Ni-Catalyzed Regioselective C-C Bond Formation of 1,1-Disubstituted Allenes with Aldehydes

Seoyeon Kim, Jinyoung Kim, Shrikant D. Tambe, and Eun Jin Cho*

Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea E-mail: <u>ejcho@cau.ac.kr</u> (E. J. Cho)

Supporting Information

General Considerations	S1
Experimental Details	S3
Additional Experiments	S5
Analytic Data for Synthesized Compounds	S9
References	S18
NMR Spectra (¹ H NMR, ¹³ C NMR, and ¹⁹ F NMR)	S19

General Considerations

General Reagent Information

All commercially available reagents were purchased from Sigma-Aldrich, Alfa Aesar, Combi blocks or TCI companies and used without further purification. Flash column chromatography was performed using ZEOCHEM ZEOprep silica gel 60 (60-200 mesh).

General Analytical Information

The synthesized homoallylic alcohol **3** were characterized by ¹H, ¹³C{¹H}, and ¹⁹F{¹H} NMR, and FT-IR spectroscopy. NMR spectra were recorded on a Varian 600 MHz instrument (600 MHz for ¹H NMR, 151 MHz for ¹³C{¹H} NMR, and 564 MHz for ¹⁹F{¹H} NMR). Copies of ¹H NMR, ¹³C{¹H} NMR and ¹⁹F{¹H} NMR spectra can be found in this Supporting Information. ¹H NMR experiments are reported in units, parts per million (ppm), and were measured relative to residual CDCl₃ (7.26 ppm) or CD₃CN (1.94 ppm) in the deuterated solvent. ¹³C NMR spectra are reported in ppm relative to CDCl₃ (77.23 ppm) or CD₃CN (1.32 ppm), and all were obtained with ¹H decoupling. ¹⁹F NMR spectra are reported in ppm, and all were taken composite pulse decoupling (CPD) mode. Coupling constants were reported in Hz. Reactions were monitored by GC-MS using the Agilent GC 7890B/5977A inert MSD with Triple-Axis Detector. Mass spectral data of all unknown compounds were obtained from the Korea Basic Science Institute (Daegu) on a Jeol JMS 700 high resolution mass spectrometer. Chiral HPLC analysis was performed on waters e2695 separations module instrument.

Photon Source

All photon sources and accessories were purchased from HepatoChem company. A PhotoRedOx Box[®] with P205-18-2 450 nm 18 W blue LEDs (34 mW/cm²) was used for the reactions. All reaction tubes have the same light intensity by using the PhotoRedOx Box[®] equipped with mirrors.

Figure S1. Light spectra of the photon source: P205-18-2 18 W blue LED (λ_{max} 450 nm).

Experimental Details

General procedure for synthesis of 1,1-diarylsubstituted allenes (1a - 1d)[S1],[S2]

Step 1: In an oven dried flask, was added methyl triphenylphosphonium bromide (1.2 eq) followed by THF (25 mL). Then 'BuOK (1.2 eq) was added, and the resulting yellow suspension was stirred at room temperature. After 1 h, diaryl ketone (5 mmol) was added in one portion and the resulting mixture was further stirred at room temperature and the reaction progress was monitored by thin-layer chromatography. Upon completion after 16 h, the reaction was quenched with water, and the aqueous phase was extracted with diethyl ether (2×30 mL). The resulting organic phase was dried over MgSO₄, filtered, and concentrated in *vacuo*. The residue was purified by silica gel flash column chromatography using (hexanes) to give the corresponding alkene derivative **S1**.

Step 2: To a solution of alkene **S1** (4 mmol), bromoform (1.5 eq) and BnNEt₃Cl (2 mol%) was added dropwise a solution of 50% NaOH (1 g NaOH dissolved in 2 mL water), and the mixture was stirred at room temperature for 1 h, then heated to 60 °C and the reaction progress was monitored by thin-layer chromatography. Upon completion (~15 h), the reaction was quenched with water and the aqueous phase was extracted with DCM (2×25 mL). The combined organic phase was washed with brine (30 mL). The resulting organic phase was dried over MgSO₄, filtered, and concentrated in *vacuo*. The residue was purified by silica gel flash column chromatography using (hexanes/ethyl acetate, 99/1) to give the corresponding dibromo derivative **S2**.

Step 3: EtMgBr (1.0 M in THF, 1.5 eq) was added dropwise to a pre-cooled ice-bath solution of **S2** (2 mmol) in dry THF (4 mL) under argon atmosphere. After EtMgBr was added, the mixture was then slowly warmed to room temperature, and stirred at room temperature for an additional 2 h. Then the reaction was quenched by NH₄Cl solution, water was added, and the mixture extracted with diethyl ether (2 × 25 mL). The combined organic phase was washed with brine, dried over MgSO₄, and filtered. After removing the solvent under reduced pressure, the residue was purified by silica gel flash column chromatography using (hexanes) to afford the corresponding allene (**1a – 1d**).

General procedure for synthesis of 1,1-dialkylsubstituted allenes (1e - 1h)^[S3]

Step 1: TsCl (1.2 eq) was added to a solution of the corresponding propargylic alcohol **S3** (5 mmol) in diethyl ether (12 mL). The reaction mixture was cooled to 0 °C, then KOH (5.5 eq, freshly pestled) was added in small portions. The solution was allowed to warm to room temperature and stirred for 1 h. The reaction progress was monitored by thin-layer chromatography. Upon completion, the reaction was quenched with cold water, and the aqueous phase was extracted with diethyl ether (3×15 mL). The combined organic phases were washed with brine and dried over MgSO₄. The solvents were removed under reduced pressure and the crude product was purified by silica gel flash column chromatography using (hexanes/ethyl acetate, 20/1) to afford tosylate derivative **S3**.

Step 2: A mixture of CuBr (10 mol%), THF (10 mL) and the tosylate S3 (4 mmol) was cooled to 0 °C. HexMgBr (1.5 eq, 2 M in THF) was added dropwise. The reaction mixture was allowed to warm to room temperature and stirred for 2 h. Upon completion, the reaction was quenched saturated aqueous solution of NH₄Cl followed by extraction with diethyl ether (3×20 mL). The combined organic phases were washed with brine and dried over MgSO₄. The solvents were removed under reduced pressure and the crude product was purified by silica gel flash column chromatography using (hexanes) to afford allene derivative (1e – 1h).

General procedure for synthesis of homoallylic alcohol (3)

A reaction tube with a magnetic stir bar was charged with 1,1-disubstituted allene **1** (0.1 mmol, 1.0 eq), Ni(NTf₂)₂ (10 mol%), pyphos (12 mol%), 4-CzIPN (2 mol%), and Hantzsch ester (2.0 eq). The reaction tube was sealed with a PTFE/silicon septa cap and tube was evacuated and refilled with argon for two times. HMPA/DMSO (1/1, 1 mL) and aldehyde **2** (2.0 eq) were added under argon counter flow. The reaction mixture was stirred at room temperature under visible-light irradiation using 450 nm LEDs (18 W). The reaction progress was monitored by thin layer chromatography or gas chromatography (GC). Upon the completion of the reaction (6 h – 18 h), the reaction mixture was dried with MgSO₄, filtered, and concentrated in vacuo to give a crude residue that was purified by silica gel column chromatography using hexanes/ethyl acetate to give the corresponding homoallylic alcohol, **3**.

