SUPPORTING INFORMATION

SUPPORTING INFORMATION

Light Promoted Metal-free Regio- and Stereoselective Isoperfluoropropylation of Unactivated alkenes with *i*-C₃F₇-lodine(III) Reagent

Yaxing Wu^a, Yunchen Jiang^a, Fei Wang^a, Bin Wang^a and Chao Chen^{*a}

- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education),
 Department of Chemistry, Tsinghua University, Beijing 100084, China.
- * E-mail: <u>chenchao01@mails.tsinghua.edu.cn</u>. Tel: +86-10-62773684.

TABLE OF CONTENTS

TABLE OF CONTENTS	S2
MATERIALS AND METHODS	S3
EXPERIMENTAL DATA	S5
The synthesis of <i>i</i> -C ₃ F ₇ -iodine(III) reagent (PFPI)	S5
Visible-light promoted isoperfluoropropylation of non-activated alkenes	S9
Optimization of reaction conditions	S9
Synthesis of the substrates	S13
Substrate Scope	S30
Visible-light promoted neophyl rearrangement of allylic alcohols	S51
Optimization of reaction conditions	S51
Synthesis of the substrates	S52
Substrate Scope	S57
Visible-light promoted isoperfluoropropylation of terminal alkynes	S65
Visible-light promoted hydroisoperfluoropropylation of terminal alkenes	S69
Mechanistic investigations	S73
Quantum yield measurement	S84
Gram-scale reactions and further transformations	S86
X-Ray Crystal Structures	S90
The copies of NMR spectra	S98
REFERENCES OF SUPPORITNG INFORMATION	S263

MATERIALS AND METHODS

All reactions were carried out under ambient atmosphere unless otherwise stated. Concentration under reduced pressure was performed by rotary evaporation at 25-45 °C at an appropriate pressure. Purified compounds were further dried under vacuum (10⁻⁴-10⁻¹ KPa). Isolated yields refer to purified and spectroscopically pure compounds or mixtures of constitutional isomers. All air- and moisture-sensitive manipulations were performed using standard Schlenk- or glove-box techniques under an atmosphere of argon or dinitrogen.

Starting materials

All substrates and materials were used as received from commercial suppliers, or prepared according to published procedures, respectively, unless otherwise stated. AgF was purchased from Energy-Chemical, and stored in an anhydrous brown bottle. Various photocatalysts was purchased from Sigma-Aldrich, Bidepharm and Energy-Chemical.

Solvents

Dry THF, DCM and DME were purchased from Innochem (water content < 50 ppm). Dry MeCN and DMF were purchased from Energy-Chemical (water content < 30 ppm). Dry ether was obtained by post-treatment with 4 Å molecular sieve, which activated at 300 °C in muffle furnace. All deuterated solvents were purchased from Sigma-Aldrich. EtOAc and petroleum ether (boiling range 60-90 °C) was purchased from Tansoole.

Spectroscopy and instruments

NMR spectra were recorded on a JEOL AL-400MHz spectrometer operating at 400 MHz, 101 MHz, and 376 MHz, for 1H, 13C, and 19F acquisitions. Chemical shifts are reported in ppm with the solvent residual peak as the internal standard. For ¹H NMR: chloroform-*d*, δ 7.26; dimethyl sulfoxide-*d*₆, δ 2.50. For ¹³C NMR: chloroform-*d*, δ 77.16; dimethyl sulfoxide-*d*₆, δ 39.52. ¹⁹F NMR spectra were referenced using a unified chemical shift scale based on the ¹H NMR resonance of tetramethylsilane (1% (v/v) solution in the respective solvent). Data is reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad; coupling constants in Hz; integration. HRMS spectra were obtained using Bruker Esquire ion trap mass spectrometer in positive mode. UV-vis absorption spectra were recorded on an UV 2700. Emission spectra were recorded on a Hitachi F-4600. EPR spectra were recorded on a JEOL JES FA-200 spectrometer (sensitivity, 7*109 spins; resolution, ≥ 2.35 µT).

Chromatography

Thin layer chromatography (TLC) was performed using TLC plates pre-coated with 200 μm thickness silica gel F254 plates and visualized by fluorescence quenching under 254 nm UV light, phosphomolybdic Acid, and KMnO₄ stain. Column chromatography was performed on silica gel (particle size 10-40 μm, Ocean Chemical Factory of Qingdao, China).

Photochemistry

All reactions with visible light were carried out using a photoreactor equipped with a LED module (25 W Power Green LED 525 nm, purchased from GreeThink), consisting out of 50 LED-chips. The power of the LED was adjusted using a linear regulator.

Cyclic voltammetry

Cyclic voltammetry experiments were conducted in a Schlenk tube that contained the substance dissolved in a 0.1 M solution of tetrabutylammonium hexafluorophosphate in acetonitrile. A platinum wire working electrode and a platinum mesh counter electrode were used. The voltage was measured *via* a Luggin capillary against an Ag/Ag⁺ reference and was referenced externally against the ferrocene/ferrocenium ion pair. The relevant parameters were controlled by a CHI660 electrochemical workstation.

X-ray crystallographic Analysis

A crystal was mounted on a nylon loop using perfluoropolyether, and transferred to a XtaLAB FR-X diffractometer, Rigaku (Cu K_{α} radiation, λ =1.54178 Å) equipped with a nitrogen flow apparatus. The sample was held at 100(2) K or room temperature during the experiment.

EXPERIMENTAL DATA

The synthesis of *i*-C₃F₇-iodine(III) reagent (PFPI) Chloroiodine(III) intermediate¹

Scheme S1. Synthesis of chloroiodine(III) reagent.

A 500 mL three-necked, round-bottom flask equipped with a teflon-coated magnetic stirring bar, nitrogen inlet and dropping funnel with pressure-equalizing side arm was charged under nitrogen with solid 2-iodobenzoic acid (20 g, 79.0 mmol, 1 equiv.), and anhydrous MeCN (150 mL) was added. The resulting stirred suspension was heated to 75 °C in an oil bath. The dropping funnel was charged with a solution of trichloroisocyanuric acid (6.37 g, 26.6 mol, 1.02 CI⁺ equiv.) in 30 mL of anhydrous MeCN. The solution of trichloroisocyanuric acid was dropped into the vigorously stirred reaction mixture within 5 min. The dropping funnel was rinsed with further anhydrous MeCN (10 mL). After addition was complete, the reaction mixture was refluxed for an additional 5 min. The reaction mixture was vacuum-filtered over an oven-preheated, sintered-glass funnel with a tightly packed pad of Celite (0.5 cm thick), and the filter cake was rinsed with additional hot MeCN (10-20 mL). The combined filtrates were evaporated to near-dryness, and the resulting yellow solid was dried for 1 h under high vacuum to give 1-chloro-1,2-benziodoxol-3-(1H)-one as free-flowing light yellow crystals in quantitative yield.

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 8.23 (ddd, *J* = 14.0, 8.0, 1.3 Hz, 2H), 7.98 (ddd, *J* = 8.6, 7.2, 1.6 Hz, 1H), 7.82 - 7.76 (m, 1H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 117.1, 126.8, 128.9, 131.9, 133.4, 136.5, 167.3.

Acetoxyiodine(III) intermediate²

Scheme S2. Synthesis of acetoxyiodine(III) reagent.

To a suspension of 2-iodobenzoic acid (8.0 g, 32.2 mmol, 1.0 equiv.) in 30% v/v aq. AcOH (48 mL) was added NalO₄ (7.24g, 33.8 mmol, 1.05 equiv.) at room temperature. The mixture was stirred at 120 °C for 4 h and then cooled down to room temperature followed by addition of water (50 mL). While avoiding exposure of ambient light, the precipitate was filtered, further washed with water (20 mL) and cold acetone (20 mL) and dried under vacuum to give 1-hydroxy-1,2-benziodoxol-3-(1*H*)-one as a white crystalline (7.78 g, 93% yield).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Dimethyl sulfoxide-*d*₆, 298 K) δ 8.02 (dd, *J* = 7.7, 1.4 Hz, 1 H), 7.99 - 7.95 (m, 1 H), 7.85 (dd, *J* = 8.2, 0.7 Hz, 1 H), 7.71 (td, *J* = 7.6, 1.2 Hz, 1 H).

¹³C NMR (101 MHz, Dimethyl sulfoxide-*d*₆, 298 K) δ 167.7, 134.5, 131.5, 131.1, 130.4, 126.3, 120.4.

Acetic anhydride (25 mL) was added to 1-hydroxy-1,2-benziodoxol-3-(1*H*)-one (7.78 g, 29.5 mmol) at room temperature. The suspension was allowed to stir at 135 °C for 2 hours until fully dissolved. The resulting solution was slowly cooled down to -20 °C for crystallization. The white crystal was filtered and dried under vacuum to obtain 1-acetoxy-1,2-benziodoxol-3-(1*H*)-one (8.9 g, 99% yield).

NMR Spectroscopy:

¹H NMR (400 MHz, Chloroform-*d*, 298 K) δ 8.23 (dd, *J* = 7.6, 1.6 Hz, 1H), 8.00 (dd, *J* = 8.3, 1.0 Hz, 1H), 7.92 (ddd, *J* = 8.4, 7.2, 1.6 Hz, 1H), 7.71 (td, *J* = 7.3, 1.1 Hz, 1H), 2.24 (s, 3H).
¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 176.4, 168.2, 136.2, 133.3, 131.5, 129.4, 129.1, 118.4, 20.3.

The *i*-C₃F₇-iodine(III)

Scheme S3. Synthesis of *i*-C₃F₇-iodine(III) (PFPI reagent) from chloroiodine(III) reagent.

In a nitrogen-filled glove box, an oven-dried crimp cap vessel with Teflon-coated stirrer bar was charged with silver fluoride (0.64 g, 5.0 mmol, 1.0 equiv.) and was brought under an atmosphere of dry nitrogen. To this vessel, anhydrous acetonitrile (20 mL) and hexafluoropropylene (1atm, balloon and adequate) were added, and the mixture was stirred at ice-water bath in the dark until silver fluoride precipitate dissolved completely. Then this solution was added to another oven-dried vessel, which filling with 1-chloro-1,2-benziodoxol-3-(1H)-one (1.44 g, 5.1 mmol, 1.02 equiv.) and 4 Å molecular sieves (100 mg). The reaction mixture was stirred at ambient temperature in the dark

for 1 hours. The reaction mixture was filtered over a sintered-glass funnel with a tightly packed pad of Celite (0.5 cm thick) under dry nitrogen atmosphere, and the filter cake was rinsed with additional anhydrous acetonitrile (5 - 10 mL). The solvent was evaporated under reduced pressure and crude solid product washed with anhydrous Et_2O (10 - 20 mL). Then, the product was obtained by anhydrous DCM leaching in ultrasonic generator under dry nitrogen atmosphere and vacuum evaporated of solvent. The solid was dried for 1 h under high vacuum to give 1-isoperfluoropropyl-1,2-benziodoxol-3-(1*H*)-one as off white solid (1.48 g, 71% yield).

Scheme S4. Synthesis of i-C₃F₇-iodine(III) (PFPI reagent) from acetoxyiodine(III) reagent.

In a nitrogen-filled glove box, an oven-dried crimp cap vessel with Teflon-coated stirrer bar was charged with silver fluoride (0.64 g, 5.0 mmol, 1.0 equiv.) and was brought under an atmosphere of dry nitrogen. To this vessel, anhydrous acetonitrile (20 mL) and hexafluoropropylene (1atm, balloon and adequate) were added, and the mixture was stirred at ice-water bath in the dark until silver fluoride precipitate dissolved completely. Then this solution was added to another oven-dried vessel, which filling with 1-acetoxy-1,2-benziodoxol-3-(1*H*)-one (1.56 g, 5.1 mmol, 1.02 equiv.) and 4 Å molecular sieves (100 mg). The reaction mixture was stirred at ambient temperature in the dark for 1 hours. The reaction mixture was filtered over a sintered-glass funnel with a tightly packed pad of Celite (0.5 cm thick) under dry nitrogen atmosphere, and the filter cake was rinsed with additional anhydrous acetonitrile (5 - 10 mL). The solvent was evaporated under reduced pressure and crude solid product washed with anhydrous Et_2O (10 - 20 mL). Then, the product was obtained by anhydrous DCM leaching in ultrasonic generator under dry nitrogen atmosphere and vacuum evaporated of solvent. The solid was dried for 1 h under high vacuum to give 1-isoperfluoropropyl-1,2-benziodoxol-3-(1*H*)-one as off white solid (1.35 g, 65% yield).

NMR Spectroscopy:

¹H NMR (400 MHz, Chloroform-*d*, 298 K) δ 8.25 (dd, *J* = 7.6, 1.5 Hz, 1H), 8.01 (ddd, *J* = 8.5, 7.1, 1.5 Hz, 1H), 7.94 (d, *J* = 8.3 Hz, 1H), 7.78 - 7.70 (m, 1H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 167.9, 136.7, 133.1, 131.6, 127.99 (d, *J* = 6.7 Hz),
127.8, 120.5 (d, *J* = 10.9 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -71.21 (d, *J* = 11.8 Hz), -171.55 (p, *J* = 12.4 Hz).

