 1H), 7.36–7.29 (m, 2H), 7.25–7.23 (m, 2H), 7.18–7.16 (m, 2H), 6.97 (d, *J* = 8.0 Hz, 1H), 6.92 (t, *J* = 7.5 Hz, 1H), 3.55 (s, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 144.0, 141.3, 141.1, 132.0, 130.1, 129.7, 126.5, 122.9, 122.0, 121.7, 121.3, 120.6, 120.5, 120.4, 119.1, 116.8, 110.5, 110.4 ppm. HRMS (ESI) *m/z*: calcd for C₁₉H₁₄ClN₂ ([M + H]⁺) 293.0840, found293.0836.

2-(2,7-di-*tert*-butyl-9*H*-carbazol-9-yl)aniline (6e)

White solid (40.0 mg, 54% yield). Purification via a silica (100–200 mesh) gel column (petroleum ether/EtOAc = 80/1, v/v). M.p.: 138–140 °C. ¹H NMR (500 MHz, CDCl₃): δ = 8.02 (d, *J* = 8.5 Hz, 2H), 7.34–7.28 (m, 4H), 7.13 (s, 2H), 6.99 (d, *J* = 8.0 Hz, 1H), 6.94 (t, *J* = 7.5 Hz, 1H), 3.59 (s, 2H), 1.37 (s, 18H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 149.4, 144.1 (2C), 129.8, 129.4, 122.7, 121.1, 119.6, 118.9, 117.8, 116.7, 106.6, 35.3, 31.9 ppm. HRMS (ESI) *m/z*: calcd for C₂₆H₃₁N₂ ([M + H]⁺) 371.2482, found 371.2493.

2-(2,7-dichloro-9H-carbazol-9-yl)aniline (6f)

Red solid (57.4 mg, 88% yield). Purification via a silica (100–200 mesh) gel column (petroleum ether/EtOAc = 50/1, v/v). M.p.: 93–95 °C. ¹H NMR (500 MHz, CDCl₃): δ = 7.98 (d, *J* = 7.0 Hz, 2H), 7.34 (t, *J* = 7.8 Hz, 1H), 7.25–7.24 (m, 2H), 7.19 (d, *J* = 8.0 Hz, 1H), 7.13 (s, 2H), 6.96 (d, *J* = 8 Hz, 1H), 6.91 (t, *J* = 7.5, 1H), 3.55 (s, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 143.9, 141.7, 132.3, 130.5, 129.5, 121.5, 121.3, 121.1, 121.0, 119.3, 116.9, 110.6 ppm. HRMS (ESI) m/z: calcd for C₁₈H₁₃N₂Cl₂ ([M + H]⁺) 327.0450, found 327.0453.

2-(2,7-difluoro-9H-carbazol-9-yl)aniline (6g)

White solid (18.3 mg, 31% yield). Purification via a silica (100–200 mesh) gel column (petroleum ether/EtOAc = 80/1, v/v). M.p.: 113–115 °C. ¹H NMR (500 MHz, CDCl₃): δ = 8.00–7.98 (m, 2H), 7.35 (t, *J* = 7.8 Hz, 1H), 7.22 (d, *J* = 8.0 Hz, 1H), 7.02 (t, *J* = 9.0 Hz, 2H), 6.97 (d, *J* = 8.5 Hz, 1H), 6.92 (t, *J* = 7.5 Hz, 1H), 6.85 (d, *J* = 9.5 Hz, 2H), 3.56 (s, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 162.1 (d, *J*_{C-F} = 240.9 Hz), 143.9, 142.1 (d, *J*_{C-F} = 12.9 Hz), 130.3, 129.4, 121.4, 121.0 (d, *J*_{C-F} = 10.3 Hz), 119.5, 119.2, 116.9, 108.6 (d, *J*_{C-F} = 24.0 Hz), 97.4 (d, *J*_{C-F} = 27.4 Hz) ppm. ¹⁹F NMR (470 MHz, CDCl₃): δ =-115.2 ppm. HRMS (ESI) *m/z*: calcd for C₁₈H₁₃F₂N₂ ([M + H]⁺) 295.1041, found 295.1046.