Additional Experiments

Table S1. Optimization table^{*a,b*}

F.	+ F 1a	O – H Ph –	Ni catalyst (10 mol pyphos (12 mol%) PC (2 mol%) H source (2.0 eq solvent (0.1 M), r.t., blue LEDs (18 W	%) F 5) 1) 18 h /)	OH Ph + F 3aa (linear) H + 4aa	OH PP (branched	h F
Entries	Solvent	Ni catalyst	PC	H source	Variations	Yield of 3aa	Yield of 4aa
1	TFE	NiCl ₂ (DME)	[lr(dtbbpy)(ppy) ₂]PF ₆	Hantzsch ester	-	0	0
2	THF	NiCl ₂ (DME)	[lr(dtbbpy)(ppy) ₂]PF ₆	Hantzsch ester	-	14	5
3	hexane	NiCl ₂ (DME)	[lr(dtbbpy)(ppy) ₂]PF ₆	Hantzsch ester	-	0	0
4	HMPA/DMSO (1/1)	Ni(acac) ₂	[lr(dtbbpy)(ppy) ₂]PF ₆	Hantzsch ester	-	26	0
5	HMPA/DMSO (1/1)	Ni(PPh ₃) ₂ Cl ₂	[lr(dtbbpy)(ppy) ₂]PF ₆	Hantzsch ester	-	38	3
6	HMPA/DMSO (1/1)	Ni(NTf ₂) ₂	4-CzIPN	Hantzsch ester		56	0
7	HMPA/DMSO (1/1)	$Ni(NTf_2)_2$	4-CzIPN Ha	intzsch ester (1.5 eq) -	47	0
8	HMPA/DMSO (1/1)	Ni(NTf ₂) ₂	4-CzIPN Ha	intzsch ester (2.5 eq) -	51	0
9	HMPA/DMSO (1/1, 0.05	M) Ni(NTf ₂) ₂	4-CzIPN	Hantzsch ester	-	51	0
10	HMPA/DMSO (1/1, 0.25	M) Ni(NTf ₂) ₂	4-CzIPN	Hantzsch ester	-	48	0
11	HMPA/DMSO (1/1)	$Ni(NTf_2)_2$	4-CzIPN	Hantzsch ester	DIPEA (0.5 eq) additive as an additive	ve 24	0
12	HMPA/DMSO (1/1)	$Ni(NTf_2)_2$	4-CzIPN	Hantzsch ester	365 nm LEDs	0	3
13	HMPA/DMSO (1/1)	Ni(NTf ₂) ₂	4-CzIPN	Hantzsch ester	405 nm LEDs	46	4
14	HMPA/DMSO (1/1)	$Ni(NTf_2)_2$	4-CzIPN	Hantzsch ester	on air	0	0

^{*a*}Reaction scale: **1a** (0.1 mmol), **2a** (0.2 mmol); ^{*b*}Yields were determined by ¹H NMR spectroscopy using 1,3,5-trimethoxybenzene as an internal standard.

Radical inhibition experiment in the presence of BHT

A reaction tube with a magnetic stir bar was charged with 4,4'-(propa-1,2-diene-1,1diyl)bis(fluorobenzene) **1a** (0.1 mmol, 1 eq), Ni(NTf₂)₂ (10 mol%), pyphos (12 mol%), 4-CzIPN (2 mol%), Hantzsch ester (2.0 eq), and BHT (3.0 eq). The reaction tube was sealed with a PTFE/silicon septa cap and tube was evacuated and re-filled with argon for two times. HMPA/DMSO (1/1, 1 mL) and benzaldehyde **2a** (2.0 eq) were added under argon counter flow. The reaction mixture was stirred at room temperature under visible-light irradiation using 450 nm LEDs (18 W). After 18 h, 1,3,5-trimethoxybenzene was added as an internal standard. The reaction mixture was diluted with ethyl acetate and washed with brine. The layers were separated, and the organic layer was dried with MgSO₄, filtered, and concentrated in vacuo to give a crude residue. The crude residue was dissolved in deuterochloroform and the yield was determined by ¹H NMR spectroscopy with 1,3,5-trimethyoxybenzene as an internal standard.

Scheme S1. E/Z isomerization of 3fa^{*a,b*}

^aReaction scale: **1f** (0.1 mmol), **2a** (0.2 mmol); ^b The ratio of E/Z isomers was determined by gas chromatography.

Reactions with chiral P^N ligands

A reaction tube with a magnetic stir bar was charged with 4,4'-(propa-1,2-diene-1,1-diyl)bis(fluorobenzene) **1a** (0.1 mmol, 1 eq), Ni(NTf₂)₂ (10 mol%), ligand (12 mol%), 4-CzIPN

(2 mol%), Hantzsch ester (2.0 eq), and BHT (3.0 eq). The reaction tube was sealed with a PTFE/silicon septa cap and tube was evacuated and re-filled with argon for two times. HMPA/DMSO (1/1, 1 mL) and benzaldehyde **2a** (2.0 eq) were added under argon counter flow. The reaction mixture was stirred at room temperature under visible-light irradiation using 450 nm LEDs (18 W). After 18 h, 1,3,5-trimethoxybenzene was added as an internal standard. The reaction mixture was diluted with ethyl acetate and washed with brine. The layers were separated, and the organic layer was dried with MgSO₄, filtered, and concentrated in vacuo to give a crude residue. The crude residue was filtered using syringe filter and dissolved in hexanes/EtOH (1/1). The enantiomeric excess (*ee*) was determined by HPLC analysis on chiral stationary column.

HPLC traces

Result with pyphos Proc. Chnl. Descr.:2998 PDA 254.0

Result with L10

Proc. Chnl. Descr.:2998 PDA 254.0

Result with L15

Proc. Chnl. Descr.:2998 PDA 254.0

Result with L16

Proc. Chnl. Descr.:2998 PDA 254.0

Result with L17

Proc. Chnl. Descr.:2998 PDA 254.0

Result with $\boldsymbol{L18}$

Proc. Chnl. Descr.:2998 PDA 254.0

Analytic Data for Synthesized Compounds

4,4-bis(4-fluorophenyl)-1-phenylbut-3-en-1-ol, **3aa**; ¹H NMR (600 MHz, **CDCl**₃) 7.38 – 7.32 (m, 2H), 7.31 – 7.27 (m, 3H), 7.11 (ddd, J = 8.4, 2.5 Hz, $J_{\text{H-F}} = 5.2$ Hz, 2H), 7.04 – 6.98 (m, 4H), 6.96 – 6.91 (m, 2H), 6.06 (dd, J = 7.5, 7.5 Hz, 1H), 4.81 (dd, J = 6.5, 6.5 Hz, 1H), 2.60 (ddd, J = 14.7, 7.5, 6.5 Hz, 1H), 2.54 (ddd, J = 14.7, 7.5, 6.5 Hz, 1H), 1.90 (bs, 1H); ¹³C NMR (151

MHz, CDCl₃) δ 162.40 (d, $J_{C-F} = 246.1$ Hz), 162.19 (d, $J_{C-F} = 246.5$ Hz), 144.07, 142.45, 138.64, 135.65 (d, $J_{C-F} = 3.3$ Hz), 131.61 (d, $J_{C-F} = 7.8$ Hz), 128.98 (d, $J_{C-F} = 8.1$ Hz), 128.71, 127.95, 126.05, 25.23, 115.46 (d, $J_{C-F} = 21.4$ Hz), 115.19 (d, $J_{C-F} = 21.4$ Hz), 74.53, 39.60; ¹⁹F NMR (564 MHz, CDCl₃) δ - 115.06, -115.45; HRMS m/z (FAB) calc. for C₂₂H₁₇F₂ [M⁻H₂O+H]⁺ 319.1298, found 319.1296; *R*_f 0.40 (Hex/EtOAc, 4/1).

4,4-bis(4-fluorophenyl)-1-(*o*-tolyl)but-3-en-1-ol, **3ab**; ¹H NMR (**600** MHz, **CDCl**₃) δ 7.43 (d, *J* = 7.8 Hz, 1H), 7.21 (dd, *J* = 7.8, 7.4 Hz, 1H), 7.17 (dd, *J* = 7.5, 7.4 Hz, 1H), 7.14 (dd, *J* = 8.8 Hz, *J*_{H-F} = 5.4 Hz, 2H), 7.10 (d, *J* = 7.5 Hz, 1H), 7.05 – 6.97 (m, 4H), 6.94 (dd, *J* = 8.8 Hz, *J*_{H-F} = 8.7 Hz, 2H), 6.15 (t, *J* = 7.5 Hz, 1H), 5.04 (t, *J* = 6.3 Hz, 1H), 2.52 (dd, *J* = 7.5, 6.3 Hz, 2H),

2.21 (s, 3H), 1.82 (bs, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 162.39 (d, $J_{C-F} = 246.5$ Hz), 162.20 (d, $J_{C-F} = 246.5$ Hz), 142.36, 142.19, 138.57 (d, $J_{C-F} = 3.2$ Hz), 135.68 (d, $J_{C-F} = 3.2$ Hz), 134.56, 131.61 (d, $J_{C-F} = 8.1$ Hz), 130.63, 128.91 (d, $J_{C-F} = 8.1$ Hz), 127.59, 126.51, 125.47, 115.48 (d, $J_{C-F} = 21.4$ Hz), 115.20 (d, $J_{C-F} = 21.4$ Hz), 70.88, 38.25, 19.14 (one carbon signal is missing due to the overlap of aromatic carbon peaks); ¹⁹F NMR (564 MHz, CDCl₃) δ -115.11, -115.49; HRMS m/z (FAB) calc. for C₂₃H₁₉F₂ [M⁻H₂O+H]⁺ 333.1455, found 333.1458; *R*_f 0.45 (Hex/EtOAc, 4/1).