Elemental analysis: C%, theoretical value: 28.87%, measured value: 28.99%. H%, theoretical

value: 0.97%, measured value: 1.06%. O%, theoretical value: 7.69%, measured value: 7.54%.

Visible-light promoted isoperfluoropropylation of non-activated alkenes

Optimization of reaction conditions

Photocatalysts and photochemistry parameters screening

Scheme S5. Photocatalysts and photochemistry parameters screening.

Under an ambient atmosphere, in a 25 mL screw-cap vial equipped with a magnetic stirring bar, allylbenzene (**1**, 13.2 μ L, 0.10 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (62.4 mg, 0.15 mmol, 1.5 equiv.), photocatalysts (PC, 1 - 5 mol%) were dissolved in dry MeCN (1 mL). Subsequently, TMEDA (22.4 μ L, 0.15 mmol, 1.5 equiv.) was added into the vial. The vial was sealed and the reaction was irradiated at visible light for 2 h, the temperature of the reaction systems was controlled within 25 - 35 °C by using the drum fan. After this, 10 μ L of *n*-dodecane was added as an internal standard and the reaction mixture was diluted with EtOAc. The crude reaction mixture was filtered through a plug of silica then subjected to GC-MS analysis.

Entry	PC (1 - 5 mol%)	LEDs (Wavelength, Power)	Yield of 3 (%)	Yield ratio 3 : 3*	Yield of 3** (%)
1	Eosin Y (5 mol%)	Green LEDs (525 nm, 10 W)	80	> 99:1	< 5
2	Eosin Y (5 mol%)	Green LEDs (525 nm, 25 W)	77	> 99:1	< 5
3	Eosin Y (5 mol%)	Blue LEDs (450 nm, 10 W)	69	> 99:1	< 5
4	Eosin Y (5 mol%)	White LEDs (100W)	47	> 99:1	< 5
5	Eosin Y (5 mol%)	UV (360-400nm)	42	96:4	< 5
6	<i>fac</i> -Ir(ppy) ₃ (1 mol%)	Blue LEDs (450 nm, 10 W)	50	> 99:1	13
7	<i>fac</i> -Ir(ppy) ₃ (1 mol%)	White LEDs (100W)	21	> 99:1	9
8	[Ir(dtbbpy)(ppy) ₂]PF ₆ (1 mol%)	Blue LEDs (450 nm, 10 W)	70	> 99:1	< 5
9	$[Ru(bpy)_3](PF_6)_2(1 mol\%)$	Blue LEDs (450 nm, 10 W)	65	> 99:1	< 5
10	$[Ru(bpy)_3](PF_6)_2(1 \text{ mol}\%)$	UV (360-400nm)	30	92:8	< 5
11	PTH (5 mol%)	Blue LEDs (450 nm, 10 W)	trace	-	11
12	PTH (5 mol%)	UV (360-400nm)	trace	-	trace

Table S1. Photocatalysts and photochemistry parameters screening

Solvent screening

Scheme S6. Solvent screening.

Under an ambient atmosphere, in a 25 mL screw-cap vial equipped with a magnetic stirring bar, allylbenzene (**1**, 13.2 μ L, 0.10 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (62.4 mg, 0.15 mmol, 1.5 equiv.), Eosin Y (5 mol%, 3.2 mg) were dissolved in dry solvent (1 mL). Subsequently, TMEDA (22.4 μ L, 0.15 mmol, 1.5 equiv.) was added into the vial. The vial was sealed and the reaction was irradiated at green light (525 nm) for 2 h, the temperature of the reaction systems was controlled within 25 - 35 °C by using the drum fan. After this, 10 μ L of *n*-dodecane was added as an internal standard and the reaction mixture was diluted with EtOAc. The crude reaction mixture was filtered through a plug of silica then subjected to GC-MS analysis.

Entry	Solvent	Yield of 3 (%)	Yield ratio 3 : 3*	Yield of 3 **(%)
1	MeCN	80	> 99:1	< 5
2	DMF	44	> 99:1	< 5
3	DMA	55	> 99:1	< 5
4	THF	21	> 91:9	< 5
5	CH ₂ Cl ₂	n. d	-	n. d

Table S2. Solvent screening.

Base screening

Scheme S7. Base screening.

Under an ambient atmosphere, in a 25 mL screw-cap vial equipped with a magnetic stirring bar, allylbenzene (**1**, 13.2 μ L, 0.10 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (62.4 mg, 0.15 mmol, 1.5 equiv.), Eosin Y (5 mol%, 3.2 mg) were dissolved in dry MeCN (1 mL). Subsequently, base (x equiv.) was added into the vial. The vial was sealed and the reaction was irradiated at green light (525 nm) for 2 h, the temperature of the reaction systems was controlled within 25 - 35 °C by using the drum fan. After this, 10 μ L of *n*-dodecane was added as an internal standard and the reaction mixture was diluted with EtOAc. The crude reaction mixture was filtered through a plug of silica then subjected to GC-MS analysis.

Entry	Base (x equiv)	Yield of 3 (%)	Yield ratio 3 : 3*	Yield of 3 **(%)
1	DIPEA (1.5 equiv)	87	> 99:1	< 5
2	DIPEA (1.0 equiv)	74	> 99:1	< 5
3	TMEDA (1.5 equiv)	80	> 99:1	< 5
4	TMP (1.5 equiv)	37	96:4	10
5	TMG (1.5 equiv)	26	95:5	12
6	Cs ₂ CO ₃ (1.0 equiv)	trace	-	n. d

TMP

Additives screening

Scheme S8. Additives screening.

Under an ambient atmosphere, in a 25 mL screw-cap vial equipped with a magnetic stirring bar, allylbenzene (**1**, 13.2 μ L, 0.10 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (62.4 mg, 0.15 mmol, 1.5 equiv.), Eosin Y (5 mol%, 3.2 mg), additive (5 mol%) were dissolved in dry MeCN (1 mL). Subsequently, DIPEA (26.1 μ L, 0.15 mmol, 1.5 equiv.) was added into the vial. The vial was sealed and the reaction was irradiated at green light (525 nm) for 2 h, the temperature of the reaction systems was controlled within 25 - 35 °C by using the drum fan. After this, 10 μ L of *n*-dodecane was added as an internal standard and the reaction mixture was diluted with EtOAc. The crude reaction mixture was filtered through a plug of silica then subjected to GC-MS analysis.

Entry	Additive (5 mol%)	Yield of 3 (%)	Yield ratio 3 : 3*	Yield of 3 **(%)
1	-	87	> 99:1	< 5
2	$Cu(CH_3CN)_4PF_6$	92ª	89:11	n. d
3	MeB(OH) ₂	68	> 99:1	< 5
4	Zn(OTf) ₂	82	> 99:1	< 5

Table S4. Additives screening. ^a Total yield of 3 and 3*.

Control experiments under standard conditions

Scheme S9. Control experiments under standard conditions.

Entry ^a	Deviation from above	Yield of 3 (%) ^a	Yield ratio 3 : 3 * ^b	Yield of 3** (%) ^a
1	None (standard conditions)	87 (83°)	> 99:1	< 5
2	Reaction performed in CH_2CI_2	n. d	-	n. d
3	Reaction performed in DMF	59	> 99:1	< 5
4	Reaction irradiated at 450 nm (blue light)	73	> 99:1	< 5
5	PTH instead of Eosin Y	trace	-	7
6	$[Ir(dtbbpy)(ppy)_2]PF_6$ instead of Eosin Y	82	> 99:1	< 5
7	fac-Ir(ppy) ₃ instead of Eosin Y	58	> 99:1	14
8	$[Ru(bpy)_3](PF_6)_2$ instead of Eosin Y	71	> 99:1	< 5
9	TMEDA instead of DIPEA	80	> 99:1	< 5

SUPPORTING INFORMATION				S 13
10	TMP instead of DIPEA	37	96:4	10
11	TMG instead of DIPEA	26	95:5	12
12	Reaction performed in the dark	trace	-	n. d
13	5 mol% Cu(CH ₃ CN) ₄ PF ₆ as additives	92 ^{<i>d</i>}	89:11	n. d

Table S5. Control experiments under standard condition. ^aThe yield was determined by GC-MS with *n*-dodecane as an internal standard. ^bThe yield ritio was determined by GC-MS with *n*-dodecane as an internal standard or ¹⁹F NMR analysis with PhCF₃ as an internal standard. ^cYield of isolated product given. ^dTotal yield of **3** and **3***.

Synthesis of the substrates

General procedure for preparation of allyl arenes

Scheme S10. Suzuki coupling for the synthesis of allyl arene.³

Under ambient atmosphere, a 50 mL borosilicate vial equipped with a magnetic stir bar was charged with arylboronic acid (5.0 mmol, 1.0 equiv.), allyl bromide (10.0 mmol, 2.0 equiv.), $Pd(PPh_3)_4$ (173.3 mg 0.15 mmol, 3.0 mol%), K_2CO_3 (1.38 g, 10.0 mmol, 2.0 equiv.) and toluene (20.0 mL, c = 0.25 M). The vial was sealed with a septum-cap and heated for 3 to 12 h at 90 °C. After cooling to room temperature, the reaction mixture was concentrated. The residue was dissolved in ethyl acetate (20 mL) and washed with brine (20 mL). The aqueous phase was extracted with ethyl acetate (2 × 20 mL). The combined organic layers were dried over Na₂SO₄ and the solvent was removed under reduced pressure. The crude product was purified by chromatography (silica gel, ethyl acetate: petroleum ether, 1:30 to 1:100 (v:v)) to afford the title compound which was characterized by GC-MS analysis, ¹H NMR and ¹³C NMR spectroscopy.

1-Allyl-4-methoxybenzene (**S1**)

Known compound.

The title compound was prepared with 4-methoxyphenylboronic acid (759.8 mg, 5.0 mmol, 1.0 equiv.), allyl bromide (736.8 μ L, 10.0 mmol, 2.0 equiv.), Pd(PPh₃)₄ (173.3 mg, 0.15 mmol, 3.0 mol%) and K₂CO₃ (1.38 g, 10.0 mmol, 2.0 equiv.) in toluene (20 mL, c = 0.25 M). The mixture was refluxed (90 °C) for 3 h. The crude product was purified by chromatography (silica gel, ethyl acetate: petroleum ether, 1:50 (v:v)) to afford the title compound as a colorless oil (606.8 mg, 82 %).

 $\mathbf{R}_{f} = 0.45$ (ethyl acetate: petroleum ether, 1:40 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.10 (d, *J* = 8.7 Hz, 2H), 6.82 (d, *J* = 8.7 Hz, 2H), 5.96 (ddt, *J* = 17.0, 10.2, 6.7 Hz, 1H), 5.08 - 5.02 (m, 2H), 3.79 (s, 3H), 3.35 (d, *J* = 6.7 Hz, 2 H).

¹³**C NMR** (101 MHz, Chloroform-*d*, 298 K) δ 158.13, 138.06, 132.26, 129.68, 115.53, 114.01, 55.43, 39.50.

GC-MS: 148.

1-Allyl-4-(benzyloxy)benzene (S2)

Known compound.

The title compound was prepared with 4-benzyloxyphenylboronic acid (1.14 g, 5.0 mmol, 1.0 equiv.), allyl bromide (736.8 μ L, 10.0 mmol, 2.0 equiv.), Pd(PPh₃)₄ (173.3 mg, 0.15 mmol, 3.0 mol%) and K₂CO₃ (1.38 g, 10.0 mmol, 2.0 equiv) in toluene (20 mL, c = 0.25 M). The mixture was refluxed (90 °C) for 3 h. The crude product was purified by chromatography (silica gel, ethyl acetate: petroleum ether, 1:50 (v:v)) to afford the title compound as a colorless oil (795.2 mg, 71 %).

 \mathbf{R}_{f} = 0.58 (ethyl acetate: petroleum ether, 1:20 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.33 - 7.46 (m, 5H), 7.11 (d, *J* = 8.6 Hz, 2H), 6.93 (d, *J* = 8.6 Hz, 2H), 5.95 (ddt, *J* = 17.2 Hz, 10.1 Hz, 6.7 Hz, 1H), 5.07 - 5.11 (m, 4H), 3.36 (d, *J* = 6.8 Hz, 2H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 157.3, 138.0, 137.3, 132.6, 129.6, 128.7, 128.0, 127.6, 115.6, 114.9, 70.2, 39.5.

GC-MS: 224.

4-Allyldibenzothiophene (S3)

Known compound.

The title compound was prepared with dibenzothiophene-4-boronic acid (1.14 g, 5.0 mmol, 1.0 equiv.), allyl bromide (736.8 µL, 10.0 mmol, 2.0 equiv.), Pd(PPh₃)₄ (173.3 mg, 0.15 mmol, 3.0 mol%)

and K₂CO₃ (1.38 g, 10.0 mmol, 2.0 equiv) in toluene (20 mL, c = 0.25 M). The mixture was refluxed (90 °C) for 3 h. The crude product was purified by chromatography (silica gel, ethyl acetate: petroleum ether, 1:50 (v:v)) to afford the title compound as a colorless oil (0.896 g, 80 %). **R**_f = 0.56 (ethyl acetate: petroleum ether, 1:100 (v:v)).