2-(2-methyl-7-(trifluoromethyl)-9H-carbazol-9-yl)aniline (6h)

White solid (36.7 mg, 54% yield). Purification via a silica (100–200 mesh) gel column (petroleum ether/EtOAc = 80/1, v/v). M.p.: 123–125 °C. ¹H NMR (500 MHz, CDCl₃): δ = 8.16 (d, *J* = 8.0 Hz, 1H), 8.05

(d, J = 8.0 Hz, 1H), 7.50 (d, J = 8.0 Hz, 1H), 7.38–7.35 (m, 2H), 7.23 (d, J = 8.0 Hz, 1H), 7.16 (d, J = 8.0 Hz, 1H), 7.00–6.98 (m, 2H), 6.94 (t, J = 7.5 Hz, 1H), 3.53 (s, 2H), 2.49 (s, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 144.1, 142.3, 140.0, 138.1, 130.2, 129.7, 127.5$ (q, $J_{C-F} = 31.8$ Hz), 126.2, 125.0 (q, $J_{C-F} = 270.5$ Hz), 122.3, 121.7, 120.8, 120.4, 120.3, 119.2, 116.9, 116.7 (q, $J_{C-F} = 3.8$ Hz), 110.6, 107.5 (q, $J_{C-F} = 4.3$ Hz), 22.3 ppm. ¹⁹F NMR (470 MHz, CDCl₃): $\delta = -60.7$ ppm. HRMS (ESI) *m/z*: calcd for C₂₀H₁₆F₃N₂ ([M + H]⁺) 341.1260, found 341.1270.

3-(9H-carbazol-9-yl)naphthalen-2-amine (6i)

White solid (34.5 mg, 56% yield). Purification via a silica (200–300 mesh) gel column (petroleum ether/EtOAc = 60/1, v/v). M.p.: 148–150 °C. ¹H NMR (500 MHz, CDCl₃): δ = 8.19 (d, *J* = 8.0 Hz, 2H), 7.83 (s, 1H), 7.75–7.71 (m, 2H), 7.48 (t, *J* = 7.5 Hz, 1H), 7.42 (t, *J* = 7.8 Hz, 2H), 7.33–7.29 (m, 4H), 7.21 (d, *J* = 8.0 Hz, 2H), 3.72 (s, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 142.3, 141.1, 135.0, 129.1, 128.0, 127.9, 127.3, 126.3, 125.8, 125.3, 123.6, 123.2, 120.6, 120.2, 110.4, 110.3 ppm. HRMS (ESI) *m/z*: calcd for C₂₂H₁₇N₂ ([M + H]⁺) 309.1387, found 309.1384.

2-(9H-carbazol-9-yl)-4,5-dimethylaniline (6j)

Yellow solid (20.0 mg, 35% yield). Purification via a silica (100–200 mesh) gel column (petroleum ether/EtOAc = 40/1, v/v) M.p.: 51–53 °C. ¹H NMR (500 MHz, CDCl₃): δ = 8.14 (d, *J* = 7.5 Hz, 2H), 7.40 (t, *J* = 7.8 Hz, 2H), 7.28–7.26 (m, 2H), 7.19 (d, *J* = 8.0 Hz, 2H), 7.02 (s, 1H), 6.81 (s, 1H), 2.99 (br s, 2H), 2.31 (s, 3H), 2.21 (s, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 141.0, 138.4, 130.2, 127.9, 126.1, 123.4, 120.5, 120.4, 119.9, 118.6, 110.3, 19.9, 19.0 ppm. HRMS (ESI) *m*/*z*: calcd for C₂₀H₁₉N₂ ([M + H]⁺) 287.1543, found 287.1542.

2-(9H-carbazol-9-yl)-4,5-dichloroaniline (6k)

Red solid (33.3 mg, 51% yield). Purification via a silica (100–200 mesh) gel column (petroleum ether/EtOAc = 50/1, v/v). M.p.: 87–89 °C. ¹H NMR (500 MHz, CDCl₃): δ = 8.14 (d, *J* = 7.5 Hz, 2H), 7.43 (t, *J* = 7.8 Hz, 2H), 7.36 (s, 1H), 7.31 (t, *J* = 7.5 Hz, 2H), 7.17 (d, *J* = 8.0 Hz, 2H), 7.07 (s, 1H), 3.67 (s, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 143.8, 140.3, 133.4, 131.1, 126.4, 123.7, 121.9, 121.0, 120.6 (2C), 117.5, 110.1 ppm. HRMS (ESI) *m*/*z*: calcd for C₁₈H₁₃N₂Cl₂ ([M + H]⁺) 327.0450, found 327.0451.