4,4-bis(4-fluorophenyl)-1-(*m*-tolyl)but-3-en-1-ol, **3ac**; ¹**H NMR** (600 **MHz, CDCl₃**) δ 7.24 – 7.20 (m, 1H), 7.13 – 7.07 (m, 5H), 7.04 – 6.98 (m, 4H), 6.95 – 6.91 (m, 2H), 6.06 (dd, *J* = 7.5, 7.4 Hz, 1H), 4.79 – 4.75 (m, 1H), 2.62 – 2.49 (m, 2H), 2.34 (s, 3H), 1.88 (d, *J* = 3.1 Hz, 1H); ¹³**C NMR** (151 MHz, CDCl₃) δ 162.39 (d, *J*_{C-F} = 246.5 Hz), 162.18 (d, *J*_{C-F}

= 246.2 Hz), 144.03, 142.35, 138.71 (d, $J_{C-F} = 3.2$ Hz), 138.39, 135.69 (d, $J_{C-F} = 3.8$ Hz), 131.63 (d, $J_{C-F} = 8.1$ Hz), 128.99 (d, $J_{C-F} = 8.1$ Hz), 128.68, 128.59, 126.71, 125.42, 123.15, 115.43 (d, $J_{C-F} = 21.4$ Hz), 115.17 (d, $J_{C-F} = 21.4$ Hz), 74.56, 39.54, 21.66; ¹⁹F NMR (564 MHz, CDCl₃) δ -115.12, -115.50; HRMS m/z (FAB) calc. for C₂₃H₁₉F₂ [M⁻H₂O+H]⁺ 333.1455, found 333.1451; *R*_f 0.43 (Hex/EtOAc, 4/1).

4,4-bis(4-fluorophenyl)-1-(*p*-tolyl)but-3-en-1-ol, **3ad**; ¹**H NMR** (600 **MHz, CDCl₃**) 7.18 (d, J = 8.0 Hz, 2H), 7.14 (d, J = 8.0 Hz, 2H), 7.12 (dd, J = 8.7 Hz, $J_{\text{H-F}} = 5.5$ Hz, 2H), 7.04 – 7.00 (m, 4H), 6.93 (dd, $J_{\text{H-F}} = 8.7$ Hz, J = 8.7 Hz, 2H), 6.05 (dd, J = 7.5, 7.3 Hz, 1H), 4.77 (dd, J = 7.5, 5.7 Hz, 1H), 2.59 (ddd, J = 14.8, 7.5, 7.5 Hz, 1H), 2.52 (ddd, J = 14.8, 7.3,

5.7 Hz, 1H), 2.34 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 162.39 (d, $J_{C-F} = 246.8$ Hz), 162.19 (d, $J_{C-F} = 246.5$ Hz), 142.30, 141.14, 138.71 (d, $J_{C-F} = 2.9$ Hz), 137.65, 135.71 (d, $J_{C-F} = 3.5$ Hz), 131.63 (d, $J_{C-F} = 7.8$ Hz), 129.37, 128.99 (d, $J_{C-F} = 8.1$ Hz), 126.00, 125.46 (d, $J_{C-F} = 1.0$ Hz), 115.44 (d, $J_{C-F} = 21.1$ Hz), 115.17 (d, $J_{C-F} = 21.4$ Hz), 74.40, 39.57, 21.33; ¹⁹F NMR (564 MHz, CDCl₃) δ -115.00, -115.41; HRMS m/z (FAB) calc. for C₂₃H₁₉F₂ [M⁻H₂O+H]⁺ 333.1455, found 333.1457; *R*_f 0.40 (Hex/EtOAc, 4/1).

4,4-bis(4-fluorophenyl)-1-(2-methoxyphenyl)but-3-en-1-ol, **3ae**; ¹**H NMR** (**600 MHz, CDCl**₃) 7.27 – 7.22 (m, 2H), 7.11 (dd, J = 8.5 Hz, $J_{H-F} = 5.5$ Hz, 2H), 7.02 – 6.97 (m, 4H), 6.96 – 6.90 (m, 3H), 6.84 (d, J = 8.2 Hz, 1H), 6.12 (dd, J = 7.5, 7.5 Hz, 1H), 4.99 – 4.95 (m, 1H), 3.75 (s, 3H), 2.64 – 2.58 (m, 2H); ¹³**C NMR (151 MHz, CDCl**₃) δ 162.31 (d, $J_{C-F} = 246.2$ Hz), 162.10 (d,

 $J_{C-F} = 245.8 \text{ Hz}$), 156.68, 141.75, 138.85 (d, $J_{C-F} = 3.8 \text{ Hz}$), 135.89 (d, $J_{C-F} = 3.5 \text{ Hz}$), 131.79, 131.69 (d, $J_{C-F} = 8.1 \text{ Hz}$), 128.94 (d, $J_{C-F} = 7.8 \text{ Hz}$), 128.67, 127.21, 126.19, 120.95, 115.28 (d, $J_{C-F} = 21.1 \text{ Hz}$), 115.11 (d, $J_{C-F} = 21.4 \text{ Hz}$), 110.71, 71.32, 55.34, 37.74; ¹⁹F NMR (564 MHz, CDCl₃) δ -115.46, -115.76; HRMS m/z (FAB) calc. for C₂₃H₁₉F₂O [M⁻H₂O+H]⁺ 349.1404, found 349.1407; *R*_f 0.39 (Hex/EtOAc, 4/1).

1-(2,6-dimethylphenyl)-4,4-bis(4-fluorophenyl)but-3-en-1-ol, **3af**; ¹H NMR (600 MHz, CDCl₃) 7.15 – 7.11 (m, 2H), 7.06 – 7.01 (m, 5H), 6.97 – 6.92 (m, 4H), 6.12 (dd, J = 7.7, 7.7 Hz, 1H), 5.27 (dd, J = 8.6, 6.0 Hz, 1H), 2.78 (ddd, J = 14.3, 8.6, 7.7 Hz, 1H), 2.54 (ddd, J = 14.3, 7.7, 6.0 Hz, 1H), 2.33 (s, 6H), 1.81 (bs, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 162.39 (d, $J_{C-F} =$

246.4 Hz), 162.22 (d, $J_{C-F} = 246.1$ Hz), 142.29, 139.00, 138.49 (d, $J_{C-F} = 3.8$ Hz), 135.64 (d, $J_{C-F} = 3.7$ Hz), 131.65 (d, $J_{C-F} = 7.8$ Hz), 129.70, 128.86 (d, $J_{C-F} = 7.8$ Hz), 128.25, 127.49, 125.81, 115.49 (d, $J_{C-F} = 21.4$ Hz), 115.22 (d, $J_{C-F} = 21.4$ Hz), 71.58, 36.04, 20.94; ¹⁹F NMR (564 MHz, CDCl₃) δ -115.12, -115.47; HRMS m/z (FAB) calc. for C₂₄H₂₁F₂ [M⁻H₂O+H]⁺ 347.1611, found 347.1609; *R*_f 0.46 (Hex/EtOAc, 4/1).