NMR Spectroscopy:

¹H NMR (400 MHz, Chloroform-*d*, 298 K) δ 8.18 - 8.12 (m, 1H), 8.06 (d, 1H, *J* = 7.7 Hz), 7.90 - 7.86 (m, 1H), 7.50 - 7.45 (m, 2H), 7.45 (t, 1H, *J* = 7.2 Hz), 7.32 (d, 1H, *J* = 7.5 Hz), 6.25 - 6.02 (m, 1H), 5.23 (dq, 1H, *J* = 16.7 Hz, 1.5 Hz), 5.19 (dq, 1H, *J* = 9.9 Hz, 1.5 Hz), 3.67 (d, 2H, *J* = 6.3 Hz).

¹³**C NMR** (101 MHz, Chloroform-*d*, 298 K) δ 146.1, 144.5, 143.5, 140.1, 135.1, 134.3, 126.8, 126.6, 125.1, 124.6, 123.0, 121.9, 119.8, 117.3, 39.6.

GC-MS: 224.

2-Allylbenzofuran (S4)

Known compound.

The title compound was prepared with benzofuran-2-boronic acid (809.8 mg, 5.0 mmol, 1.0 equiv.), allyl bromide (736.8 μ L, 10.0 mmol, 2.0 equiv.), Pd(PPh₃)₄ (173.3 mg, 0.15 mmol, 3.0 mol%) and K₂CO₃ (1.38 g, 10.0 mmol, 2.0 equiv.) in toluene (20 mL, c = 0.25 M). The mixture was refluxed (90 °C) for 3 h. The crude product was purified by chromatography (silica gel, ethyl acetate: petroleum ether, 1:50 (v:v)) to afford the title compound as a colorless oil (426.6 mg, 54 %).

 $\mathbf{R}_{f} = 0.41$ (ethyl acetate: petroleum ether, 1:50 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.50 - 7.48 (m, 1H), 7.43 - 7.41 (m, 1H), 7.24 - 7.17 (m, 2H), 6.42 (d, *J* = 1.2 Hz, 1H), 6.06 - 5.99 (m, 1H), 5.24 (dq, *J* = 17.1 Hz, 1.8 Hz, 1H), 5.19 (dq, *J* = 9.9 Hz, 1.2 Hz, 1H), 3.55 (dd, *J* = 6.6 Hz, 1.2 Hz, 2H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 157.0, 154.9, 133.1, 128.8, 123.3, 122.4, 120.3, 117.6, 110.7, 102.6, 33.0.

GC-MS: 158.

3-Allyl quinoline (S5)

Known compound.

The title compound was prepared with quinoline-3-boronic acid (864.9 mg, 5.0 mmol, 1.0 equiv.), allyl bromide (736.8 μ L, 10.0 mmol, 2.0 equiv.), Pd(PPh₃)₄ (173.3 mg, 0.15 mmol, 3.0 mol%) and K₂CO₃ (1.38 g, 10.0 mmol, 2.0 equiv.) in toluene (20 mL, c = 0.25 M). The mixture was refluxed (90 °C) for 3 h. The crude product was purified by chromatography (silica gel, ethyl acetate: petroleum ether, 1:40 (v:v)) to afford the title compound as a colorless oil (321.1 mg, 38 %).

 \mathbf{R}_{f} = 0.28 (ethyl acetate: petroleum ether, 1:5 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 8.79 (s, 1 H), 8.10 (d, *J* = 8.5 Hz, 1 H), 7.95 (s, 1 H), 7.78 (d, *J* = 8.5 Hz, 1 H), 7.73 - 7.63 (m, 1 H), 7.57 - 7.50 (m, 1 H), 6.14 - 5.92 (m, 1 H), 5.25 - 4.97 (m, 2 H), 3.59 (d, *J* = 6.8 Hz, 2 H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 152.0, 146.9, 136.0, 134.6, 132.6, 129.2, 128.8, 128.1, 127.4, 126.6, 117.1, 37.3.

GC-MS: 169.

Scheme S11. Wurtz-Fittig coupling for the synthesis of allyl arene or 4-pentenyl-arene.⁴

Under ambient atmosphere, a flame-dried vial equipped with a magnetic stir bar was charged with Mg granules (115.2 mg, 4.8 mmol, 1.2 equiv.) and iodide grain and sealed with a septum. Part of a solution of bromoarene (4.0 mmol, 1.0 equiv.) in THF (5 mL) was added into the vial via a syringe. After the color suddenly faded, the rest of solution was added. The solution was stirred for 2 h under ambient atmosphere. The mixture was decanted into another dry flask. It was then cooled to 0 °C and alkyl bromide (6.0 mmol, 1.5 equiv.) was added carefully. The resulting solution was stirred for 45 min at 0 °C and quenched with saturated solution of NH₄Cl. The solution was then extracted with 3×10 mL diethyl ether and the combined organic layers were dried over Na₂SO₄. The solvent was then removed in vacuo and the residue was purified by flash column chromatography (silica gel, ethyl acetate: petroleum ether, 1:50 to 1:100 (v:v)) to afford the title compound which was characterized by GC-MS analysis, ¹H NMR and ¹³C NMR spectroscopy.

1-Methyl-2-allylbenzene (S6)

Known compound.

The title compound was prepared with 2-methyl bromobenzene (481.0 μ L, 4.0 mmol, 1.0 equiv.), allyl bromide (442.1 μ L, 6.0 mmol, 1.5 equiv.), Mg granules (115 mg, 4.8 mmol, 1.2 equiv.) and I₂ (20 mg) in THF (5 mL, *c* = 0.80 M). The crude product was purified by chromatography (silica gel, ethyl acetate: petroleum ether, 1:100 (v:v)) to afford the title compound as a colorless oil (443.5 mg, 84 %).

 \mathbf{R}_{f} = 0.68 (ethyl acetate: petroleum ether, 1:100 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.25 (m, 4H), 6.12 - 6.02 (m, 1H), 5.19 - 5.08 (m, 2H), 3.49 (d, *J* = 6.3 Hz, 2H), 2.41 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 138.1, 136.7, 136.3, 130.1, 129.1, 126.3, 126.0, 115.6, 37.7, 19.3.

GC-MS: 132.

2-Fluro-4-pentenylbenzonitrile (S7)

The title compound was prepared with 2-fluro-4-bromobenzonitrile (800.4 mg, 4.0 mmol, 1.0 equiv.), 5-bromopentene (710.7 μ L, 6.0 mmol, 1.5 equiv.), Mg granules (115 mg, 4.8 mmol, 1.2 equiv.) and I₂ (20 mg) in THF (5 mL, c = 0.80 M). The crude product was purified by chromatography (silica gel, ethyl acetate: petroleum ether, 1:50 - 1:100 (v:v)) to afford the title compound as a colorless oil (544.3 mg, 72 %).

 $\mathbf{R}_{f} = 0.64$ (ethyl acetate: petroleum ether, 1:50 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.60 (dd, *J* = 8.0, 5.1 Hz, 1H), 7.11 (dd, *J* = 7.8, 1.9 Hz, 1H), 7.02 (dd, *J* = 8.0, 2.1 Hz, 1H), 5.70 (tt, *J* = 17.0, 6.6 Hz, 1H), 5.20 - 4.89 (m, 2H), 2.62 (t, *J* = 8.7 Hz, 2H), 2.11 (td, *J* = 7.8, 6.7 Hz, 2H), 1.69 - 1.54 (m, 2H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 162.86 (d, *J* = 252.0 Hz), 145.44 (d, *J* = 8.2 Hz),
137.24, 133.29 (d, *J* = 8.1 Hz), 125.84 (d, *J* = 3.3 Hz), 116.21 (d, *J* = 20.0 Hz), 114.98, 114.74 (d, *J* = 4.1 Hz), 98.86 (d, *J* = 20.0 Hz), 35.35 (d, *J* = 4.2 Hz), 35.13, 29.63.

GC-MS: 189.

Scheme S12. Acetyloxylation of eugenol.

Acetyl chloride (298.6 µL, 4.2 mmol, 1.4 equiv.) was added to a solution of Et₃N (667.3 µL, 4.8 mmol, 1.6 equiv.) and eugenol (492.3 mg, 3 mmol, 1.0 equiv.) in CH_2Cl_2 (5 mL, 0.6 M) at 0 °C. The mixture was stirred at this temperature until starting material is consumed. The reaction was poured into water (20 mL), and the mixture was stirred vigorously for 5 min. The aqueous phase was extracted with EtOAc (3×50 mL). The combined organic phases were washed with 1 M aq HCl (10 mL), saturated aq NaHCO₃ (15 mL), water (15 mL) and brine (15 mL), and dried over anhydrous Na₂SO₄. The solvent was evaporated under reduced pressure for giving the acetate ester which does not require purification (568.6 mg, 92 %).

Eugenyl acetate (S8)

Known compound.

 $\mathbf{R}_{f} = 0.43$ (ethyl acetate: petroleum ether, 1:10 (v:v)).

NMR Spectroscopy:

¹H NMR (400 MHz, Chloroform-*d*, 298 K) δ6.94 (d, *J* = 8.0 Hz, 1H), 6.80 (d, *J* = 1.8 Hz, 1H), 6.77 (dd, *J* = 8.0, 1.9 Hz, 1H), 5.97 (ddt, *J* = 16.8, 10.1, 6.8 Hz, 1H), 5.12 (dq, *J* = 17.0, 1.7 Hz, 1H), 5.09 (dq, *J* = 10.1, 1.6 Hz, 1H), 3.82 (s, 3H), 3.38 (d, *J* = 6.7 Hz, 2H), 2.31 (s, 3H).
¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 169.3, 150.8, 139.0, 137.9, 137.0, 122.4, 120.6, 116.1, 112.6, 55.8, 40.1, 20.6.

GC-MS: 206.

General procedure for preparation of allyl ethers and (pent-4-en-1-yloxy)benzene derivatives

Scheme S13. Synthesis of allyl ethers and (pent-4-en-1-yloxy)benzene derivatives.⁵

To a solution of aromatic alcohol (5.0 mmol, 1.0 equiv.) and K_2CO_3 (2.07 g, 15.0 mmol, 3.0 equiv.) in CH₃CN (20.0 mL, 0.25 M) was added allyl bromide/5-bromopent-1-ene (10.0 mmol, 2.0 equiv.), and the mixture was refluxed for 12h. It was then cooled to 25°C and the solvent was removed in vacuo. The residue was partitioned between diethyl ether and water, and the aqueous layer was extracted with diethyl ether (3 x 20 mL). The combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄. The solvent was then removed in vacuo and the residue was purified by flash column chromatography (silica gel, ethyl acetate: petroleum ether, 1:5 to 1:100 (v:v)) to

afford the corresponding alkenes which was characterized by GC-MS analysis, ¹H NMR and ¹³C NMR spectroscopy.

2,4-Dimethyl(allyloxy)benzene (S9)

Known compound.

The title compound was prepared with 2,4-dimethylphenol (610.1 mg, 5.0 mmol, 1.0 equiv.), K_2CO_3 (2.07 g, 15.0 mmol, 3.0 equiv.) and allyl bromide (736.8 µL, 10.0 mmol, 2.0 equiv.) in CH₃CN (20 mL, c = 0.25 M). The mixture was refluxed (80 °C) for 12 h. The crude product was purified by chromatography (silica gel, ethyl acetate: petroleum ether, 1:50 - 1:100 (v:v)) to afford the title compound as a colorless oil (761.4 mg, 94 %).

 \mathbf{R}_{f} = 0.65 (ethyl acetate: petroleum ether, 1:30 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.04 - 6.97 (m, 2H), 6.76 (d, *J* = 8.0 Hz, 1H), 6.15 - 6.09 (m, 1H), 5.49 - 5.46 (m, 1H), 5.31 (dd, *J* = 10.9 Hz, 2.0 Hz, 1H), 4.57 - 4.55 (m, 2H), 2.31 (s, 3H), 2.29 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 154.8, 133.8, 131.4, 129.6, 126.6, 126.7, 116.7, 111.2, 68.9, 20.1, 16.2.

GC-MS: 162.

2-(Allyloxy)-5-methylbenzoate (S10)

Known compound.

The title compound was prepared with 2-hydroxy-5-methylbenzoate (830.5 mg, 5.0 mmol, 1.0 equiv.), K_2CO_3 (2.07 g, 15.0 mmol, 3.0 equiv.) and allyl bromide (736.8 µL, 10.0 mmol, 2.0 equiv.) in CH₃CN (20 mL, c = 0.25 M). The mixture was refluxed (80 °C) for 12 h. The crude product was purified by chromatography (silica gel, ethyl acetate: petroleum ether, 1:30 - 1:80 (v:v)) to afford the title compound as a pale-yellow oil (927.2 mg, 90 %).

 \mathbf{R}_{f} = 0.55 (ethyl acetate: petroleum ether, 1:30 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.61 (s, 1H), 7.23 (dd, *J* = 8.5, 2.2 Hz, 1H), 6.85 (d, 1H), 6.05 (ddt, *J* = 17.2, 10.5, 4.7 Hz, 1H), 5.50 (dd, *J* = 17.2, 1.4 Hz, 1H), 5.29 (dd, *J* = 10.6, 1.2 Hz, 1H), 4.59 - 4.53 (m, 2H), 3.89 (s, 3H), 2.31 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 166.82, 157.78, 135.87, 132.91, 130.95, 127.32, 119.44, 116.37, 113.87, 70.98, 52.27, 22.11.
 GC-MS: 206.