2-(9H-carbazol-9-yl)-4-methylaniline (6l) and 2-(9H-carbazol-9-yl)-5-methylaniline (6l')

Red solid (27.7 mg, 51% yield, a mixture of 6l and 6l', their ratio is 3:2). Purification via a silica (100–200 mesh) gel column (petroleum ether/EtOAc =50/1, v/v). ¹H NMR (500 MHz, CDCl₃): δ = 8.12 (d, *J* = 7.5 Hz, 3.3H, major + minor), 7.37 (t, *J* = 7.8 Hz, 3.3H, major + minor), 7.25–7.22 (m, 3.3H, major + minor), 7.17–7.14 (m, 3.3H, major + minor), 7.10 (d, *J* = 8.0 Hz, 1.7H, major + minor), 7.04 (s, 0.7H, minor), 6.85 (d, *J* = 8.5 Hz, 0.7H, minor), 7.75 (s, 1H, major), 6.69 (d, *J* = 8.0 Hz, 1H, major), 3.67 (br s, 3.3H, major + minor), 2.37 (s, 3H, major), 2.27 (s, 2H, minor) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 146.0, 145.8, 144.7, 143.8, 141.9, 140.9, 130.4, 129.9, 129.5, 127.0, 126.3, 126.1, 123.4, 122.5, 120.4, 120.0, 119.9 (2C), 117.2, 110.3 (2C), 21.6, 20.5 ppm. HRMS (ESI) *m/z*: calcd for C₁₉H₁₇N₂ ([M + H]⁺) 273.1386, found 273.1393.

8-(9H-carbazol-9-yl)naphthalen-1-amine (7a)

Yellow solid (59.2 mg, 96% yield). Purification via a silica (200–300 mesh) gel column (petroleum ether/EtOAc = 60/1, v/v). M.p.: 135–137 °C. ¹H NMR (500 MHz, CDCl₃): δ = 8.19 (d, *J* = 8.0 Hz, 2H), 7.98 (d, *J* = 8.5 Hz, 1H), 7.52 (t, *J* = 7.8 Hz, 1H), 7.44–7.31 (m, 6H), 7.25 (d, *J* = 8.5 Hz, 1H), 7.07 (d, *J* = 8.5 Hz, 2H), 6.60 (d, *J* = 7.5 Hz, 1H), 3.60 (s, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 143.0, 142.7, 137.3, 133.0, 130.5, 127.5, 127.3, 126.5, 125.9, 123.4, 121.3, 120.5, 120.4, 118.7, 112.0, 110.9 ppm. HRMS (ESI) *m*/*z*: calcd for C₂₂H₁₇N₂, ([M + H]⁺) 309.1386, found 309.1388.

8-(2-methyl-9H-carbazol-9-yl)naphthalen-1-amine (7b)

Yellow solid (36.1 mg, 52% yield). Purification via a silica (200–300 mesh) gel column (petroleum ether/EtOAc = 100/1, v/v). M.p.: 89–91 °C. ¹H NMR (500 MHz, CDCl₃): δ = 8.13 (d, *J* = 7.5 Hz, 1H), 8.05 (d, *J* = 8.0 Hz, 1H), 7.98 (d, *J* = 8.5 Hz, 1H), 7.52 (t, *J* = 7.8 Hz, 1H), 7.43 (d, *J* = 8.0 Hz, 1H), 7.36–7.33 (m, 2H), 7.29 (t, *J* = 7.5 Hz, 1H), 7.23 (d, *J* = 7.0 Hz, 1H), 7.14 (d, *J* = 8.0 Hz, 1H), 7.01 (d, *J* = 8.0 Hz, 1H), 6.85 (s, 1H), 6.60 (d, *J* = 7.5 Hz, 1H), 3.62 (br s, 2H), 2.42 (s, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 143.1, 143.0, 142.7, 137.2, 136.9, 133.1, 130.4, 127.5, 127.3, 126.0, 125.9, 123.5, 122.0, 121.3, 121.1, 120.4, 120.2 (2C), 118.7, 112.0, 110.9, 110.8, 22.2 ppm. HRMS (ESI) *m*/z: calcd for C₂₃H₁₉N₂, ([M + H]⁺) 323.1543, found 323.1554.