4,4-bis(4-fluorophenyl)-1-mesitylbut-3-en-1-ol, **3ag**; ¹**H NMR** (**600 MHz, CDCl₃**) δ 7.13 (dd, J = 8.5 Hz, $J_{\text{H-F}}$ = 5.4 Hz, 2H), 7.05 – 7.00 (m, 4H), 6.94 (dd, $J_{\text{H-F}}$ = 8.8 Hz, J = 8.5 Hz, 2H), 6.79 (s, 2H), 6.11 (dd, J = 7.6, 7.6 Hz, 1H), 5.23 (dd, J = 8.7, 6.0 Hz, 1H), 2.77 (ddd, J = 14.1, 8.7, 7.6 Hz, 1H), 2.51 (ddd, J = 14.1, 7.6, 6.0 Hz, 1H), 2.29 (s, 6H), 2.24 (s,

3H); ¹³C NMR (151 MHz, CDCl₃) δ 162.37 (d, $J_{C-F} = 246.5$ Hz), 162.21 (d, $J_{C-F} = 246.2$ Hz), 142.15, 138.53 (d, $J_{C-F} = 3.1$ Hz), 137.00, 136.23, 136.10, 135.68 (d, $J_{C-F} = 3.4$ Hz), 131.66 (d, $J_{C-F} = 8.1$ Hz), 130.42, 128.86 (d, $J_{C-F} = 7.8$ Hz), 126.00, 115.46 (d, $J_{C-F} = 21.4$ Hz), 115.20 (d, $J_{C-F} = 21.4$ Hz), 71.44, 36.16, 20.92, 20.82; ¹⁹F NMR (564 MHz, CDCl₃) δ -115.18, -115.53; HRMS m/z (FAB) calc. for C₂₅H₂₃F₂ [M⁻H₂O+H]⁺ 361.1768, found 361.1769; *R*_f 0.47 (Hex/EtOAc, 4/1).

N-(4-(4,4-bis(4-fluorophenyl)-1-hydroxybut-3-en-1yl)phenyl)acetamide, **3ah**; ¹**H NMR (600 MHz, CDCl₃)** δ 7.46 (d, *J* = 8.2 Hz, 2H), 7.26 – 7.23 (m, 2H), 7.15 (bs, 1H), 7.10 (dd, *J* = 8.9 Hz, *J*_{H-F} = 5.4 Hz, 2H), 7.03 – 7.00 (m, 4H), 6.93 (dd, *J*_{H-F} = 9.7 Hz, *J* = 8.9 Hz, 2H), 6.02 (dd, *J* = 7.2, 7.2 Hz, 1H), 4.77 (dd, *J* = 6.5, 6.5

Hz, 1H), 2.58 (ddd, J = 14.7, 7.4, 6.5 Hz, 1H), 2.51 (ddd, J = 14.2, 7.4, 6.5 Hz, 1H), 2.18 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 168.41, 162.41 (d, $J_{C-F} = 246.6$ Hz), 162.21 (d, $J_{C-F} = 246.3$ Hz), 142.52, 140.02, 138.61 (d, $J_{C-F} = 4.0$ Hz), 137.52, 135.63 (d, $J_{C-F} = 2.8$ Hz), 131.61 (d, $J_{C-F} = 7.8$ Hz), 128.98 (d, $J_{C-F} = 8.1$ Hz), 126.76, 125.08, 120.10, 115.50 (d, $J_{C-F} = 21.1$ Hz), 115.20 (d, $J_{C-F} = 21.4$ Hz), 74.06, 39.53, 24.85; ¹⁹F NMR (564 MHz, CDCl₃) δ -114.97, -115.42; HRMS m/z (FAB) calc. for C₂₄H₂₂F₂NO₂ [M+H]⁺ 394.1619, found 349.1617; *R*_f 0.13 (Hex/EtOAc, 1/1).

1-(2-chlorophenyl)-4,4-bis(4-fluorophenyl)but-3-en-1-ol, **3ai**; ¹H **NMR** (**600 MHz, CDCl**₃) δ 7.29 – 7.28 (m, 1H), 7.26 – 7.24 (m, 2H), 7.16 – 7.14 (m, 1H), 7.11 (dd, J = 8.8 Hz, $J_{\text{H-F}}$ = 5.5 Hz, 2H), 7.07 – 7.01 (m, 2H), 6.99 (dd, J = 8.5 Hz, $J_{\text{H-F}}$ = 5.7 Hz, 2H), 6.97 – 6.91 (m, 2H), 6.03 (dd, J = 7.5, 7.5 Hz, 1H), 4.79 (dd, J = 7.1, 5.7 Hz, 1H), 2.61 – 2.49 (m, 2H), 1.97 (bs, 1H);

¹³**C NMR** (**151 MHz, CDCl**₃) δ 162.45 (d, $J_{C-F} = 246.8$ Hz), 162.23 (d, $J_{C-F} = 246.5$ Hz), 146.08, 142.93, 138.50 (d, $J_{C-F} = 3.5$ Hz), 135.49 (d, $J_{C-F} = 3.8$ Hz), 134.64, 131.53 (d, $J_{C-F} = 7.8$ Hz), 129.93, 128.98 (d, $J_{C-F} = 7.8$ Hz), 127.99, 126.27, 124.54, 124.21, 115.54 (d, $J_{C-F} = 21.1$ Hz), 115.24 (d, $J_{C-F} = 21.4$ Hz), 73.82, 39.48; ¹⁹**F NMR (564 MHz, CDCl**₃) δ -114.81, -115.23; **HRMS** m/z (FAB) calc. for C₂₂H₁₆ClF₂ [M-H₂O+H]⁺ 353.0909, found 353.0905; *R*_f 0.47 (Hex/EtOAc, 4/1).

1-(3-chlorophenyl)-4,4-bis(4-fluorophenyl)but-3-en-1-ol, **3aj**; ¹**H** NMR (600 MHz, CDCl₃) δ 7.30 – 7.28 (m, 1H), 7.26 – 7.24 (m, 2H), 7.17 – 7.14 (m, 1H), 7.11 (dd, J = 8.8 Hz, $J_{\text{H-F}}$ = 5.4 Hz, 2H), 7.05 – 7.02 (m, 2H), 6.99 (dd, J = 8.4 Hz, $J_{\text{H-F}}$ = 5.9 Hz, 2H), 6.97 – 6.91 (m, 2H), 6.02 (dd, J= 7.5, 7.5 Hz, 1H), 4.79 (dd, J = 6.4, 6.4 Hz, 1H), 2.61 – 2.49 (m, 2H);

¹³C NMR (151 MHz, CDCl₃) δ 162.46 (d, $J_{C-F} = 246.7$ Hz), 162.24 (d, $J_{C-F} = 246.7$ Hz), 146.09, 142.95, 138.50 (d, $J_{C-F} = 3.1$ Hz), 135.50 (d, $J_{C-F} = 3.2$ Hz), 134.66, 131.54 (d, $J_{C-F} = 8.1$ Hz), 129.94, 128.99 (d, $J_{C-F} = 8.1$ Hz), 128.01, 126.28, 124.54, 124.22, 115.55 (d, $J_{C-F} = 21.4$ Hz), 115.24 (d, $J_{C-F} = 21.7$ Hz), 73.82, 39.49; ¹⁹F NMR (564 MHz, CDCl₃) δ -114.82, -115.23; HRMS m/z (FAB) calc. for C₂₂H₁₆ClF₂ [M-H₂O+H]⁺ 353.0909, found 353.0912; R_f 0.38 (Hex/EtOAc, 4/1).

1-(4-chlorophenyl)-4,4-bis(4-fluorophenyl)but-3-en-1-ol, **3ak**; ¹**H NMR** (**600 MHz, CDCl**₃) δ 7.30 (d, *J* = 8.5 Hz, 2H), 7.22 (d, *J* = 8.5 Hz, 2H), 7.11 (dd, *J* = 8.7 Hz, *J*_{H-F} = 5.4 Hz, 2H), 7.03 (dd, *J*_{H-F} = 8.7 Hz, *J* = 8.7 Hz, 2H), 6.99 (dd, *J* = 8.5 Hz, *J*_{H-F} = 5.8 Hz, 2H), 6.94 (dd, *J*_{H-F} = 8.7 Hz, *J* = 8.5 Hz, 2H), 6.02 (dd, *J* = 7.5, 7.5 Hz, 1H), 4.79 (dd, *J* = 6.4, 6.4 Hz,

1H), 2.61 – 2.47 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 162.46 (d, J_{C-F} = 246.8 Hz), 162.23 (d, J_{C-F} = 246.5 Hz), 142.86, 142.50, 138.49 (d, J_{C-F} = 3.2 Hz), 135.52 (d, J_{C-F} = 3.5 Hz), 133.58, 131.55 (d, J_{C-F} = 7.8 Hz), 128.97 (d, J_{C-F} = 8.1 Hz), 128.81, 127.43, 124.60, 115.52 (d, J_{C-F} = 21.4 Hz), 115.25 (d, J_{C-F} = 21.4 Hz), 73.79, 39.58; ¹⁹F NMR (564 MHz, CDCl₃) δ -114.83, -115.22; HRMS m/z (FAB) calc. for C₂₂H₁₆ClF₂ [M=H₂O+H]⁺ 353.0909, found 353.0906; *R*_f 0.35 (Hex/EtOAc, 4/1).