3-(Allyloxy)benzoate (S11)

Known compound.

The title compound was prepared with 3-hydroxybenzoate (760.3 mg, 5.0 mmol, 1.0 equiv.), K_2CO_3 (2.07 g, 15.0 mmol, 3.0 equiv.) and allyl bromide (736.8 µL, 10.0 mmol, 2.0 equiv.) in CH₃CN (20 mL, c = 0.25 M). The mixture was refluxed (80 °C) for 12 h. The crude product was purified by chromatography (silica gel, ethyl acetate: petroleum ether, 1:30 - 1:80 (v:v)) to afford the title compound as a colorless oil (825.6 mg, 86 %).

 \mathbf{R}_{f} = 0.75 (ethyl acetate: petroleum ether, 1:10 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.63 (d, J = 8.0 Hz, 1H), 7.57 (s, 1H), 7.33 (t, J = 8.0 Hz, 1H), 7.11 (dd, J = 8.0, 2.7 Hz, 1H), 6.05 (ddt, J = 17.3, 10.5, 5.2 Hz, 1H), 5.42 (dd, J = 17.3, 1.5 Hz, 1H), 5.29 (dd, J = 10.5, 1.5 Hz, 1H), 4.57 (d, J = 5.2 Hz, 2H), 3.90 (s, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*, 298 K) δ 167.1, 158.6, 133.2, 131.5, 129.4, 122.3, 120.3, 118.0, 115.0, 69.1, 52.2.

GC-MS: 192.

1-(4-(Allyloxy)phenyl)ethanone (S12)

Known compound.

The title compound was prepared with 4-hydroxyacetophenone (680.2 g, 5.0 mmol, 1.0 equiv.), K_2CO_3 (2.07 g, 15.0 mmol, 3.0 equiv.) and allyl bromide (736.8 µL, 10.0 mmol, 2.0 equiv.) in CH₃CN (20 mL, c = 0.25 M). The mixture was refluxed (80 °C) for 12 h. The crude product was purified by chromatography (silica gel, ethyl acetate: petroleum ether, 1:30 - 1:80 (v:v)) to afford the title compound as a pale-yellow oil (729.8 mg, 82 %).

 \mathbf{R}_{f} = 0.55 (ethyl acetate: petroleum ether, 1:30 (v:v)).

NMR Spectroscopy:

¹H NMR (400 MHz, Chloroform-*d*, 298 K) δ 7.88 (d, J = 8.9 Hz, 2H), 6.90 (d, J = 8.9 Hz, 2H), 5.95 - 6.08 (m, 1H), 5.39 (dd, J = 16.4, 1.5 Hz, 1H), 5.29 (dd, J = 10.5 Hz, 1.3 Hz, 1H), 5.54 (td, J = 5.3 Hz, 1.5 Hz, 2H), 2.51 (s, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*, 298 K) δ 196.7, 162.3, 132.1, 130.4, 118.2, 114.2, 68.7, 26.1.

GC-MS: 176.

1-Chloro-4-(allyloxy)benzene (S13)

Known compound.

The title compound was prepared with 4-chlorophenol (642.8 mg, 5.0 mmol, 1.0 equiv.), K_2CO_3 (2.07 g, 15.0 mmol, 3.0 equiv) and allyl bromide (736.8 µL, 10.0 mmol, 2.0 equiv.) in CH₃CN (20 mL, c = 0.25 M). The mixture was refluxed (80 °C) for 12 h. The crude product was purified by chromatography (silica gel, ethyl acetate: petroleum ether, 1:50 - 1:100 (v:v)) to afford the title compound as a colorless oil (812.0 mg, 97 %).

 $\mathbf{R}_{f} = 0.60$ (ethyl acetate: petroleum ether, 1:30 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.37 (d, *J* = 9.0 Hz, 2H), 6.80 (d, *J* = 9.0 Hz, 2H), 6.02 (ddt, *J* = 17.2, 10.1, 5.2 Hz, 1H), 5.42 (dd, *J* = 17.0, 1.4 Hz, 1H), 5.30 (dd, *J* = 10.2, 1.4 Hz, 1H), 4.50 (d, *J* = 5.2 Hz, 2 H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 157.3, 133.2, 132.7, 118.0, 116.8, 113.0, 68.8. GC-MS: 168.

1-Bromo-4-(allyloxy)benzene (S14)

Known compound.

The title compound was prepared with 4-bromophenol (859.8 mg, 5.0 mmol, 1.0 equiv.), K_2CO_3 (2.07 g, 15.0 mmol, 3.0 equiv) and allyl bromide (736.8 µL, 10.0 mmol, 2.0 equiv.) in CH₃CN (20 mL, c = 0.25 M). The mixture was refluxed (80 °C) for 12 h. The crude product was purified by chromatography (silica gel, ethyl acetate: petroleum ether, 1:50 - 1:100 (v:v)) to afford the title compound as a colorless oil (996.3 mg, 94 %).

 \mathbf{R}_{f} = 0.60 (ethyl acetate: petroleum ether, 1:30 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.37 (d, *J* = 9.0 Hz, 2H), 6.80 (d, *J* = 9.0 Hz, 2H), 6.02 (ddt, *J* = 17.2, 10.1, 5.2 Hz, 1H), 5.42 (dd, *J* = 17.0, 1.4 Hz, 1H), 5.30 (dd, *J* = 10.2, 1.4 Hz, 1H), 4.50 (d, *J* = 5.2 Hz, 2 H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 157.3, 133.2, 132.7, 118.0, 116.8, 113.0, 68.8. GC-MS: 212.

1-lodo-4-(allyloxy)benzene (S15)

Known compound.

The title compound was prepared with 4-iodophenol (1.10 g, 5.0 mmol, 1.0 equiv.), K_2CO_3 (2.07 g, 15.0 mmol, 3.0 equiv.) and allyl bromide (736.8 µL, 10.0 mmol, 2.0 equiv.) in CH₃CN (20 mL, c = 0.25 M). The mixture was refluxed (80 °C) for 12 h. The crude product was purified by chromatography (silica gel, ethyl acetate: petroleum ether, 1:50 - 1:100 (v:v)) to afford the title compound as a pale-yellow oil (1.196 g, 92 %).

 \mathbf{R}_{f} = 0.60 (ethyl acetate: petroleum ether, 1:30 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.55 (d, *J* = 6.8 Hz, 2H), 6.69 (d, *J* = 6.8 Hz, 2H), 6.02 (ddt, *J* =17.8, 11.4, 5.8 Hz, 1H), 5.40 (dd, *J* = 17.3, 1.4 Hz, 1H), 5.28 (dd, *J* = 10.7, 1.4 Hz, 1H), 4.50 (d, *J* = 4.9 Hz, 2H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 158.5, 138.2, 132.8, 118.0, 117.2, 82.9, 68.9. GC-MS: 260.

3-(Allyloxy)phenyl benzoate (S16)

The title compound was prepared with 3-(hydroxy)phenyl benzoate (1.07 g, 5.0 mmol, 1.0 equiv.), K_2CO_3 (2.07 g, 15.0 mmol, 3.0 equiv.) and allyl bromide (736.8 µL, 10.0 mmol, 2.0 equiv.) in CH₃CN (20 mL, c = 0.25 M). The mixture was refluxed (80 °C) for 12 h. The crude product was purified by chromatography (silica gel, ethyl acetate: petroleum ether, 1:30 - 1:80 (v:v)) to afford the title compound as a pale-yellow oil (1.03 g, 81 %).

 \mathbf{R}_{f} = 0.63 (ethyl acetate: petroleum ether, 1:10 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.81 (ddd, *J* = 7.9, 2.5, 0.9 Hz, 1H), 7.54 (t, *J* = 2.2 Hz, 1H), 7.47 - 7.40 (m, 2H), 7.38 - 7.30 (m, 2H), 7.31 - 7.25 (m, 2H), 7.05 - 7.00 (m, 1H), 6.03 (dt, *J* = 11.4, 5.8 Hz, 1H), 5.39 - 5.31 (m, 2H), 4.51 (dt, *J* = 5.8, 1.0 Hz, 2H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 164.25, 158.19, 148.72, 132.90, 130.75, 129.56, 127.52, 125.66, 124.44, 120.28, 119.72, 115.99, 114.61, 67.20.

GC-MS: 254.

2-(Pent-4-en-1-yloxy)benzaldehyde (S17)

Known compound.

The title compound was prepared with 2-(hydroxy)benzaldehyde (610.2 mg, 5.0 mmol, 1.0 equiv.), K_2CO_3 (2.07 g, 15.0 mmol, 3.0 equiv.) and 5-bromopent-1-ene (1.18 mL, 10.0 mmol, 2.0 equiv.) in CH₃CN (20 mL, c = 0.25 M). The mixture was refluxed (80 °C) for 12 h. The crude product was purified by chromatography (silica gel, ethyl acetate: petroleum ether, 1:30 - 1:50 (v:v)) to afford the title compound as a pale-yellow oil (797.6 mg, 84 %).

 $\mathbf{R}_{f} = 0.36$ (ethyl acetate: petroleum ether, 1:10 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 10.32 (s, 1H), 7.64 - 7.62 (m, 1H), 7.34 - 7.30 (t, *J* = 7.2 Hz, 1H), 6.81 - 6.76 (m, 2H), 5.70 - 5.60 (m, 1H), 4.89 - 4.81 (m, 2H), 3.85 - 3.82 (m, 2H), 2.08 (q, *J* = 6.8 Hz, 2H), 1.75 - 1.68 (m, 2H).

¹³**C NMR** (101 MHz, Chloroform-*d*, 298 K) δ 189.2, 161.2, 137.2, 135.7, 127.9, 124.7, 120.2, 115.2, 112.5, 67.5, 29.9, 28.0.

GC-MS: 190.

2-Chloro-4-trifluoromethyl-(allyloxy)benzene (S18)

The title compound was prepared with 2-chloro-4-trifluoromethylphenol (980.3 mg, 5.0 mmol, 1.0 equiv), K_2CO_3 (2.07 g, 15.0 mmol, 3.0 equiv) and 5-bromopent-1-ene (1.18 mL, 10.0 mmol, 2.0 equiv.) in CH₃CN (20 mL, c = 0.25 M). The mixture was refluxed (80 °C) for 12 h. The crude product was purified by chromatography (silica gel, ethyl acetate: petroleum ether, 1:50 - 1:100 (v:v)) to afford the title compound as a colorless oil (1.02 g, 77 %).

 \mathbf{R}_{f} = 0.67 (ethyl acetate: petroleum ether, 1:10 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.62 (d, *J* = 2.3 Hz, 1H), 7.45 (dd, *J* = 8.9, 2.6 Hz, 1H), 6.95 (d, *J* = 8.6 Hz, 1H), 5.85 (ddt, *J* = 16.9, 10.2, 6.7 Hz, 1H), 5.12 - 4.97 (m, 2H), 4.07 (t, *J* = 6.4 Hz, 2H), 2.29 (q, *J* = 7.9, 7.5 Hz, 2H), 1.96 (dt, *J* = 13.3, 6.6 Hz, 2H).

¹³**C NMR** (101 MHz, Chloroform-*d*, 298 K) δ 157.14, 137.45, 127.53, 125.10, 123.39, 115.67, 112.63, 68.48, 29.98, 28.11.

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -61.61 (s, 3F).

GC-MS: 264.

D-α-tocopherol allyl ether (S19)

Known compound.

The title compound was prepared with D- α -Tocopherol (2.15 g, 5.0 mmol, 1.0 equiv.), K₂CO₃ (2.07 g, 15.0 mmol, 3.0 equiv.) and allyl bromide (736.8 μ L, 10.0 mmol, 2.0 equiv.) in CH₃CN (20 mL, c = 0.25 M). The mixture was refluxed (80 °C) for 12 h. The crude product was purified by chromatography (silica gel, ethyl acetate: petroleum ether, 1:20 - 1:50 (v:v)) to afford the title compound as a colorless oil (1.62 g, 69 %).

 \mathbf{R}_{f} = 0.34 (ethyl acetate: petroleum ether, 1:10 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 6.13 (ddt, *J* = 17.3, 10.8, 5.5 Hz, 1H), 5.45 (dd, *J* = 17.3, 1.6 Hz, 1H), 5.26 (dd, *J* = 10.7, 1.6 Hz, 1H), 4.20 (d, *J* = 5.5 Hz, 2H), 2.59 (t, *J* = 6.8 Hz, 2H), 2.19 (s, 3H), 2.14 (s, 3H), 2.11 (s, 3H), 1.88 - 1.72 (m, 2H), 1.61 - 1.50 (m, 3H), 1.48 - 1.36 (m, 4H), 1.32 - 1.22 (m, 10H), 1.18 - 1.04 (m, 6H), 0.91 - 0.83 (m, 13H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 148.4, 147.9, 134.6, 128.1, 126.0, 123.0, 117.6, 116.8, 74.9, 73.9, 40.2, 39.6, 37.7, 37.6, 37.4, 32.8, 32.8, 31.4, 28.1, 25.0, 24.7, 24.0, 22.9, 22.8, 21.2, 20.8, 19.9, 19.8, 19.8, 13.0, 12.1, 12.0.