8-(2-methoxy-9H-carbazol-9-yl)naphthalen-1-amine (7c)

Yellow solid (43.9 mg, 65% yield). Purification via a silica (200–300 mesh) gel column (petroleum ether/EtOAc =100/1, v/v). 155–157 °C. ¹H NMR (500 MHz, CDCl₃): δ = 8.08–8.06 (m, 1H), 8.03 (d, *J* = 8.5 Hz, 1H), 7.97 (d, *J* = 8.5 Hz, 1H), 7.52 (t, *J* = 7.5 Hz, 1H), 7.42 (d, *J* = 8.0 Hz, 1H), 7.34 (t, *J* = 7.8 Hz, 1H), 7.29–7.28 (m, 2H), 7.24 (d, *J* = 7.0 Hz, 1H), 6.97 (d, *J* = 6.5 Hz, 1H), 6.92 (d, *J* = 9.0 Hz, 1H), 6.60 (d, *J* = 7.5 Hz, 1H), 6.51 (s, 1H), 3.74 (s, 3H), 3.49 (s, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ =159.7, 144.0, 143.0, 142.7, 137.3, 132.9, 130.5, 127.5, 127.4, 125.9, 125.2, 123.5, 121.3 (2C), 120.6, 119.6, 118.7, 117.1, 112.0, 110.7, 109.4, 94.7, 55.7 ppm. HRMS (ESI) *m/z*: calcd for C₂₃H₁₉N₂O, ([M + H]⁺) 339.1492, found 339.1499.

8-(2-chloro-9*H*-carbazol-9-yl)naphthalen-1-amine (7d)

Yellow solid (23.3 mg, 34% yield). Purification via a silica (200–300 mesh) gel column (petroleum ether/EtOAc = 100/1, v/v). M.p.: 184–186 °C. ¹H NMR (500 MHz, CDCl₃): δ = 8.13 (d, *J* = 7.5 Hz, 1H), 8.07 (d, *J* = 8.5 Hz, 1H), 7.99 (d, *J* = 8.0 Hz, 1H) 7.52 (t, *J* = 7.8 Hz, 1H), 7.43 (d, *J* = 8.0 Hz, 1H), 7.40–7.28 (m, 4H), 7.23 (d, *J* = 7.5 Hz, 1H), 7.05–7.03 (m, 2H), 6.62 (d, *J* = 7.5 Hz, 1H), 3.53 (s, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 143.2, 143.0, 142.7, 137.3, 132.3 (2C), 130.8, 127.5 (2C), 126.9, 125.9, 122.8, 122.0, 121.4, 121.1, 121.0, 120.9, 120.5, 119.0, 112.4, 111.1, 111.0 ppm. HRMS (ESI) *m/z*: calcd for C₂₂H₁₆ClN₂, ([M + H]⁺) 343.0997, found 343.0999.

8-(2-methyl-7-(trifluoromethyl)-9*H*-carbazol-9-yl)naphthalen-1-amine (7e)

Yellow solid (42.9 mg, 55% yield). Purification via a silica (200–300 mesh) gel column (petroleum ether/EtOAc = 100/1, v/v). M.p.: 64–66 °C. ¹H NMR (500 MHz, CDCl₃): δ = 8.21 (d, J = 8.0 Hz, 1H), 8.09 (d, J = 8.0 Hz, 1H), 8.02 (d, J = 8.5 Hz, 1H), 7.57–7.53 (m, 2H), 7.46 (d, J = 8.5 Hz, 1H), 7.38 (t, J = 7.8 Hz, 1H), 7.28 (s, 1H), 7.23 (d, J = 7.0 Hz, 1H), 7.19 (d, J = 8.0 Hz, 1H), 6.86 (s, 1H), 6.63 (d, J = 7.5 Hz, 1H),

3.51 (s, 2H), 2.43 (s, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 144.2, 142.7, 141.8, 138.5, 137.3, 132.2, 131.0, 127.9 (q, J_{C-F} = 32.1 Hz), 127.6, 127.5, 126.1, 125.9, 122.8, 122.7 (q, J_{C-F} = 270.5 Hz), 120.7 (q, J_{C-F} = 46.4 Hz), 119.0, 117.1 (q, J_{C-F} = 3.8 Hz), 112.4, 111.2, 108.1 (q, J_{C-F} = 4.3 Hz), 22.3 ppm. ¹⁹F NMR (470 MHz, CDCl₃): δ = -60.8 ppm. HRMS (ESI) *m/z*: calcd for C₂₄H₁₈F₃N₂, ([M + H]⁺) 391.1417, found 391.1420.