1,4,4-tris(4-fluorophenyl)but-3-en-1-ol, **3al**; ¹**H NMR** (**600 MHz**, **CDCl**₃) δ 7.26 (dd, J = 8.4 Hz, $J_{\text{H-F}} = 5.6$ Hz, 2H), 7.11 (dd, J = 8.8 Hz, $J_{\text{H-F}} = 5.4$ Hz, 2H), 7.05 – 6.98 (m, 6H), 6.95 – 6.92 (m, 2H), 6.02 (dd, J = 7.5, 7.3 Hz, 1H), 4.80 (dd, J = 7.1, 5.8 Hz, 1H), 2.58 (ddd, J = 14.8, 7.5, 7.1 Hz, 1H), 2.51 (ddd, J = 14.6, 7.3, 5.8 Hz, 1H), 1.90 (bs, 1H); ¹³**C NMR** (151)

MHz, CDCl₃) δ 162.23 (d, $J_{C-F} = 245.6$ Hz), 162.21 (d, $J_{C-F} = 246.8$ Hz), 161.99 (d, $J_{C-F} = 246.5$ Hz), 142.48, 139.55 (d, $J_{C-F} = 2.9$ Hz), 138.32 (d, $J_{C-F} = 3.5$ Hz), 135.34 (d, $J_{C-F} = 3.5$ Hz), 131.33 (d, $J_{C-F} = 7.8$ Hz), 128.73 (d, $J_{C-F} = 7.8$ Hz), 127.47 (d, $J_{C-F} = 8.1$ Hz), 124.61, 115.28 (d, $J_{C-F} = 21.2$ Hz), 115.27 (d, $J_{C-F} = 21.4$ Hz), 115.00 (d, $J_{C-F} = 21.4$ Hz), 73.61, 39.42; ¹⁹F NMR (564 MHz, CDCl₃) δ -114.78, -114.86, -115.26; HRMS m/z (FAB) calc. for C₂₂H₁₆F₃ [M⁻H₂O+H]⁺ 337.1204, found 337.1201; *R*_f 0.32 (Hex/EtOAc, 4/1).

1-(4-bromophenyl)-4,4-bis(4-fluorophenyl)but-3-en-1-ol, **3am**; ¹H **NMR (600 MHz, CDCl₃)** δ 7.45 (d, *J* = 8.4 Hz, 2H), 7.16 (d, *J* = 8.4 Hz, 2H), 7.11 (dd, *J* = 8.9 Hz, *J*_{H-F} = 5.4 Hz, 2H), 7.03 (dd, *J*_{H-F} = 8.8 Hz, *J* = 8.6 Hz, 2H), 6.99 (dd, *J* = 8.6 Hz, *J*_{H-F} = 5.7 Hz, 2H), 6.94 (dd, *J* = 8.9 Hz, *J*_{H-F} = 8.5 Hz, 2H), 6.02 (dd, *J* = 7.5, 7.5 Hz, 1H), 4.77 (dd, *J* = 6.5, 6.4

Hz, 1H), 2.65 – 2.48 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 162.46 (d, $J_{C-F} = 246.8$ Hz), 162.22 (d, $J_{C-F} = 246.5$ Hz), 143.02, 142.88, 138.48 (d, $J_{C-F} = 3.4$ Hz), 135.50 (d, $J_{C-F} = 3.5$ Hz), 131.75, 131.54 (d, $J_{C-F} = 7.8$ Hz), 128.96 (d, $J_{C-F} = 8.1$ Hz), 127.78, 124.54, 121.65, 115.52 (d, $J_{C-F} = 21.4$ Hz), 115.25 (d, $J_{C-F} = 21.4$ Hz), 73.82, 39.54; ¹⁹F NMR (564 MHz, CDCl₃) δ -114.69, -115.08; HRMS m/z (FAB) calc. for C₂₂H₁₆BrF₂ [M⁻H₂O+H]⁺ 397.0403, found 397.0407; R_f 0.36 (Hex/EtOAc, 4/1).

4,4-bis(4-fluorophenyl)-1-(3-(trifluoromethyl)phenyl)but-3-en-1-ol, **3an**; ¹**H NMR (600 MHz, CDCl**₃) δ 7.56 (s, 1H), 7.55 – 7.52 (m, 1H), 7.48 – 7.42 (m, 2H), 7.10 (dd, *J* = 8.9 Hz, *J*_{H-F} = 5.4 Hz, 2H), 7.04 – 7.00 (m, 2H), 6.97 – 6.91 (m, 4H), 6.03 (dd, *J* = 7.5, 7.4 Hz, 1H), 4.89 (dd, *J* = 6.4, 6.3 Hz, 1H), 2.64 – 2.52 (m, 2H), 2.02 (bs, 1H); ¹³C NMR (151)

MHz, CDCl₃) δ 162.49 (d, $J_{C-F} = 246.8 \text{ Hz}$), 162.26 (d, $J_{C-F} = 246.8 \text{ Hz}$), 144.97, 143.18, 138.44 (d, $J_{C-F} = 3.2 \text{ Hz}$), 135.44 (d, $J_{C-F} = 3.2 \text{ Hz}$), 131.47 (d, $J_{C-F} = 7.8 \text{ Hz}$), 131.03 (q, $J_{C-F} = 31.9 \text{ Hz}$), 129.42, 129.10, 128.97 (d, $J_{C-F} = 8.0 \text{ Hz}$), 124.66 (q, $J_{C-F} = 3.8 \text{ Hz}$), 124.31 (q, $J_{C-F} = 272.5 \text{ Hz}$), 124.25, 122.89 (q, $J_{C-F} = 3.8 \text{ Hz}$), 115.55 (d, $J_{C-F} = 21.4 \text{ Hz}$), 115.26 (d, $J_{C-F} = 21.4 \text{ Hz}$), 73.83, 39.58; ¹⁹**F NMR (564 MHz, CDCl₃**) δ -62.60, -114.75, -115.14; **HRMS** m/z (FAB) calc. for C₂₃H₁₆F₅ [M⁻H₂O+H]⁺ 387.1172, found 387.1174; **R**_f 0.38 (Hex/EtOAc, 4/1).

4,4-bis(4-fluorophenyl)-1-(4-(trifluoromethyl)phenyl)but-3-en-1-ol, **3ao**; ¹**H NMR** (**600 MHz**, **CDCl**₃) δ 7.58 (d, *J* = 8.0 Hz, 2H), 7.40 (d, *J* = 8.0 Hz, 2H), 7.12 (dd, *J* = 8.6 Hz, *J*_{H-F} = 5.4 Hz, 2H), 7.03 – 7.00 (m, 2H), 6.98 – 6.93 (m, 4H), 6.05 (dd, *J* = 7.5, 7.4 Hz, 1H), 4.88 (dd, *J* = 6.5, 6.4 Hz, 1H), 2.61 – 2.53 (m, 2H); ¹³C **NMR** (**151 MHz**, **CDCl**₃) δ

162.50 (d, $J_{C-F} = 247.1$ Hz), 162.24 (d, $J_{C-F} = 246.5$ Hz), 147.96, 143.17, 138.40 (d, $J_{C-F} = 3.4$ Hz), 135.42 (d, $J_{C-F} = 3.4$ Hz), 131.49 (d, $J_{C-F} = 8.0$ Hz), 130.07 (q, $J_{C-F} = 32.8$ Hz), 128.96 (d, $J_{C-F} = 8.1$ Hz), 126.32, 126.17 (q, $J_{C-F} = 276.2$ Hz), 125.60 (q, $J_{C-F} = 3.8$ Hz), 124.22, 115.55 (d, $J_{C-F} = 21.3$ Hz), 115.28 (d, $J_{C-F} = 21.4$ Hz), 73.81, 39.62; ¹⁹F NMR (564 MHz, CDCl₃) δ -62.49, -114.71, -115.08; HRMS m/z (FAB) calc. for C₂₃H₁₆F₅ [M⁻H₂O+H]⁺ 387.1172, found 387.1170; *R*_f 0.35 (Hex/EtOAc, 4/1).