GC-MS: 470.

(*8R*,*9S*,*13S*,*14S*)-13-methyl-3-(allyloxy)-7,8,9,11,12,13,15,16-octahydro-6Hcyclopenta[a]phenanthren-17(14*H*)-one (**S20**)

Known compound.

The title compound was prepared with estrone (1.35 g, 5.0 mmol, 1.0 equiv.), K_2CO_3 (2.07 g, 15.0 mmol, 3.0 equiv.) and 5-bromopent-1-ene (1.18 mL, 10.0 mmol, 2.0 equiv.) in CH₃CN (20 mL, c = 0.25 M). The mixture was refluxed (80 °C) for 12 h. The crude product was purified by chromatography (silica gel, ethyl acetate: petroleum ether, 1:20 - 1:50 (v:v)) to afford the title compound as a white solid (1.22 g, 78 %).

 \mathbf{R}_{f} = 0.67 (ethyl acetate: petroleum ether, 1:5 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.19 (d, *J* = 8.7 Hz, 1H), 6.71 (dd, *J* = 8.7, 2.5 Hz, 1H), 6.64 (d, *J* = 2.5 Hz, 1H), 6.01 - 6.10 (m, 1H), 5.39 (d, *J* = 17.0 Hz, 1H), 5.26 (d, *J* = 10.3 Hz, 1H), 4.50 (d, *J* = 5.5 Hz, 2H), 3.72 (t, *J* = 8.3 Hz, 1H), 2.87 - 2.82 (m, 2H), 1.14-2.31 (m, 14H) 0.77 (s, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*, 298 K) δ 156.5, 137.9, 133.5, 132.8, 126.2, 117.4, 114.6, 112.0, 81.8, 68.7, 50.1, 43.9, 43.3, 38.8, 36.6, 30.5, 29.7, 27.0, 26.2, 23.1, 11.0.

GC-MS: 310.

2-(4-allyloxyphenyl)ethyl β -D-glucopyranoside tetraacetate (**S21**)

The title compound was prepared with tetraacetyl salidroside (2.34 g, 5.0 mmol, 1.0 equiv.), K_2CO_3 (2.07 g, 15.0 mmol, 3.0 equiv.) and allyl bromide (736.8 µL, 10.0 mmol, 2.0 equiv.) in CH₃CN (20 mL, c = 0.25 M). The mixture was refluxed (80 °C) for 12 h. The crude product was purified by chromatography (silica gel, ethyl acetate: petroleum ether, 1:10 - 1:30 (v:v)) to afford the title compound as a colorless oil (1.07 g, 42 %).

 \mathbf{R}_{f} = 0.36 (ethyl acetate: petroleum ether, 1:2 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.10 (d, *J* = 8.2 Hz, 2H), 6.83 (d, *J* = 8.3 Hz, 2H), 6.07 - 6.01 (m, 1H), 5.40 (dt, *J* = 10.3, 8.2 Hz, 1H), 5.41 - 5.35 (m, 1H), 5.27 (dt, *J* = 10.3 Hz, 1.4 Hz, 1H), 5.21 (dd, *J* = 10.3 Hz, 8.2 Hz, 1H), 4.98 (dd, *J* = 9.6 Hz, 2.5 Hz, 1H), 4.50 (dd, *J* = 5.5 Hz, 1.4 Hz, 2H), 4.44 (d, *J* = 7.5 Hz, 1H), 4.18 (dd, *J* = 11.0 Hz, 6.2 Hz, 1H), 4.15 - 4.04

(m, 2H), 3.63 (dd, *J* = 15.8 Hz, 7.5 Hz, 1H), 3.39 (t, *J* = 6.9 Hz, 1H), 2.86 - 2.82 (m, 2H), 2.15 (s, 3H), 2.05 (s, 3H), 1.98 (s, 3H), 1.92 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 170.4 - 169.3, 157.2, 133.4, 130.7, 129.8, 117.6, 114.7, 101.3, 70.9, 70.7, 68.5, 68.7, 67.1, 61.3, 35.1, 20.8, 20.6.

GC-MS: 508.

General procedure for preparation of other terminal alkenes

Scheme S14. Synthesis of pent-4-en-1-yl benzoates.⁶

Under ambient atmosphere, to a 0 °C solution of pent-en-1-ol (371.2 μ L, 3.6 mmol, 1.2 equiv.), DMAP (5.00 mg, 0.0409 mmol), Et₃N (625.5 μ L, 4.5 mmol, 1.5 equiv.) in 6.0 mL of CH₂Cl₂ was added acid chloride (3.0 mmol, 1.0 equiv.). The resulting mixture was warmed to room temperature and was stirred for 3 h. After this, the reaction mixture was diluted with saturated NaHCO₃ solution (5 mL) and stirred for an additional 10 min. The phases were separated and the organic layer was washed with saturated NaHCO₃ solution (3×10 mL) and brine solution (10 mL). The organic layer was dried (Na₂SO₄) and concentrated to give a crude residue that was purified by flash column chromatography (silica gel, ethyl acetate: petroleum ether, 1:50 to 1:100 (v:v)) to afford the title compound which was characterized by GC-MS analysis, ¹H NMR and ¹³C NMR spectroscopy.

Pent-4-en-1-yl 4-methoxybenzoate (S22)

Known compound.

The title compound was prepared with 4-methoxy-benzoylchlorid (406.2 μ L, 3.0 mmol, 1.0 equiv.), Et₃N (625.5 μ L, 4.5 mmol, 1.5 equiv.), DMAP (5.0 mg, 0.0409 mmol) and pent-en-1-ol (371.2 μ L, 3.6 mmol, 1.2 equiv.), in DCM (6.0 mL, c = 0.50 M). The crude product was purified by chromatography (silica gel, ethyl acetate: petroleum ether, 1:50 - 1:100 (v:v)) to afford the title compound as a colorless oil (600.6 mg, 91 %).

 \mathbf{R}_{f} = 0.41 (ethyl acetate: petroleum ether, 1:20 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 8.05 (d, *J* = 9.7, 2H), 6.98 (d, *J* = 9.8, 2H), 5.89 (ddd, *J* = 18.1, 10.1, 8.3, 1H), 5.14 (d, *J* = 18.1, 1H), 5.05 (d, *J* = 10.0, 1H), 4.36 (t, *J* = 6.7, 14), 5.05 (d, *J* = 10.0, 1H), 4.36 (t, *J* = 6.7, 14), 5.05 (d, *J* = 10.0, 1H), 5.05 (d, *J* = 10.0, 1H), 4.36 (t, *J* = 6.7, 14), 5.05 (d, *J* = 10.0, 1H), 5.05 (d, J = 10.0, 1H), 5

2H), 3.91 (s, 3H), 2.27 (q, J = 7.1, 2H), 1.92 (q, J = 7.0, 2H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 166.5, 163.3, 137.6, 131.5, 122.8, 115.4, 113.7, 64.1, 55.5, 30.3, 28.0.

GC-MS: 220.

Pent-4-en-1-yl 2-naphthoate (S23)

Known compound.

The title compound was prepared with 2-naphthoic acid (571.8 mg, 3.0 mmol, 1.0 equiv.), Et_3N (625.5 µL, 4.5 mmol, 1.5 equiv.), DMAP (5.0 mg, 0.0409 mmol) and pent-en-1-ol (371.2 µL, 3.6 mmol, 1.2 equiv.) in DCM (6.0 mL, c = 0.50 M). The crude product was purified by chromatography (silica gel, ethyl acetate: petroleum ether, 1:50 - 1:100 (v:v)) to afford the title compound as a colorless oil (626.4 mg, 87 %).

 $\mathbf{R}_{f} = 0.54$ (ethyl acetate: petroleum ether, 1:20 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 8.64 (s, 1H), 8.10 (dd, *J* = 8.8, 1.6 Hz, 1H), 7.95 (d, *J* = 8.0 Hz, 1H), 7.89 - 7.83 (m, 2H), 7.59 - 7.51 (m, 2H), 5.96 - 5.84 (m, 1H), 5.17 - 5.03 (m, 2H), 4.41 (t, *J* = 6.5 Hz, 2H), 2.27 (q, *J* = 7.6 Hz, 2H), 1.88 - 1.97 (m, 2H).

¹³**C NMR** (101 MHz, Chloroform-*d*, 298 K) δ 166.5, 137.4, 135.3, 132.3, 130.8, 129.2, 128.0, 127.9, 127.6, 127.5, 126.4, 125.0, 115.2, 64.3, 30.0, 27.8.

GC-MS: 240.

Pent-4-en-1-yl cinnamate (S24)

The title compound was prepared with cinnamoyl chloride (499.8 mg, 3.0 mmol, 1.0 equiv.), Et₃N (625.5 μ L, 4.5 mmol, 1.5 equiv.), DMAP (5.0 mg, 0.0409 mmol) and pent-en-1-ol (371.2 μ L, 3.6 mmol, 1.2 equiv.) in DCM (6.0 mL, c = 0.50 M). The crude product was purified by chromatography (silica gel, ethyl acetate: petroleum ether, 1:50 - 1:100 (v:v)) to afford the title compound as a colorless oil (570.2 mg, 88 %).

 \mathbf{R}_{f} = 0.58 (ethyl acetate: petroleum ether, 1:20 (v:v)).

NMR Spectroscopy:

¹H NMR (400 MHz, Chloroform-*d*, 298 K) δ 7.68 (d, *J* = 16.0 Hz, 1H), 7.52 (dd, *J* = 6.5, 3.0 Hz, 2H), 7.43 - 7.35 (m, 3H), 6.44 (d, *J* = 16.0 Hz, 1H), 5.83 (ddt, *J* = 16.9, 10.2, 6.6 Hz, 1H), 5.10 - 4.97 (m, 2H), 4.21 (t, *J* = 6.6 Hz, 2H), 2.18 (q, *J* = 7.2, 6.7 Hz, 2H), 1.81 (p, *J* = 6.9 Hz, 2H).
¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 167.13, 144.77, 137.61, 134.54, 130.35, 128.98, 128.16, 118.27, 115.42, 64.06, 30.19, 28.00.

GC-MS: 216.

Pent-4-en-1-yl 4-flurobenzoate (S25)

Known compound.

The title compound was prepared with 4-fluro-benzoylchlorid (354.5μ L, 3.0 mmol, 1.0 equiv.), Et₃N (625.5μ L, 4.5 mmol, 1.5 equiv.), DMAP (5.0 mg, 0.0409 mmol) and pent-en-1-ol (371.2μ L, 3.6 mmol, 1.2 equiv.) in DCM (6.0 mL, c = 0.50 M). The crude product was purified by chromatography (silica gel, ethyl acetate: petroleum ether, 1:50 - 1:100 (v:v)) to afford the title compound as a yellow oil (580.3 mg, 93 %).

 \mathbf{R}_{f} = 0.61 (ethyl acetate: petroleum ether, 1:20 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 8.10 - 7.99 (m, 2H), 7.15 - 7.04 (m, 2H), 5.84 (ddt, *J* = 16.9, 10.2, 6.6 Hz, 1H), 5.05 (ddd, *J* = 17.1, 3.1, 1.6 Hz, 1H), 5.03 - 4.97 (m, 1H), 4.32 (t, *J* = 6.6 Hz, 2H), 2.25 - 2.16 (m, 2 H), 1.92 - 1.79 (m, 2H).

¹³**C NMR** (101 MHz, Chloroform-*d*, 298 K) δ 167.1, 165.1 (d, *J* = 117.2 Hz), 137.5, 132.1 (d, *J* = 9.3 Hz), 126.7 (d, *J* = 3.0 Hz), 115.7, 115.5 (d, *J* = 5.3 Hz), 64.6, 30.4, 28.0.

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -106.01.

GC-MS: 208.

Pent-4-en-1-yl 4-nitrobenzoate (S26)

Known compound.

The title compound was prepared with 4-nitro-benzoylchlorid (556.8 mg, 3.0 mmol, 1.0 equiv.), Et₃N (625.5 μ L, 4.5 mmol, 1.5 equiv.), DMAP (5.0 mg, 0.0409 mmol) and pent-en-1-ol (371.2 μ L, 3.6 mmol, 1.2 equiv.) in DCM (6.0 mL, c = 0.50 M). The crude product was purified by chromatography

(silica gel, ethyl acetate: petroleum ether, 1:50 - 1:80 (v:v)) to afford the title compound as a pale yellow solid (549.9 mg, 78 %).

 \mathbf{R}_{f} = 0.38 (ethyl acetate: petroleum ether, 1:20 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 8.30 (d, *J* = 9.2 Hz, 2H), 8.21 (d, *J* = 8.8 Hz, 2H), 5.91 - 5.81 (m, 1H), 5.12 - 5.03 (m, 2H), 4.41 (t, *J* = 6.7 Hz, 2H), 2.27 - 2.20 (m, 2H), 1.96 - 1.89 (m, 2H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 164.6, 150.4, 137.0, 135.7, 130.6, 123.5, 115.6, 65.3, 30.0, 27.8.

GC-MS: 235.