2'-(9H-carbazol-9-yl)-[1,1'-biphenyl]-2-amine (8a)

White solid (33.4 mg, 50% yield). Purification via a silica (200–300 mesh) gel column (petroleum ether/EtOAc = 100/1, v/v). ¹H NMR (500 MHz, CDCl₃): δ = 8.02 (br s, 2H), 7.70 (d, *J* = 8.0 Hz, 1H), 7.61–7.56 (m, 3H), 7.34–7.14 (m, 6H, cover the solvent), 6.79 (t, *J* = 7.5 Hz, 1H), 6.67 (d, *J* = 8.0 Hz, 1H), 6.46 (d, *J* = 8.0 Hz, 1H), 6.29 (t, *J* = 7.5 Hz, 1H), 3.65 (s, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 143.3, 138.6, 136.2, 132.3, 130.4, 129.8, 129.1, 128.9, 128.8, 125.8, 125.6, 123.7, 123.5, 123.3, 120.2, 119.6, 118.3, 115.7 ppm. The NMR data are consistent with the literature.^[6]

2'-(9H-carbazol-9-yl)-[1,1'-binaphthalen]-2-amine (8b)

Yellow solid (41.7 mg, 48% yield). Purification via a silica (200–300 mesh) gel column (petroleum ether/EtOAc = 100/1, v/v). M.p.: >250 °C. ¹H NMR (500 MHz, CDCl₃): δ = 8.17 (d, *J* = 9.0 Hz, 1H), 8.09 (d, *J* = 8.0 Hz, 1H), 7.92 (d, *J* = 8.0 Hz, 1H), 7.85 (d, *J* = 7.5 Hz, 1H), 7.69 (d, *J* = 7.5 Hz, 1H), 7.64 (t, *J* = 7.5 Hz, 1H), 7.58 (d, *J* = 7.5 Hz, 1H), 7.58 (d, *J* = 7.5 Hz, 1H), 7.47–7.43 (m, 2H), 7.40 (d, *J* = 8.5 Hz, 1H), 7.35 (d, *J* = 8.0 Hz, 1H), 7.24 (d, *J* = 8.0 Hz, 1H), 7.18–7.12 (m, 2H), 7.08 (d, *J* = 7.5 Hz, 1H), 7.04–6.96 (m, 4H), 6.71 (d, *J* = 9.0 Hz, 1H), 3.58 (s, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 142.0, 141.6, 141.4, 135.8, 133.7, 133.6, 133.5, 133.4, 130.1, 129.5, 128.6, 128.1, 128.0, 127.9, 127.5, 127.1 (2C), 125.9, 125.3, 125.0, 124.8, 123.3, 123.1, 122.1,

120.0, 119.7, 119.5 (2C), 118.2, 113.0, 111.0, 110.2 ppm. **HRMS (ESI)** *m/z*: calcd for C₃₂H₂₃N₂, ([M + H]⁺) 435.1856, found 435.1864.

2'-(2,7-di-*tert*-butyl-9*H*-carbazol-9-yl)-[1,1'-binaphthalen]-2-amine (8c)

Yellow solid (56.8 mg, 52% yield). Purification via a silica (200–300 mesh) gel column (petroleum ether/EtOAc = 90/1, v/v). M.p.: 225–227 °C. ¹H NMR (500 MHz, CDCl₃): δ = 8.17 (d, *J* = 8.5 Hz, 1H), 8.11 (d, *J* = 8.5 Hz, 1H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.69 (d, *J* = 8.0 Hz, 1H), 7.65–7.62 (m, 2H), 7.54 (d, *J* = 8.5 Hz, 1H), 7.48–7.42 (m, 3H), 7.24 (s, 1H), 7.20 (d, *J* = 8.5 Hz, 1H), 7.17 (d, *J* = 8.5 Hz, 1H), 7.10 (d, *J* = 8.5 Hz, 1H), 7.03 (s, 1H), 6.98 (t, *J* = 7.5 Hz, 1H), 6.93 (t, *J* = 7.5 Hz, 1H), 6.75 (d, *J* = 8.5 Hz, 1H), 3.64 (s, 2H), 1.32 (s, 9H), 1.16 (s, 9H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 148.6, 148.5, 142.4, 142.3, 142.0, 136.2, 133.8, 133.6 (2C), 133.5, 130.1, 129.5, 128.7, 128.6, 128.0, 127.9, 127.4, 127.2, 127.0, 126.2, 124.9, 122.0, 121.1, 120.9, 119.1, 118.9, 118.3, 117.3, 117.2, 113.1, 107.2, 106.7, 35.3, 35.0, 31.9, 31.8 ppm. HRMS (ESI) *m/z*: calcd for C₄₀H₃₉N₂, ([M + H]⁺) 547.3108, found 547.3118.