1-(3,4-difluorophenyl)-4,4-bis(4-fluorophenyl)but-3-en-1-ol, **3ap**; ¹H **NMR (600 MHz, CDCl₃)** δ 7.14 – 7.08 (m, 4H), 7.06 – 7.01 (m, 4H), 7.00 – 6.97 (m, 1H), 6.96 – 6.92 (m, 2H), 6.01 (dd, J = 7.5, 7.4 Hz, 1H), 4.77 (dd, J = 7.1, 5.7 Hz, 1H), 2.59 – 2.47 (m, 2H); ¹³C **NMR (151 MHz, CDCl**₃) δ 162.50 (d, $J_{C-F} = 247.1$ Hz), 162.27 (d, $J_{C-F} = 246.8$ Hz), 150.58

(dd, $J_{C-F} = 248.8$, 12.7 Hz), 149.90 (dd, $J_{C-F} = 247.9$, 12.8 Hz), 143.13, 141.10 (dd, $J_{C-F} = 5.0$, 3.6 Hz), 138.41 (d, $J_{C-F} = 3.5$ Hz), 135.45 (d, $J_{C-F} = 3.3$ Hz), 131.53 (d, $J_{C-F} = 8.1$ Hz), 128.97 (d, $J_{C-F} = 8.1$ Hz), 124.28, 121.93 (dd, $J_{C-F} = 6.2$, 3.6 Hz), 117.35 (d, $J_{C-F} = 17.1$ Hz), 115.59 (d, $J_{C-F} = 21.4$ Hz), 115.29 (d, $J_{C-F} = 21.4$ Hz), 115.06 (d, $J_{C-F} = 17.9$ Hz), 73.33, 39.58; ¹⁹F NMR (564 MHz, CDCl₃) δ -114.65, -115.08, -137.33, -139.37; HRMS m/z (FAB) calc. for C₂₂H₁₅F₄ [M⁻H₂O+H]⁺ 355.1110, found 355.1107; *R*_f 0.30 (Hex/EtOAc, 4/1).

1-(3-bromo-4-fluorophenyl)-4,4-bis(4-fluorophenyl)but-3-en-1-ol, **3aq**; **¹H NMR (600 MHz, CDCl₃)** 7.49 (dd, $J_{\text{H-F}} = 6.6$ Hz, J = 2.2 Hz, 1H), 7.18 (ddd, J = 8.6, 2.2 Hz, $J_{\text{H-F}} = 4.7$ Hz, 1H), 7.11 (dd, J = 8.9 Hz, $J_{\text{H-F}} = 5.3$ Hz, 2H), 7.08 – 7.03 (m, 3H), 6.99 (dd, J = 8.7 Hz, $J_{\text{H-F}} = 5.5$ Hz, 2H), 6.94 (dd, J = 8.9, 8.6 Hz, 2H), 6.00 (dd, J = 7.5, 7.4 Hz, 1H), 4.77 (dd, J

= 6.5, 6.4 Hz, 1H), 2.60 – 2.47 (m, 2H), 1.76 (bs, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 162.50 (d, J_{C-F} = 246.8 Hz), 162.26 (d, J_{C-F} = 246.8 Hz), 158.62 (d, J_{C-F} = 247.3 Hz), 143.16, 141.40 (d, J_{C-F} = 3.8 Hz), 138.41 (d, J_{C-F} = 3.2 Hz), 135.43 (d, J_{C-F} = 3.9 Hz), 131.51 (d, J_{C-F} = 8.1 Hz), 131.22, 128.99 (d, J_{C-F} = 8.1 Hz), 126.61 (d, J_{C-F} = 7.2 Hz), 124.22, 116.52 (d, J_{C-F} = 22.5 Hz), 115.60 (d, J_{C-F} = 21.4 Hz), 115.28 (d, J_{C-F} = 21.7 Hz), 109.28 (d, J_{C-F} = 21.1 Hz), 73.21, 39.56; ¹⁹F NMR (564 MHz, CDCl₃) δ -109.01, -114.65, -115.07; HRMS m/z (FAB) calc. for C₂₂H₁₅BrF₃ [M–H₂O+H]⁺ 415.0309, found 415.0311; *R*_f 0.29 (Hex/EtOAc, 4/1).

4,4-bis(4-fluorophenyl)-1-(thiophen-3-yl)but-3-en-1-ol, **3ar**; ¹H NMR (600 MHz, CDCl₃) δ 7.29 (dd, J = 5.0, 3.0 Hz, 1H), 7.17 (dd, J = 3.0, 1.2 Hz, 1H), 7.12 (dd, J = 8.6 Hz, $J_{\text{H-F}} = 5.6$ Hz, 2H), 7.05 – 7.03 (m, 4H), 7.00 (dd, J = 5.0, 1.2 Hz, 1H), 6.96 – 6.92 (m, 2H), 6.05 (dd, J = 7.5, 7.4 Hz, 1H), 4.91 (dd, J = 6.4, 6.5 Hz, 1H), 2.65 – 2.55 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ

162.43 (d, $J_{C-F} = 246.9 \text{ Hz}$), 162.23 (d, $J_{C-F} = 246.3 \text{ Hz}$), 145.63, 142.55, 138.63, 135.69, 131.62 (d, $J_{C-F} = 7.8 \text{ Hz}$), 129.01 (d, $J_{C-F} = 8.1 \text{ Hz}$), 126.45, 125.84, 125.05, 121.10, 115.51 (d, $J_{C-F} = 21.1 \text{ Hz}$), 115.21 (d, $J_{C-F} = 21.4 \text{ Hz}$), 70.67, 38.94; ¹⁹**F NMR (564 MHz, CDCl**₃) δ -112.45, -112.87; **HRMS** m/z (FAB) calc. for C₂₀H₁₅F₂S [M⁻H₂O+H]⁺ 325.0863, found 325.0864; *R*_f 0.30 (Hex/EtOAc, 4/1).

4,4-bis(4-fluorophenyl)-1-(thiophen-2-yl)but-3-en-1-ol, **3as**; ¹H NMR (600 MHz, CDCl₃) δ 7.25 (dd, J = 4.9, 1.3 Hz, 1H), 7.13 (dd, J = 8.6 Hz, $J_{\text{H-F}} = 5.6$ Hz, 2H), 7.08 – 7.03 (m, 4H), 6.97 – 6.92 (m, 4H), 6.07 (dd, J = 7.5, 7.4 Hz, 1H), 5.06 (dd, J = 6.6, 6.5 Hz, 1H), 2.73 – 2.61 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 162.45 (d, $J_{\text{C-F}} = 246.8$ Hz), 162.25 (d, $J_{\text{C-F}} = 246.5$ Hz),

147.98, 142.78, 138.61 (d, $J_{C-F} = 3.3 \text{ Hz}$), 135.61 (d, $J_{C-F} = 3.4 \text{ Hz}$), 131.61 (d, $J_{C-F} = 7.8 \text{ Hz}$), 129.06 (d, $J_{C-F} = 8.1 \text{ Hz}$), 126.91, 124.99, 124.64, 124.03, 115.54 (d, $J_{C-F} = 21.4 \text{ Hz}$), 115.21 (d, $J_{C-F} = 21.4 \text{ Hz}$), 70.39, 39.70; ¹⁹**F NMR (564 MHz, CDCl₃)** δ -112.44, -112.87; **HRMS** m/z (FAB) calc. for C₂₀H₁₅F₂S [M-H₂O+H]⁺ 325.0863, found 325.0865; *R*_f 0.33 (Hex/EtOAc, 4/1).