Scheme S15. Synthesis of benzamide.⁷

A reaction flask was charged with amide (5.0 mmol, 1.0 equiv.), 3-bromoprop-1-ene or 5bromopent-1-ene (7.5 mmol, 1.5 equiv.), K_2CO_3 (1.04 g, 7.5 mmol, 1.5 equiv.), and DMF (20 mL, c = 0.25 M). The reaction mixture was allowed to stir at room temperature. After 6 h the reaction was completed, the reaction mixture was slowly poured into water (50 mL). The aqueous phase was extracted with CH_2Cl_2 (5 × 10 mL). The organic extracts were combined, washed with water (3 × 20 mL), and dried over Na₂SO₄. After filtration, the solution was evaporated under reduced pressure to give a crude residue that was purified by flash column chromatography (silica gel, ethyl acetate: petroleum ether, 1:10 to 1:50 (v:v)) to afford the title compound which was characterized by GC-MS analysis, ¹H NMR and ¹³C NMR spectroscopy.

N-Allyl phthalimide (S27)

Known compound.

The title compound was prepared with phthalimide (735.5 mg, 5.0 mmol, 1.0 equiv.), 3-bromoprop-1-ene (649.1 μ L, 7.5 mmol, 1.5 equiv.) and K₂CO₃ (1.04 g, 7.5 mmol, 1.5 equiv.) in DMF (20 mL, c = 0.25 M). The crude product was purified by chromatography (silica gel, ethyl acetate: petroleum ether, 1:10 - 1:30 (v:v)) to afford the title compound as a white solid (617.1 mg, 66 %). **R**_f = 0.37 (ethyl acetate: petroleum ether, 1:2 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.87-7.85 (m, 2H), 7.73 - 7.71 (m, 2H), 5.94 - 5.84 (m, 1H), 5.28 - 5.18 (m, 2H), 4.30 (dt, *J* = 6.0 Hz, 1.2 Hz, 2H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 167.45, 134.43, 132.39, 131.54, 123.07, 116.31. GC-MS: 187.

N-Pent-4-en-1-yl-N-benzylbenzamide (S28)

The title compound was prepared with *N*-benzylbenzamide (1.06 g, 5.0 mmol, 1.0 equiv.), 5bromopent-1-ene (888.3 µL, 7.5 mmol, 1.5 equiv.) and K₂CO₃ (1.04 g, 7.5 mmol, 1.5 equiv.) in DMF (20 mL, c = 0.25 M). The crude product was purified by chromatography (silica gel, ethyl acetate: petroleum ether, 1:10 - 1:50 (v:v)) to afford the title compound as a colorless oil (753.3 mg, 54 %). **R**_f = 0.46 (ethyl acetate: petroleum ether, 1:3 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.44 - 7.12 (m, 10H), 5.91 - 5.40 (m, 1H), 5.07 - 4.81 (m, 2H), 4.82 - 4.44 (m, 2H), 3.56 - 3.05 (m, 2H), 2.20 - 1.43 (m, 4H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 172.15, 137.09, 136.78, 129.49, 128.83, 128.57, 128.17, 127.60, 126.93, 126.67, 115.19, 52.74, 44.46, 31.22, 27.43.

GC-MS: 279.

Substrate Scope

General procedure to access isoperfluoropropylated products.

Scheme S16. General procedure to access isoperfluoropropylated products.

Under an ambient atmosphere, in a 25 mL screw-cap vial equipped with a magnetic stirring bar, alkenes (**4**, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) were dissolved in dry MeCN (2.0 mL, 0.1 M). Subsequently, DIPEA (52.2 μ L, 0.3 mmol, 1.5 equiv.) was added into the vial. The vial was sealed and the reaction was irradiated at green light (525 nm) for 2 h, the temperature of the reaction systems was controlled within 25 - 35 °C by using the drum fan. After this, the reaction was quenched with 10 mL 5% NaHCO₃ aqueous

solution, then extracted with DCM (3 x 10 mL). The combined organic phase was dried with anhydrous Na₂SO₄ and concentrated under vacuum. The residue was further purified by column chromatography to afford corresponding isoperfluoropropylated products, which was characterized by GC-MS analysis, ¹H NMR, ¹³C NMR and ¹⁹F NMR spectroscopy. The 5/5' ratio and *Z/E* ratio was determined by ¹⁹F NMR or GC-MS.

Figure S1-1. Fully assembled 525 nm photoreactor.

Figure S1-2. Fully assembled 525 nm photoreactor in operation.

Characterization of Products

(E)-(4,5,5,5-tetrafluoro-4-(trifluoromethyl)pent-1-en-1-yl)benzene (3)

Known compound.

The title compound was prepared with allyl benzene (23.6 mg, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and DIPEA (52.2 μ L, 0.3 mmol, 1.5 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a colorless oil (47.5 mg, 83 %, **3:3**' > 99:1, *E*/*Z* = 98:2).

 $\mathbf{R}_{f} = 0.77$ (ethyl acetate: petroleum ether, 1:50 (v:v)).

NMR Spectroscopy:

¹H NMR (400 MHz, Chloroform-*d*, 298 K) δ 7.42 - 7.27 (m, 5H), 6.62 (d, *J* = 15.7 Hz, 1H), 6.21
- 6.08 (m, 1 H), 3.04 (dd, *J* = 20.0, 7.5 Hz, 2H).

¹³**C NMR** (101 MHz, Chloroform-*d*, 298 K) δ 136.70, 136.34, 128.75, 128.24, 126.56, 121.09 (qd, *J* = 285.9, 27.3 Hz, CF(<u>*C*</u>F₃)₂), 117.12 (d, *J* = 6.2 Hz), 93.15 - 89.94 (m, <u>*C*</u>F(CF₃)₂), 32.90 (d, *J* = 21.1 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -75.95 (d, *J* = 7.1 Hz, CF(C<u>*F*</u>₃)₂, 6F), -181.74 – -182.23 (m, C<u>*F*</u>(CF₃)₂, 1F).

GC-MS: 286

(E)-1-methoxy-4-(4,5,5,5-tetrafluoro-4-(trifluoromethyl)pent-1-en-1-yl)benzene (6)

Known compound.

The title compound was prepared with 1-allyl-4-methoxybenzene (29.6 mg, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and DIPEA (52.2 μ L, 0.3 mmol, 1.5 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a colorless oil (55.6 mg, 88 %, **6:6'** > 99:1, *E/Z* = 96:4).

 \mathbf{R}_{f} = 0.65 (ethyl acetate: petroleum ether, 1:20 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.32 (d, *J* = 8.4 Hz, 2H), 6.87 (d, *J* = 5.7 Hz, 2H), 6.54 (d, *J* = 15.8 Hz, 1H), 5.97 (dt, *J* = 15.1, 7.0 Hz, 1H), 3.81 (s, 3H), 3.00 (dd, *J* = 20.0, 6.9 Hz, 2H).

¹³**C NMR** (101 MHz, Chloroform-*d*, 298 K) δ 159.73, 136.08, 129.14, 127.77, 121.06 (qd, *J* = 285.2 Hz, 28.1 Hz, CF(<u>C</u>F₃)₂), 114.76 (d, *J* = 5.9 Hz), 114.14, 93.13 - 89.92 (m, <u>C</u>F(CF₃)₂), 55.33, 32.92 (d, *J* = 20.9 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -75.87 (d, *J* = 7.0 Hz, CF(C<u>*F*</u>₃)₂, 6F), -181.92 (th, *J* = 21.1, 7.1 Hz, C<u>*F*</u>(CF₃)₂, 1F).

GC-MS: 316

(E)-1-benzyloxy-4-(4,5,5,5-tetrafluoro-4-(trifluoromethyl)pent-1-en-1-yl)benzene (7)

The title compound was prepared with 1-allyl-4-benzyloxy-benzene (44.8 mg, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and DIPEA (52.2 μ L, 0.3 mmol, 1.5 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a yellow oil (65.9 mg, 84 %, **7:7**' > 99:1, *E*/*Z* = 96:4).

 \mathbf{R}_{f} = 0.59 (ethyl acetate: petroleum ether, 1:20 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.44 - 7.35 (m, 4H), 7.35 - 7.26 (m, 3H), 6.93 (d, *J* = 8.8 Hz, 2H), 6.52 (d, *J* = 15.7 Hz, 1H), 5.96 (dt, *J* = 14.6, 7.6 Hz, 1H), 5.06 (s, 2H), 2.98 (dd, *J* = 20.0, 7.5 Hz, 2H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 158.89, 136.91, 136.05, 129.36, 128.70, 128.11, 127.79, 127.53, 121.02 (qd, *J* = 286.5 Hz, 28.5 Hz, CF(<u>C</u>F₃)₂), 115.09, 114.88 (d, *J* = 5.1 Hz), 92.99 - 89.53 (m, <u>C</u>F(CF₃)₂), 70.11, 32.91 (d, *J* = 21.0 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -75.83 (d, J = 7.4 Hz, CF(C<u>F</u>₃)₂, 6F), -181.87 (th, J = 21.1, 7.0 Hz, C<u>F</u>(CF₃)₂, 1F).

GC-MS: 392

HRMS (ESI) m/z [M+H]⁺: Calculated for C₁₉H₁₆F₇O⁺: 393.1084. Found: 393.1089.

(E)-2-methyl-(4,5,5,5-tetrafluoro-4-(trifluoromethyl)pent-1-en-1-yl)benzene (8)

The title compound was prepared with 1-allyl-2-methylbenzene (26.4 mg, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and DIPEA (52.2 μ L, 0.3 mmol, 1.5 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a colorless oil (46.2 mg, 77 %, **8:8'** = 97:3, *E*/*Z* > 99:1). \mathbf{R}_{f} = 0.57 (ethyl acetate: petroleum ether, 1:50 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.23 - 7.14 (m, 4H), 6.83 (d, *J* = 15.7 Hz, 1H), 5.99 (dt, *J* = 15.9, 7.5 Hz, 1H), 3.06 (dd, *J* = 19.9, 7.5 Hz, 2H), 2.35 (s, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*, 298 K) δ 135.69, 135.56, 134.95, 130.38, 128.12, 126.30, 126.09, 121.05 (qd, *J* = 285.9 Hz, 27.3 Hz, CF(<u>C</u>F₃)₂), 118.64 (d, *J* = 5.9 Hz), 92.88 - 89.90 (m, <u>C</u>F(CF₃)₂), 33.14 (d, *J* = 21.0 Hz), 19.70.

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -75.79 (d, *J* = 7.1 Hz, CF(C<u>*F*</u>₃)₂, 6F), -181.74 (th, *J* = 21.1, 7.0 Hz, C<u>*F*</u>(CF₃)₂, 1F).

GC-MS: 300

HRMS (ESI) m/z [M+H]⁺: Calculated for C₁₃H₁₂F₇⁺: 301.0822. Found: 301.0814.

(E)-1-acetoxy-2-methoxy-4-(4,5,5,5-tetrafluoro-4-(trifluoromethyl)pent-1-en-1-yl)benzene (9)

The title compound was prepared with eugenol acetate (41.2 mg, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and DIPEA (52.2 μ L, 0.3 mmol, 1.5 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a colorless oil (54.6 mg, 73 %, **9:9'** > 99:1, *E*/*Z* = 97:3).

 $\mathbf{R}_{f} = 0.41$ (ethyl acetate: petroleum ether, 1:10 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.04 - 6.92 (m, 3H), 6.55 (d, *J* = 15.7 Hz, 1H), 6.12 - 6.00 (m, 1H), 3.84 (s, 3H), 3.00 (dd, *J* = 20.0, 7.5 Hz, 2H), 2.31 (s, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*, 298 K) δ 169.07, 151.32, 139.83, 136.10, 135.34, 123.03, 121.01 (qd, *J* = 287.4 Hz, 28.3 Hz, CF(<u>C</u>F₃)₂), 119.16, 117.40 (d, J = 6.0 Hz), 110.31, 93.43 - 89.48 (m, <u>C</u>F(CF₃)₂), 55.83, 32.76 (d, J = 21.0 Hz), 20.59.

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -75.94 (d, *J* = 7.1 Hz, CF(C<u>F_3)_2</u>, 6F), -181.92 - - 182.08 (th, *J* = 21.0, 7.3 Hz, C*F*(CF₃)₂, 1F).

GC-MS: 374

HRMS (ESI) m/z [M+H]⁺: Calculated for C₁₅H₁₄F₇O₃⁺: 375.0826. Found: 375.0822.

(E)-2-fluro-4-(6,7,7,7-tetrafluoro-6-(trifluoromethyl)hept-3-en-1-yl)benzonitrile (10)

The title compound was prepared with 2-fluro-4-pentenylbenzonitrile (37.8 mg, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and DIPEA (52.2 μ L, 0.3 mmol, 1.5 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a colorless oil (55.7 mg, 78 %, **10:10'** > 99:1, *E/Z* = 95:5).

 \mathbf{R}_{f} = 0.66 (ethyl acetate: petroleum ether, 1:20 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.61 - 7.44 (m, 3H), 5.97 - 5.73 (m, 1H), 5.70 - 5.47 (m, 1H), 4.21 (td, J = 6.7, 1.9 Hz, 2H), 2.74 (dd, J = 19.7, 7.2 Hz, 2H), 2.48 (q, J = 6.8 Hz, 2H). ¹³**C NMR** (101 MHz, Chloroform-*d*, 298 K) δ 165.77 (d, J = 230.3 Hz), 145.15 (d, J = 6.1 Hz), 133.52, 130.32 (d, J = 9.2 Hz), 126.11 (d, J = 2.9 Hz), 120.94 (qd, J = 285.5 Hz, 27.3 Hz, CF(<u>C</u>F₃)₂), 120.62 (d, J = 6.0 Hz), 119.65, 115.53 (d, J = 21.9 Hz), 113.80, 92.66 – 89.61 (m, <u>C</u>F(CF₃)₂), 40.67, 33.69 (d, J = 22.9 Hz), 32.02.