2'-(2,7-dichloro-9*H*-carbazol-9-yl)-[1,1'-binaphthalen]-2-amine (8d)

Yellow solid (45.2 mg, 45% yield). Purification via a silica (200–300 mesh) gel column (petroleum ether/EtOAc =100/1, v/v). M.p.: 158–160 °C ¹H NMR (500 MHz, CDCl₃): δ = 8.21 (d, J = 9.0 Hz, 1H), 8.11 (d, J = 8.0 Hz, 1H), 7.70–7.60 (m, 5H), 7.48 (t, J = 7.8 Hz, 1H), 7.43–7.39 (m, 3H), 7.16 (s, 1H), 7.04–6.91 (m, 5H), 6.79 (d, J = 9.0 Hz, 1H), 3.67 (s, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 142.1, 142.0, 141.9, 134.4, 133.9, 133.6, 133.3, 133.0, 131.4, 131.2, 130.4, 129.7, 128.8, 127.9, 127.8 (2C), 127.5, 127.4, 126.9,

126.0, 124.4, 122.3, 121.0 (2C), 120.6, 120.4, 120.3, 118.0, 112.4, 111.1, 111.0 ppm. **HRMS (ESI)** *m/z*: calcd for C₃₂H₂₁Cl₂N₂, ([M + H]⁺) 503.1076, found 503.1077.

2-(2-(9H-carbazol-9-yl)phenoxy)aniline (9)

White solid (22.4 mg, 32% yield). Purification via a silica (100–200 mesh) gel column (petroleum ether/EtOAc = 60/1, v/v). M.p.: 165–167 °C. ¹H NMR (500 MHz, CDCl₃): δ = 8.12 (d, *J* = 8.0 Hz, 2H), 7.57 (d, *J* = 7.5 Hz, 1H), 7.46–7.39 (m, 3H), 7.30–7.25 (m, 5H), 7.13 (d, *J* = 8.0 Hz, 1H), 6.82–6.76 (m, 2H), 6.59–6.54 (m, 2H), 3.36 (s, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 154.0, 142.6, 141.5, 138.4, 130.6, 129.8, 127.3, 125.9, 125.0, 123.7, 123.5, 120.5, 119.8, 119.6, 118.6, 118.2, 116.6, 110.0 ppm. HRMS (ESI) *m/z*: calcd for C₁₈H₁₃F₂N₂ ([M + H]⁺) 351.1492, found 351.1490.

indolo[3,2,1–*jk*]carbazole (10)

White solid (71.1 mg, 60% yield). Purification via a silica (200–300 mesh) gel column (petroleum ether/EtOAc = 100/1, v/v). ¹H NMR (500 MHz, CDCl₃): δ = 8.15 (d, *J* = 8.0 Hz, 2H), 8.06 (d, *J* = 7.5 Hz, 2H), 7.92 (d, *J* = 8.0 Hz, 2H), 7.61–7.55 (m, 3H), 7.37 (t, *J* = 7.8 Hz, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 143.9, 138.9, 130.2, 126.9, 123.3, 123.0, 121.9, 119.6, 118.6, 112.3 ppm. The NMR data are consistent with the literature.^[2]

benzo[kl]indolo[3,2,1-de]acridine (11)