4,4-bis(4-fluorophenyl)-1-(naphthalen-1-yl)but-3-en-1-ol, **3at**; ¹**H NMR** (**600 MHz**, **CDCl**₃) δ 7.87 (d, J = 8.4 Hz, 1H), 7.86 (d, J = 8.0 Hz, 1H), 7.78 (d, J = 8.2 Hz, 1H), 7.62 (d, J = 7.1 Hz, 1H), 7.49 – 7.45 (m, 2H), 7.42 (ddd, J = 8.2, 6.8, 1.4 Hz, 1H), 7.11 (dd, J = 8.7 Hz, $J_{\text{H-F}}$ = 5.6 Hz, 2H), 6.95 – 6.94 (m, 4H), 6.93 – 6.91 (m, 2H), 6.21 (dd, J = 7.5, 7.5 Hz, 1H),

5.58 (dd, J = 7.6, 4.9 Hz, 1H), 2.80 (ddd, J = 14.9, 7.5, 4.9 Hz, 1H), 2.70 (ddd, J = 14.9, 7.6, 7.5 Hz, 1H), 1.75 (bs, 1H); ¹³**C NMR (151 MHz, CDCl₃)** δ 162.39 (d, $J_{C-F} = 246.8$ Hz), 162.14 (d, $J_{C-F} = 246.2$ Hz), 142.42, 139.63, 138.53 (d, $J_{C-F} = 3.2$ Hz), 135.60 (d, $J_{C-F} = 3.5$ Hz), 133.98, 131.53 (d, $J_{C-F} = 8.1$ Hz), 130.43, 129.13, 128.92 (d, $J_{C-F} = 8.1$ Hz), 128.33, 126.22, 125.80, 125.59, 125.56, 123.11, 123.08, 115.42 (d, $J_{C-F} = 21.4$ Hz), 115.17 (d, $J_{C-F} = 21.4$ Hz), 71.43, 38.45; ¹⁹**F NMR (564 MHz, CDCl₃)** δ - 115.04, -115.33; **HRMS** m/z (FAB) calc. for C₂₆H₁₉F₂ [M⁻H₂O+H]⁺ 369.1455, found 369.1458; *R*_{*f*} 0.36 (Hex/EtOAc, 4/1).

1-([1,1'-biphenyl]-4-yl)-4,4-bis(4-fluorophenyl)but-3-en-1-ol, **3au**; ¹H NMR (600 MHz, CDCl₃) δ 7.60 – 7.55 (m, 4H), 7.46 – 7.42 (m, 2H), 7.39 – 7.33 (m, 3H), 7.13 (ddd, J = 8.9, 1.6 Hz, $J_{\text{H-F}}$ = 5.3 Hz, 2H), 7.04 – 7.01 (m, 4H), 6.96 – 6.92 (m, 2H), 6.10 (dd, J = 7.5, 7.5 Hz, 1H), 4.86 (dd, J = 6.6, 6.5 Hz, 1H), 2.67 – 2.56 (m, 2H); ¹³C NMR

(**151 MHz, CDCl**₃) δ 162.42 (d, J_{C-F} = 246.8 Hz), 162.20 (d, J_{C-F} = 246.2 Hz), 143.08, 142.57, 140.95, 140.90, 138.64 (d, J_{C-F} = 3.3 Hz), 135.65 (d, J_{C-F} = 3.2 Hz), 131.61 (d, J_{C-F} = 7.8 Hz), 129.03, 128.99 (d, J_{C-F} = 8.0 Hz), 127.58, 127.42, 127.27, 126.51, 125.15, 115.47 (d, J_{C-F} = 21.1 Hz), 115.21 (d, J_{C-F} = 21.1 Hz), 74.28, 39.59; ¹⁹F NMR (564 MHz, CDCl₃) δ -114.86, -115.26; HRMS m/z (FAB) calc. for C₂₈H₂₁F₂ [M⁻H₂O+H]⁺ 395.1611, found 395.1609; *R*_f 0.30 (Hex/EtOAc, 4/1).

4,4-bis(4-fluorophenyl)-1-(4-(pyridin-2-yl)phenyl)but-3-en-1-ol, **3av**; ¹H NMR (600 MHz, CDCl₃) δ 8.74 (d, *J* = 5.1 Hz, 1H), 8.00 (d, *J* = 8.1 Hz, 2H), 7.88 (dd, *J* = 8.0, 7.6 Hz, 1H), 7.79 (d, *J* = 8.0 Hz, 1H), 7.43 (d, *J* = 8.1 Hz, 2H), 7.35 (dd, *J* = 7.6, 5.1 Hz, 1H), 7.12 (dd, *J* = 8.7 Hz, *J*_{H-F} = 5.5 Hz, 2H), 7.05 – 7.00 (m, 4H), 6.93 (dd, *J* = 8.7 Hz,

 $J_{\text{H-F}} = 8.7 \text{ Hz}, 2\text{H}$), 6.06 (dd, J = 7.6, 7.5 Hz, 1H), 4.88 (dd, J = 6.6, 6.5 Hz, 1H), 2.66 – 2.55 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 162.42 (d, $J_{\text{C-F}} = 246.8 \text{ Hz}$), 162.21 (d, $J_{\text{C-F}} = 246.5 \text{ Hz}$), 156.28, 148.28, 145.95, 142.69, 138.88, 138.56 (d, $J_{\text{C-F}} = 3.3 \text{ Hz}$), 136.78, 135.60 (d, $J_{\text{C-F}} = 3.5 \text{ Hz}$), 131.60 (d, $J_{\text{C-F}} =$ 8.1 Hz), 128.99 (d, $J_{\text{C-F}} = 8.1 \text{ Hz}$), 127.58, 126.73, 124.87, 122.82, 121.58, 115.51 (d, $J_{\text{C-F}} = 21.4 \text{ Hz}$), 115.21 (d, $J_{\text{C-F}} = 21.4 \text{ Hz}$), 74.05, 39.54; ¹⁹F NMR (564 MHz, CDCl₃) δ -112.43, -112.87; HRMS m/z (FAB) calc. for C₂₇H₂₂F₂NO [M+H]⁺ 414.1669, found 414.1673; *R*_f 0.43 (Hex/EtOAc, 1/1).

4,4-bis(4-chlorophenyl)-1-phenylbut-3-en-1-ol, **3ba**; ¹**H NMR** (**600 MHz**, **CDCl**₃) δ 7.35 – 7.32 (m, 2H), 7.31 – 7.28 (m, 5H), 7.21 (d, *J* = 8.3 Hz, 2H), 7.07 (d, *J* = 8.3 Hz, 2H), 6.95 (d, *J* = 8.0 Hz, 2H), 6.12 (dd, *J* = 7.5, 7.5 Hz, 1H), 4.82 (dd, *J* = 6.4, 6.4 Hz, 1H), 2.60 (ddd, *J* = 14.5, 7.5, 6.4 Hz, 1H), 2.53 (dt, *J* = 14.5, 7.5, 6.4 Hz, 1H); ¹³**C NMR** (**151 MHz**, **CDCl**₃) δ 143.76,

141.94, 140.45, 137.69, 133.20, 133.14, 131.13, 128.55, 128.50, 128.44, 128.30, 127.77, 125.91, 125.80, 74.21, 39.37; **HRMS** m/z (EI) calc. for $C_{22}H_{17}Cl_2$ [M-H₂O+H]⁺ 351.0707, found 351.0692; *R*_f 0.33 (Hex/EtOAc, 4/1).

1-phenyl-4,4-di-*p*-tolylbut-3-en-1-ol, **3ca**; ¹**H NMR** (**600 MHz**, **CDCl**₃) δ 7.33 – 7.30 (m, 4H), 7.29 – 7.25 (m, 1H), 7.13 (d, *J* = 7.6 Hz, 2H), 7.08 (d, *J* = 7.9 Hz, 2H), 7.05 (d, *J* = 7.9 Hz, 2H), 6.97 (d, *J* = 7.6 Hz, 2H), 6.04 (dd, *J* = 7.4, 7.4 Hz, 1H), 4.80 (dd, *J* = 6.5, 6.5 Hz, 1H), 2.62 (ddd, *J* = 15.0, 7.4, 6.5 Hz, 1H), 2.56 (ddd, *J* = 15.0, 7.4, 6.5 Hz, 1H), 2.36 (s, 3H), 2.31 (s, 3H),

1.90 (bs, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 144.46, 144.23, 140.07, 137.13, 137.03, 136.81, 129.92, 129.10, 128.98, 128.61, 127.76, 127.39, 126.12, 123.83, 74.66, 39.72, 22.87, 21.27; HRMS m/z (EI) calc. for C₂₄H₂₃ [M–H₂O+H]⁺ 311.1800, found 311.1798; *R*_f 0.38 (Hex/EtOAc, 4/1).