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -75.97 (d, J = 6.7 Hz, CF(C<u>F₃</u>)₂, 6F), -105.71 (tt, J = 9.4, 4.8 Hz), -182.21 (tp, J = 20.8, 7.0 Hz, C<u>F</u>(CF₃)₂, 1F).

GC-MS: 357

HRMS (ESI) m/z [M+H]⁺: Calculated for C₁₅H₁₂F₈N⁺: 358.0837. Found: 358.0835.

(E)-4-(4,5,5,5-tetrafluoro-4-(trifluoromethyl)pent-1-en-1-yl)dibenzothiophene (11)

The title compound was prepared with 4-allyldibenzothiophene (44.8 mg, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and DIPEA (52.2 μ L, 0.3 mmol, 1.5 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a colorless oil (51.0 mg, 65 %, **11:11'** = 97:3, *E*/*Z* > 99:1).

 \mathbf{R}_{f} = 0.54 (ethyl acetate: petroleum ether, 1:20 (v:v)).

NMR Spectroscopy:

¹H NMR (400 MHz, Chloroform-*d*, 298 K) δ 8.18 - 8.11 (m, 1H), 8.08 (d, *J* = 7.6 Hz, 1H), 7.92
- 7.84 (m, 1H), 7.53 - 7.39 (m, 4H), 6.87 (d, *J* = 15.7 Hz, 1H), 6.38 (dt, *J* = 15.3, 7.4 Hz, 1H), 3.14 (dd, *J* = 19.8, 7.4 Hz, 2H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 139.08, 137.82, 136.43, 135.57, 134.64, 131.28,

S**36**

127.07, 125.01, 124.93, 124.70, 122.83, 121.81, 121.25, 121.05 (qd, J = 285.9 Hz, 28.3 Hz, CF(<u>C</u>F₃)₂), 120.13 (d, J = 5.9 Hz), 93.14 - 89.82 (m, <u>C</u>F(CF₃)₂), 33.22 (d, J = 20.9 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*, 298 K) δ -75.69 (d, J = 7.1 Hz, CF(C<u>F₃)₂, 6F), -181.78 (tp, J = 20.8, 7.1 Hz, C<u>F(CF₃)₂, 1F)</u>.</u>

GC-MS: 392

HRMS (ESI) m/z [M+H]⁺: Calculated for C₁₈H₁₂F₇S⁺: 393.0542. Found: 393.0550.

(E)-2-(4,5,5,5-tetrafluoro-4-(trifluoromethyl)pent-1-en-1-yl)benzofuran (12)

The title compound was prepared with 2-allylbenzofuran (31.6 mg, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and DIPEA (52.2 μ L, 0.3 mmol, 1.5 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a colorless oil (36.5 mg, 56 %, **12:12'** = 97:3, *E*/*Z* > 99:1).

 \mathbf{R}_{f} = 0.38 (ethyl acetate: petroleum ether, 1:20 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.65 (dd, *J* = 7.7, 5.9 Hz), 7.55 (d, *J* = 7.7 Hz), 7.48 (d, *J* = 8.3 Hz), 7.04, 6.50 (d, *J* = 15.7 Hz), 5.86 (dt, *J* = 15.7, 7.6 Hz), 2.98 (dd, *J* = 19.9, 7.5 Hz).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 154.71, 152.78, 130.38, 129.58, 127.57, 127.28, 121.58 (d, *J* = 12.4 Hz), 121.05 (qd, *J* = 285.5 Hz, 27.3 Hz, CF(<u>C</u>F₃)₂), 118.64 (d, *J* = 5.9 Hz), 116.26, 108.41, 93.05 - 89.73 (m, <u>C</u>F(CF₃)₂), 34.52 (d, *J* = 20.9 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -75.85 (d, J = 6.7 Hz, CF(C<u>F</u>₃)₂, 6F), -181.86 (tp, J = 20.7, 6.9 Hz, C<u>F</u>(CF₃)₂, 1F).

GC-MS: 326

HRMS (ESI) m/z [M+H]⁺: Calculated for C₁₄H₁₀F₇O⁺: 327.0614. Found: 327.0606.

(E)-3-(4,5,5,5-tetrafluoro-4-(trifluoromethyl)pent-1-en-1-yl)quinoline (13)

The title compound was prepared with 3-allylquinoline (33.8 mg, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and DIPEA (52.2 μ L, 0.3 mmol, 1.5 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a colorless oil (53.9 mg, 80 %, **13:13'** > 99:1, *E*/*Z* > 99:1).
$\mathbf{R}_{f} = 0.38$ (ethyl acetate: petroleum ether, 1:20 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 8.71 (s, 1H), 8.32 (s, 1H), 8.00 (d, *J* = 8.9 Hz, 2H), 7.67 - 7.49 (m, 2H), 6.60 (d, *J* = 15.7 Hz, 1H), 6.08 (dt, *J* = 15.7, 7.5 Hz, 1H), 3.02 (dd, *J* = 19.9, 7.3 Hz, 2H).

¹³**C NMR** (101 MHz, Chloroform-*d*, 298 K) δ 149.24, 146.05, 136.10, 135.34, 132.36, 131.17 (d, *J* = 5.9 Hz), 129.01, 127.16, 126.87, 123.03, 121.02 (qd, *J* = 286.4 Hz, 27.8 Hz, CF(<u>C</u>F₃)₂), 119.16, 93.12 - 89.63 (m, <u>C</u>F(CF₃)₂), 34.89 (d, *J* = 20.9 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -76.90 (d, *J* = 7.6 Hz, CF(C<u>*F*</u>₃)₂, 6F), -184.04 (ddq, *J* = 24.5, 16.2, 7.9 Hz, C<u>*F*</u>(CF₃)₂, 1F).

GC-MS: 337

HRMS (ESI) m/z [M+H]⁺: Calculated for C₁₅H₁₁F₇N⁺: 338.0774. Found: 338.0773.

(Z)-2,4-dimethyl-((4,5,5,5-tetrafluoro-4-(trifluoromethyl)pent-1-en-1-yl)oxy)benzene (14)

The title compound was prepared with 2,4-dimethyl(allyloxy)benzene (32.4 mg, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and DIPEA (52.2 μ L, 0.3 mmol, 1.5 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a colorless oil (64.0 mg, 97 %, **14:14'** > 99:1, *Z/E* = 96:4).

 \mathbf{R}_{f} = 0.59 (ethyl acetate: petroleum ether, 1:10 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.09 (d, *J* = 8.3 Hz, 1H), 6.82 (d, *J* = 2.9 Hz, 1H), 6.75 (dd, *J* = 8.2, 2.9 Hz, 1H), 6.58 (d, *J* = 6.2 Hz, 1H), 4.79 (q, *J* = 7.1, 6.6 Hz, 1H), 3.11 (dd, *J* = 19.8, 7.5 Hz, 2H), 2.27 (s, 3H), 2.24 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 155.19, 145.52, 138.28, 131.69, 130.60, 121.12 (qd, *J* = 285.9 Hz, 27.3 Hz, CF(<u>C</u>F₃)₂), 118.13, 113.81, 98.30 (d, *J* = 6.7 Hz), 93.02 – 89.58 (m, <u>C</u>F(CF₃)₂), 24.11 (d, *J* = 20.8 Hz), 19.94, 18.97.

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -76.21 (d, J = 7.3 Hz, CF(C<u>F</u>₃)₂, 6F), -182.22 (th, J = 20.9, 7.3 Hz, C<u>F</u>(CF₃)₂, 1F).

GC-MS: 330

HRMS (ESI) m/z [M+H]⁺: Calculated for C₁₄H₁₄F₇O⁺: 331.0927. Found: 331.0924.

(Z)-2-((4,5,5,5-tetrafluoro-4-(trifluoromethyl)pent-1-en-1-yl)oxy)-5-methylbenzoate (15)

The title compound was prepared with 2-(allyloxy)-5-methylbenzoate (41.2 mg, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and DIPEA (52.2 μ L, 0.3 mmol, 1.5 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a colorless oil (65.8 mg, 88 %, **15:15'** > 99:1, *Z/E* > 99:1).

 \mathbf{R}_{f} = 0.44 (ethyl acetate: petroleum ether, 1:20 (v:v)).

NMR Spectroscopy:

¹H NMR (400 MHz, Chloroform-*d*, 298 K) δ 7.77 (d, *J* = 7.9 Hz, 1H), 6.94 (d, *J* = 7.9 Hz, 1H), 6.80, 6.56 (d, *J* = 6.0 Hz, 1H), 4.86 (q, *J* = 7.7 Hz, 1H), 3.86 (s, 3H), 3.13 (dd, *J* = 20.0, 8.0 Hz, 2H), 2.37 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 166.28, 156.15, 144.91, 132.13, 129.89, 124.19, 121.07 (qd, *J* = 284.0 Hz, 27.8 Hz, CF(<u>C</u>F₃)₂), 118.62, 117.81, 99.67 (d, *J* = 7.0 Hz), 93.11 – 89.60 (m, <u>C</u>F(CF₃)₂), 52.04, 24.15 (d, *J* = 21.5 Hz), 21.66.

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -76.18 (d, *J* = 6.8 Hz, CF(C<u>*F*</u>₃)₂, 6F), -182.40 (th, *J* = 21.4, 7.2 Hz, C<u>*F*</u>(CF₃)₂, 1F).

GC-MS: 374

HRMS (ESI) m/z [M+H]⁺: Calculated for C₁₅H₁₄F₇O₃⁺: 375.0826. Found: 375.0827.

(Z)-3-((4,5,5,5-tetrafluoro-4-(trifluoromethyl)pent-1-en-1-yl)oxy)-benzoate (16)

The title compound was prepared with 3-(allyloxy)-benzoate (38.4 mg, 0.20 mmol, 1.0 equiv.), *i*- C_3F_7 -iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and DIPEA (52.2 µL, 0.3 mmol, 1.5 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a colorless oil (66.2 mg, 92 %, **16:16'** > 99:1, *Z/E* = 95:5).

 \mathbf{R}_{f} = 0.47 (ethyl acetate: petroleum ether, 1:20 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.76 (d, *J* = 7.8 Hz, 1H), 7.64 (s, 1H), 7.39 (t, *J* = 8.0 Hz, 1H), 7.18 (d, *J* = 8.3 Hz, 1H), 6.62 (d, *J* = 6.2 Hz, 1H), 4.89 (q, *J* = 7.2 Hz, 1H), 3.91 (s, 3H), 3.08 (dd, *J* = 19.6, 7.6 Hz, 2H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 166.47, 156.83, 144.43, 131.95, 129.87, 124.63, 121.39, 121.02 (qd, J = 285.9 Hz, 27.3 Hz, CF(<u>C</u>F₃)₂), 117.26, 100.13 (d, J = 6.7 Hz), 92.97 -89.60 (m), 52.39, 24.10 (d, J = 21.4 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -76.23 (d, *J* = 7.1 Hz, CF(C<u>F</u>₃)₂, 6F), -182.34 (th, J = 20.9, 7.0 Hz, $CF(CF_3)_2, 1F)$.

GC-MS: 360

HRMS (ESI) m/z [M+H]⁺: Calculated for C₁₄H₁₂F₇O₃⁺: 361.0669. Found: 361.0674.

(Z)-1-(4-((4,5,5,5-tetrafluoro-4-(trifluoromethyl)pent-1-en-1-yl)oxy)phenyl)ethanone (17)

The title compound was prepared with 1-(4-(allyloxy)phenyl)ethanone (35.2 mg, 0.20 mmol, 1.0 equiv.), i-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and DIPEA (52.2 µL, 0.3 mmol, 1.5 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a pale yellow oil (62.5 mg, 91 %, **17:17'** > 99:1, *Z/E* = 98:2).

 \mathbf{R}_{f} = 0.63 (ethyl acetate: petroleum ether, 1:10 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.93 (d, *J* = 7.5 Hz, 2H), 7.00 (d, *J* = 8.9 Hz, 2H), 6.63 (d, J = 6.1 Hz, 1H), 4.94 (q, J = 7.4, 7.0 Hz, 1H), 3.06 (dd, J = 19.3, 7.3 Hz, 2H), 2.53 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 196.65, 160.27, 143.58, 130.69, 120.97 (gd, *J* = 285.1 Hz, 27.8 Hz, $CF(CF_3)_2$, 116.04, 114.43, 101.25 (d, J = 6.7 Hz), 92.79 - 89.62 (m, CF(CF₃)₂), 26.44, 24.08 (d, J = 21.4 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -76.30 (d, *J* = 7.3 Hz, CF(C<u>F</u>₃)₂, 6F), -182.36 (tp, J = 20.2, 6.8 Hz, C<u>F(CF₃)₂, 1F)</u>.

GC-MS: 344

HRMS (ESI) m/z [M+H]⁺: Calculated for C₁₄H₁₂F₇O₂⁺: 345.0720. Found: 345.0727.