Yellowish-green solid (80.1 mg, 55% yield). Purification via a silica (200–300 mesh) gel column (petroleum ether/EtOAc = 100/1, v/v). M.p.: 179–181 °C. ¹H NMR (500 MHz, CDCl₃): δ = 8.18 (d, *J* = 8.5 Hz, 1H), 8.10 (d, *J* = 8.0 Hz, 1H), 7.88–7.82 (m, 3H), 7.78 (d, *J* = 7.5 Hz, 1H), 7.58–7.55 (m, 2H), 7.57–7.56 (m, 2H), 7.39–7.35 (m, 2H), 7.30 (t, *J* = 7.5 Hz, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 138.5, 137.0, 136.9, 136.4, 129.3, 127.2, 127.0, 126.4, 126.0 (2C), 123.2, 122.9, 121.7, 121.3, 121.2, 120.8, 120.0, 119.1, 116.4, 113.5, 107.7 ppm. HRMS (ESI) *m/z*: calcd for C₂₂H₁₄N ([M + H]⁺) 292.1121, found 292.1127.

dinaphtho[2',1':4,5;1'',2'':6,7]azepino[3,2,1–*jk*]carbazole (12)

Yellow solid (35.1 mg, 42% yield). Purification via a silica (200–300 mesh) gel column (petroleum ether/EtOAc = 120/1, v/v). M.p.: 227–229 °C. ¹H NMR (500 MHz, CDCl₃): δ = 8.01 (d, *J* = 7.5 Hz, 1H), 7.97 (d, *J* = 8.5 Hz, 1H), 7.91 (t, *J* = 8.5 Hz, 2H), 7.87–7.31 (m, 2H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.74 (d, *J* = 9.0 Hz, 1H), 7.64 (d, *J* = 9.0 Hz, 2H), 7.51 (t, *J* = 7.8 Hz, 1H), 7.46 (t, *J* = 7.5 Hz, 1H), 7.42–7.31 (m, 4H), 7.25–7.23 (m, 1H), 7.12 (t, *J* = 7.8 Hz, 1H), 6.97 (d, *J* = 9.0 Hz, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 152.7, 146.5, 143.0, 138.7, 134.6, 133.8, 132.6, 131.9, 129.3, 128.9, 128.7, 128.6, 128.3, 128.0 (2C), 127.8, 127.5, 127.1, 126.4, 126.3, 126.1 (2C), 125.2, 125.0, 124.6, 124.0, 123.0, 121.1, 119.1, 119.0, 117.4, ppm. HRMS (ESI) *m/z*: calcd for C₃₂H₂₀N, ([M + H]⁺) 418.1590, found 418.1589.

spiro[carbazole-9,7'-dibenzo[c,g]carbazol]-9-ium acetate (13)

Yellow solid (53.1 mg, 56% yield). Purification via a silica (200–300 mesh) gel column (CH₂Cl₂/MeOH =60/1 \rightarrow 15/1, v/v). M.p.: 162–168 °C. ¹H NMR (500 MHz, CDCl₃): δ = 9.04 (d, *J* = 8.5 Hz, 2H), 8.49 (d, *J*

= 7.5 Hz, 2H), 8.12 (q, J = 8.2 Hz, 4H), 7.96 (t, J = 7.8 Hz, 2H), 7.85 (q, J = 8.5 Hz, 4H), 7.46 (t, J = 7.8 Hz, 2H), 7.08 (d, J = 9.5 Hz, 2H), 6.89 (d, J = 8.5 Hz, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 146.2$, 136.1, 134.0, 133.8, 132.5, 131.7, 130.3, 129.5, 129.0 (2C), 128.0, 127.1, 124.8, 117.9, 114.3, ppm. HRMS (ESI) m/z: calcd for C₃₂H₂₀N⁺, ([M – OAc]⁺) 418.1591, found 418.1598.

8 References

[1] (a) Z. Liu, D. Zhu, B. Luo, N. Zhang, Q. Liu, Y. Hu, R. Pi, P. Huang and S. Wen, Mild Cu(I)-catalyzed cascade reaction of cyclic diaryliodoniums, sodium azide, and alkynes: Efficient synthesis of triazolophenanthridines, *Org. Lett.*, 2014, **16**, 5600–5603; (b) D. Zhu, Y. Wu, B. Wu, B. Luo, A. Ganesan, F.-H. Wu, R. Pi, P. Huang and S. Wen, Three-component Pd/Cu-catalyzed cascade reactions of cyclic iodoniums, alkynes, and boronic acids: An approach to methylidenefluorenes, *Org. Lett.*, 2014, **16**, 2350–2353; (c) B. Wu and N. Yoshikai, Conversion of 2-iodobiaryls into 2,2'-diiodobiaryls via oxidation-iodination sequences: A versatile route to ladder-type heterofluorenes, *Angew. Chem., Int. Ed.*, 2015, **54**, 8736–8739.