4,4-bis(4-methoxyphenyl)-1-phenylbut-3-en-1-ol, **3da**; ¹**H NMR** (600 **MHz, CD₃CN**) δ 7.27 (dd, J = 7.0, 7.0 Hz, 2H), 7.24 (d, J = 7.0 Hz, 2H), 7.20 (t, J = 7.0 Hz, 1H), 7.03 (d, J = 8.9 Hz, 2H), 6.90 (d, J = 8.7 Hz, 2H), 6.86 (d, J = 8.7 Hz, 2H), 6.77 (d, J = 8.9 Hz, 2H), 5.93 (dd, J = 7.4, 7.4 Hz,

1H), 4.69 (dd, J = 6.5, 4.0 Hz, 1H), 3.76 (s, 3H), 3.71 (s, 3H), 2.47 – 2.36 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 159.91, 159.69, 146.18, 143.29, 136.58, 133.34, 131.85, 129.15, 129.10, 128.01, 126.84, 124.70, 114.46, 114.45, 74.40, 55.88, 40.77 (one carbon signal is missing due to the overlap); HRMS m/z (EI) calc. for C₂₄H₂₄O₃ [M]⁺ 360.1725, found 360.1727; R_f 0.17 (Hex/EtOAc, 4/1).

4-(4-fluorophenyl)-1-phenyldec-3-en-1-ol, **3ea**; ¹**H** NMR (600 MHz, **CDCl**₃) δ 7.38 (d, J = 7.5 Hz, 2H), 7.34 (dd, J = 7.6, 7.5 Hz, 2H), 7.29 – 7.26 (m, 1H), 7.22 (dd, J = 8.6, 5.6 Hz, 2H), 6.97 – 6.93 (m, 2H), 5.58 (dd, J = 7.3, 7.3 Hz, 1H), 4.79 (dd, J = 6.7, 6.7 Hz, 1H), 2.69 (ddd, J = 15.1, 7.6, 6.7 Hz, 1H), 2.65 – 2.57 (m, 1H), 2.41 – 2.38 (m, 2H), 1.23 – 1.16 (m, 8H), 0.83 (t, J = 7.1 Hz, 3H); ¹³C NMR (151 MHz, **CDCl**₃) δ 162.07 (d, $J_{C-F} = 245.0$ Hz), 144.38, 142.67, 139.25 (d, $J_{C-F} = 3.3$ Hz), 128.63, 128.05 (d, $J_{C-F} = 7.8$ Hz), 127.80, 126.04, 123.89, 115.10 (d, $J_{C-F} = 21.1$ Hz), 74.45, 38.76, 31.82, 30.30, 29.39, 28.63, 22.76, 14.22; HRMS m/z (FAB) calc. for C₂₂H₂₇FO [M]⁺ 326.2046, found 326.2049; **R**_f 0.38 (Hex/EtOAc, 4/1).

1,4-diphenyldec-3-en-1-ol, **3fa**; ¹**H NMR (600 MHz, CDCl₃)** δ 7.41 (d, J = 7.4 Hz, 2H), 7.37 (dd, J = 8.4, 6.7 Hz, 2H), 7.32 – 7.28 (m, 6H), 5.66 (dd, J = 7.4, 7.4 Hz, 1H), 4.81 (dd, J = 7.7, 5.5 Hz, 1H), 2.72 (ddd, J = 15.2, 7.7, 7.4

Hz, 1H), 2.67 – 2.62 (ddd, J = 15.2, 7.4, 5.5 Hz, 1H), 2.47 – 2.44 (m, 2), 1.28 – 1.19 (m, 8H), 0.85 (t, J = 6.9 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 144.34, 143.91, 143.23, 128.66, 128.38, 127.81, 126.97, 126.60, 126.08, 123.76, 74.49, 38.85, 31.86, 30.23, 29.49, 28.80, 22.81, 14.26; HRMS m/z (FAB) calc. for C₂₂H₂₇ [M⁻H₂O+H]⁺ 291.2113, found 291.2115; R_f 0.44 (Hex/EtOAc, 4/1).

Me OHHex OHHex OHHex I-phenyl-4-(p-tolyl)dec-3-en-1-ol, **3ga**; ¹H NMR (600 MHz, CDCl₃) δ 7.41 (d, J = 8.4 Hz, 2H), 7.39 - 7.36 (m, 1H), 7.34 - 7.30 (m, 1H), 7.22 (d, J = 8.1 Hz, 2H), 7.12 (d, J = 7.9 Hz, 2H), 5.64 (dd, J = 7.5, 7.5 Hz, 1H), 7.22 (d, J = 8.1 Hz, 2H), 7.12 (d, J = 7.9 Hz, 2H), 5.64 (dd, J = 7.5, 7.5 Hz, 1H), 7.22 (d, J = 8.1 Hz, 2H), 7.12 (d, J = 7.9 Hz, 2H), 5.64 (dd, J = 7.5, 7.5 Hz, 1H), 7.22 (d, J = 8.1 Hz, 2H), 7.12 (d, J = 7.9 Hz, 2H), 5.64 (dd, J = 7.5, 7.5 Hz, 1H), 7.22 (d, J = 8.1 Hz, 2H), 7.12 (d, J = 7.9 Hz, 2H), 5.64 (dd, J = 7.5, 7.5 Hz, 1H), 7.22 (d, J = 8.1 Hz, 2H), 7.12 (d, J = 7.9 Hz, 2H), 5.64 (dd, J = 7.5, 7.5 Hz, 1H), 7.22 (d, J = 7.5, 7.5 Hz, 1H),

4.80 (dd, J = 7.7, 5.6 Hz, 1H), 2.72 (ddd, J = 15.2, 7.7, 7.5 Hz, 1H), 2.67 – 2.61 (ddd, J = 15.2, 7.5, 5.6 Hz, 1H), 2.46 – 2.43 (m, 2H), 2.35 (s, 3H), 1.30 – 1.21 (m, 8H), 0.86 (t, J = 7.0 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 144.37, 143.73, 140.26, 136.63, 129.08, 128.63, 127.76, 126.44, 126.07, 122.97, 74.44, 38.87, 31.86, 30.18, 29.51, 28.82, 22.81, 21.23, 14.26; HRMS m/z (FAB) calc. for C₂₃H₂₉ [M⁻ H₂O+H]⁺ 305.2269, found 305.2272; R_f 0.47 (Hex/EtOAc, 4/1).

ΟН

Hex

4-(4-isopropylphenyl)-1-phenyldec-3-en-1-ol, **3ha**; ¹**H NMR** (600 MHz, **CDCl**₃) δ 7.41 (d, *J* = 7.1 Hz, 2H), 7.37 (dd, *J* = 7.3, 7.1 Hz, 2H), 7.29 (t, *J* = 7.3 Hz, 1H), 7.25 (d, *J* = 8.1 Hz, 2H), 7.16 (d, *J* = 8.1 Hz, 2H), 5.65

(dd, J = 7.4, 7.4 Hz, 1H), 4.80 (dd, J = 7.7, 5.6 Hz, 1H), 2.90 (p, J = 6.9 Hz, 1H), 2.72 (ddd, J = 14.9, 7.7, 7.4 Hz, 0H), 2.64 (ddd, J = 14.9, 7.4, 5.6 Hz, 1H), 2.47 – 2.44 (m, 2H), 1.26 (d, J = 6.9 Hz, 6H), 1.30 – 1.21 (m, 8H), 0.86 (t, J = 7.0 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 147.63, 144.36, 143.74, 140.55, 128.64, 127.76, 126.42, 126.40, 126.08, 122.97, 74.48, 38.90, 33.90, 31.87, 30.21, 29.57, 28.93, 24.18, 22.83, 14.27; HRMS m/z (FAB) calc. for C₂₅H₃₃ [M⁻H₂O+H]⁺ 333.2582, found 333.2579; *R*_f 0.47 (Hex/EtOAc, 4/1).

References

[S1] Z. Zhao, L. Racicot and G. K. Murphy, Fluorinative Rearrangements of Substituted Phenylallenes Mediated by (Difluoroiodo)toluene: Synthesis of alpha-(Difluoromethyl)styrenes, *Angew. Chem. Int. Ed.*, 2017, 56, 11620-11623.

[S2] H. Clavier, K. Le Jeune, I. de Riggi, A. Tenaglia and G. Buono, Highly selective cobalt-mediated[6+2] cycloaddition of cycloheptatriene and allenes, *Org. Lett.*, 2011, 13, 308-311.

[S3] A. Kopfer and B. Breit, Rhodium-Catalyzed Hydroformylation of 1,1-Disubstituted Allenes Employing the Self-Assembling 6-DPPon System, *Angew. Chem. Int. Ed.*, 2015, **54**, 6913-6917.

NMR Spectra (¹H NMR, ¹³C NMR and ¹⁹F NMR)

Chemical Shirt (ppin)