[2] Y. Hiraga, R. Kuwahara and T. Hatta, Novel indolo [3,2,1-*jk*] carbazole-based bipolar host material for highly efficient thermally activated delayed-fluorescence organic lightemitting diodes, *Tetrahedron*, 2021, **94**, 132317.

[3] N. Gjineci, S. Aharonovich, D. R. Dekel and C. E. Diesendruck, Increasing the alkaline stability of *N*,*N*-diaryl carbazolium salts using substituent electronic effects. *ACS Appl. Mater. Interfaces*, 2020,**12**, 49617–49625.

[4] M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 16 Revision. A.03, Gaussian Inc., Wallingford, CT, 2016.

[5] R.I. Dennington and T. Keith, J. Millam, GaussView, Version 6.0.16, Semichem. Inc, Shawnee Mission, KS, 2008

[6] N. Gjineci, S. Aharonovich, S. Willdorf-Cohen, D. R. Dekel and C. E. Diesendruck, The reaction mechanism between tetraarylammonium salts and hydroxide, *Eur. J. Org. Chem.*, 2020, **21**, 3161–3168.

9 Copies of 1H and 13C and 19F NMR spectra

 1 H NMR (500 MHz, CDCl₃) of **6a**

210 200 150 140 130 120 110 100 0 -10 f1 (ppm)

210 200 150 140 110 100 -10 f1 (ppm)

8.117 8.117 8.102 8.035 8.035 8.035 7.436 7.7.420 7.7.420 7.7.329 7.7.7.329 7.

110 100 -10 f1 (ppm)

^{19}F NMR (470 MHz, CDCl₃) of 6g

0	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22
f1 (ppm)																								

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

-59.6 -59.8 -60.0 -60.2 -60.4 -60.6 -60.8 -61.0 -61.2 -61.4 -61.6 -61.8 -62.0 -62.2 -62.4 -62.6 -62.8 -63.0 -63.2 -63.4 -63.6 -63.8 -64.(f1 (ppm)

--60.797

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm) ¹H NMR (500 MHz, CDCl₃) of 8a 8.017 7.707 7.601 7.610 7.510 7.510 7.517 7.529 7.557 7.557 7.557 7.557 7.557 7.557 7.557 7.557 7.557 7.557 7.557 7.557 6.573 8 6.573 8 6.573 8 6.573 8 6.573 8 6.573 8 6.573 8 6.573 8 6.573 8 6.573 8 6.573 8 6.573 8 6.573 8 6.573 8 6.573 8 6.573 8 7.5500 7.5500 7.5500 7.5500 7.5500 7.5500 7.5500 7.5500 7.5500 7.5500 7.5500 7.5500 7.5500 7.5500 7.5500 7.55000 7.5500 7.5500 7.5500 7.5500 7.55000 7.550 - 3.648 - 1.542 -0.0046.803
6.773
6.773
6.773
6.773
6.673
6.657
6.463
6.463
6.463
6.463
6.463
6.287
6.272 8.2 8.0 7.8 7.6 7.4 7.2 6.8 6.6 6.4 6.2 7.0 f1 (ppm) 2.00H 2.06 1.03 3.04 7.20 1.00 0.98 0.96 5 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0. f1 (ppm) $^{13}\mathrm{C}$ NMR (125 MHz, CDCl₃) of 8a143.310 138.554 135.216 135.216 132.275 130.447 129.846 129.859 129.139 123.72 77.414 77.160 76.905 - 120.185 \[201635 - 118.265 $\begin{array}{c} 132.272\\ 130.447\\ 129.846\\ 129.139\\ 129.139\\ 128.870\\ 128.759\end{array}$ -143.310- 138.554 125.772 125.584 123.729 123.453 123.264 - 115.719 -136.216li 144 142 140 138 136 134 132 130 128 126 124 122 120 118 116 114 f1 (ppm)

110 100 70 20 -10 210 200 190 180 170 160 150 140 130 120 90 80 60 50 40 30 10 Ö f1 (ppm)

f1 (ppm)

¹H NMR (500 MHz, CDCl₃) of 8d

-3.670

-0.011