(Z)-1-chloro-4-((4,5,5,5-tetrafluoro-4-(trifluoromethyl)pent-1-en-1-yl)oxy)benzene (18)

The title compound was prepared with 1-chloro-4-(allyloxy)benzene (33.6 mg, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and DIPEA (52.2 μ L, 0.3 mmol, 1.5 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a colorless oil (55.8 mg, 83 %, **18:18'** > 99:1, *Z/E* = 98:2).

 \mathbf{R}_{f} = 0.56 (ethyl acetate: petroleum ether, 1:10 (v:v)).

NMR Spectroscopy:

¹H NMR (400 MHz, Chloroform-*d*, 298 K) δ 7.28 (dd, J = 8.8, 1.9 Hz, 1H), 6.92 (dd, J = 8.9, 1.8 Hz, 1H), 6.53 (d, J = 6.1 Hz, 1H), 4.87 (q, J = 7.1 Hz, 1H), 3.07 (dd, J = 19.6, 7.6 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 155.50, 144.63, 129.77, 128.63, 121.03 (qd, J = 285.5 Hz, 26.8 Hz, CF(<u>C</u>F₃)₂), 117.98, 116.02, 99.98 (d, J = 6.7 Hz), 93.01 – 89.49 (m, <u>C</u>F(CF₃)₂), 24.07 (d, J = 21.1 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -76.25 (d, J = 7.2 Hz, CF(C<u>F</u>₃)₂, 6F), -182.31 (tp, J = 20.5, 6.9 Hz, C<u>F</u>(CF₃)₂, 1F).

GC-MS: 336

HRMS (ESI) m/z [M+H]⁺: Calculated for C₁₂H₉ClF₇O⁺: 337.0225. Found: 337.0219.

(Z)-1-bromo-4-((4,5,5,5-tetrafluoro-4-(trifluoromethyl)pent-1-en-1-yl)oxy)benzene (19)

The title compound was prepared with 1-bromo-4-(allyloxy)benzene (42.4 mg, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and DIPEA (52.2 μ L, 0.3 mmol, 1.5 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a colorless oil (63.8 mg, 84 %, **19:19'** > 99:1, *Z/E* = 98:2).

 \mathbf{R}_{f} = 0.59 (ethyl acetate: petroleum ether, 1:10 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.43 (d, *J* = 8.4 Hz, 2H), 6.87 (d, *J* = 7.9 Hz, 2H), 6.53 (d, *J* = 6.0 Hz, 1H), 4.87 (d, *J* = 7.4 Hz, 1H), 3.06 (dd, *J* = 20.2, 6.4 Hz, 2H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 156.00, 144.49, 132.75, 121.01 (qd, *J* = 285.1 Hz, 27.0 Hz, CF(<u>C</u>F₃)₂), 118.43, 116.02, 100.13 (d, *J* = 6.9 Hz), 93.07 - 89.68 (m, <u>C</u>F(CF₃)₂), 24.08 (d, *J* = 22.0 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -76.22 (d, J = 6.8 Hz, CF(C<u>F</u>₃)₂, 6F), -182.29 (tp, J = 21.4, 7.3 Hz, C<u>F</u>(CF₃)₂, 1F).

GC-MS: 380

HRMS (ESI) m/z [M+H]⁺: Calculated for C₁₂H₉BrF₇O⁺: 380.9720. Found: 380.9711.

(Z)-1-iodo-4-((4,5,5,5-tetrafluoro-4-(trifluoromethyl)pent-1-en-1-yl)oxy)benzene (20)

The title compound was prepared with 1-iodo-4-(allyloxy)benzene (52.0 mg, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and DIPEA (52.2 μ L, 0.3 mmol, 1.5 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a pale yellow oil (67.6 mg, 79 %, **20:20'** > 99:1, *Z/E* > 99:1).

 \mathbf{R}_{f} = 0.63 (ethyl acetate: petroleum ether, 1:10 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.61 (d, *J* = 10.8 Hz, 2H), 6.76 (d, *J* = 9.0 Hz, 2H), 6.53 (d, *J* = 7.1 Hz, 1H), 4.88 (q, *J* = 7.2 Hz, 1H), 3.07 (dd, *J* = 19.6, 7.6 Hz, 2H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 156.78, 144.34, 138.73, 121.01 (qd, *J* = 286.4 Hz, 26.9 Hz, CF(<u>C</u>F₃)₂), 118.88, 100.24 (d, *J* = 7.2 Hz), 93.06 - 89.27 (m, <u>C</u>F(CF₃)₂), 86.29, 24.09 (d, *J* = 21.1 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -76.25 (d, *J* = 7.2 Hz, CF(C<u>*F*</u>₃)₂, 6F), -182.30 (th, *J* = 20.4, 7.2 Hz, C<u>*F*(CF₃)₂, 1F).</u>

GC-MS: 428

HRMS (ESI) m/z [M+H]⁺: Calculated for C₁₂H₉IF₇O⁺: 428.9581. Found: 428.9583.

(E)-3-((6,7,7,7-tetrafluoro-6-(trifluoromethyl)hept-3-en-1-yl)oxy)phenyl benzoate (21)

The title compound was prepared with 3-(pent-4-en-1-yloxy)phenyl benzoate (56.4 mg, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and DIPEA (52.2 μ L, 0.3 mmol, 1.5 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a white solid (77.4 mg, 86 %, **21:21'** = 98:2, *E/Z* = 96:4).

 $\mathbf{R}_{f} = 0.47$ (ethyl acetate: petroleum ether, 1:10 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 8.20 (d, *J* = 8.0 Hz, 2H), 7.63 (t, *J* = 7.4 Hz, 1H), 7.50 (t, *J* = 7.7 Hz, 2H), 7.31 (t, *J* = 8.1 Hz, 1H), 6.85 - 6.74 (m, 3H), 5.87 - 5.73 (m, 1H), 5.55

(dt, *J* = 14.8, 7.3 Hz, 1H), 3.99 (t, *J* = 6.4 Hz, 2H), 2.83 (dd, *J* = 19.9, 7.3 Hz, 2H), 2.54 (q, *J* = 6.6 Hz, 2H).

¹³**C NMR** (101 MHz, Chloroform-*d*, 298 K) δ 165.19, 159.84, 152.01, 133.84, 133.71, 130.26, 129.99, 129.63, 128.67, 120.99 (qd, *J* = 285.9 Hz, 26.8 Hz, CF(<u>C</u>F₃)₂), 120.33 (d, *J* = 5.9 Hz), 114.12, 112.44, 108.37, 92.93 - 89.78 (m, <u>C</u>F(CF₃)₂), 67.16, 32.69, 32.44.

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -75.83 (d, *J* = 7.2 Hz, CF(C<u>F</u>₃)₂, 6F), -182.06 (th, *J* = 21.0, 6.9 Hz, C<u>*F*(CF₃)₂, 1F).</u>

GC-MS: 450

HRMS (ESI) m/z [M+H]⁺: Calculated for C₂₁H₁₈F₇O₃⁺: 451.1139. Found: 451.1144.

Melt point: 55.2 - 55.8 ℃.

(E)-2-((6,7,7,7-tetrafluoro-6-(trifluoromethyl)hept-3-en-1-yl)oxy)phenyl aldehyde (22)

The title compound was prepared with 3-(pent-4-en-1-yloxy)phenyl aldehyde (38.0 mg, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and DIPEA (52.2 μ L, 0.3 mmol, 1.5 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a colorless oil (47.9 mg, 67 %, **22:22'** > 99:1, *E/Z* > 99:1).

 \mathbf{R}_{f} = 0.32 (ethyl acetate: petroleum ether, 1:10 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 10.47 (d, *J* = 0.8 Hz, 1H), 7.82 (dd, *J* = 7.7, 1.9 Hz, 1H), 7.52 (ddd, *J* = 8.4, 7.3, 1.8 Hz, 1H), 7.01 (t, *J* = 7.5 Hz, 1H), 6.95 (d, *J* = 7.6 Hz, 1H), 5.87 - 5.74 (m, 1H), 5.63 - 5.51 (m, 1H), 4.10 (t, *J* = 6.4 Hz, 2H), 2.83 (dd, *J* = 20.5, 7.8 Hz, 2H), 2.61 (q, *J* = 6.5 Hz, 2H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 189.75, 161.20, 136.01, 133.47, 128.43, 125.02, 120.96 (qd, *J* = 284.5 Hz, 27.3 Hz, CF(<u>C</u>F₃)₂), 120.92, 120.80 (d, *J* = 6.1 Hz), 112.47, 92.97 - 89.83 (m, <u>C</u>F(CF₃)₂), 67.47, 32.64, 32.37.

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -75.87 (d, J = 6.7 Hz, CF(C<u>F</u>₃)₂, 6F), -182.16 (tp, J = 20.7, 6.9 Hz, C<u>F</u>(CF₃)₂, 1F).

GC-MS: 358

HRMS (ESI) m/z [M+H]⁺: Calculated for C₁₅H₁₄F₇O₂⁺: 359.0877. Found: 359.0885.

(*E*)-1-chloro-2-((6,7,7,7-tetrafluoro-6-(trifluoromethyl)hept-3-en-1-yl)oxy)-5-trifluromethylbenzene (23)

The title compound was prepared with 1-chloro-2-(pent-4-en-1-yloxy)-5-trifluromethylbenzene (52.8 mg, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and DIPEA (52.2 μ L, 0.3 mmol, 1.5 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a pale-yellow oil (64.8 mg, 75 %, **23:23'** = 98:2, *E/Z* > 99:1).

 \mathbf{R}_{f} = 0.71 (ethyl acetate: petroleum ether, 1:10 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.62 (d, *J* = 2.3 Hz, 1H), 7.46 (d, *J* = 8.6 Hz, 1H), 6.94 (d, *J* = 8.7 Hz, 1H), 5.83 (dt, *J* = 22.1, 7.4 Hz, 1H), 5.61 (dq, *J* = 14.9, 7.3, 6.8 Hz, 1H), 4.08 (t, *J* = 6.4 Hz, 2H), 2.84 (dd, *J* = 20.0, 7.2 Hz, 2H), 2.62 (q, *J* = 6.7 Hz, 2H).

¹³**C NMR** (101 MHz, Chloroform-*d*, 298 K) δ 156.90, 133.09, 127.60 (d, J = 4.1 Hz), 125.10 (d, J = 3.9 Hz), 123.72 (q, J = 33.05 Hz), 123.51 (d, J = 7.5 Hz), 121.01 (q, J = 269.7 Hz), 120.97 (d, J = 5.9 Hz), 120.96 (qd, J = 286.4 Hz, 27.3 Hz, CF(<u>C</u>F₃)₂), 112.65, 92.64 - 89.61 (m, <u>C</u>F(CF₃)₂), 68.34, 32.53 (d, J = 21.0 Hz), 32.17.

¹⁹F NMR (376 MHz, Chloroform-*d*, 298 K) δ -61.80 (s, 3F), -75.98 (d, J = 6.8 Hz, CF(C<u>F₃)₂</u>, 6F), -182.23 (th, J = 20.3, 7.1, 6.5 Hz, C<u>F(CF₃)₂</u>, 1F).

GC-MS: 432

HRMS (ESI) m/z [M+H]⁺: Calculated for C₁₅H₁₂CIF₁₀O⁺: 433.0412. Found: 433.0421.

(R)-2,5,7,8-tetramethyl-6-(((E)-4,5,5,5-tetrafluoro-4-(trifluoromethyl)pent-1-en-1-yl)oxy)-2-((4R,8R) -4,8,12-trimethyltridecyl)chromane (**24**)

The title compound was prepared with D- α -tocopherol allyl ether (94.1 mg, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and DIPEA (52.2 µL, 0.3 mmol, 1.5 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a yellow oil (91.9 mg, 72 %, **24:24'** > 99:1, *Z/E* = 97:3).

 $\mathbf{R}_{f} = 0.27$ (ethyl acetate: petroleum ether, 1:10 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 6.51 (d, *J* = 6.0 Hz, 1H), 5.12 (q, *J* = 7.2 Hz, 1H),

2.82 (dd, *J* = 19.6, 7.5 Hz, 2H), 2.61 (t, *J* = 7.1 Hz, 2H), 2.25 - 2.03 (m, 9H), 1.52 - 1.03 (m, 27H), 0.94 - 0.80 (m, 12H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 145.64, 144.69, 134.57, 122.69, 121.22, 117.42, 102.53 (d, *J* = 6.7 Hz), 74.59, 39.92, 39.49, 37.57, 37.40, 32.91, 32.81, 31.67, 28.09, 24.92, 24.56, 24.04 (d, *J* = 21.1 Hz), 23.90, 22.84, 22.75, 21.15, 20.88, 19.87, 19.77, 12.33, 11.88, 11.39.

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -76.30 (d, J = 7.3 Hz, CF(C<u>F</u>₃)₂, 6F), -182.36 (tp, J = 20.2, 6.8 Hz, C<u>F</u>(CF₃)₂, 1F).

GC-MS: 638

HRMS (ESI) m/z [M+H]⁺: Calculated for C₃₅H₅₄F₇O₂⁺: 639.4007. Found: 639.4001.

(8*R*,9*S*,13*S*,14*S*)-13-methyl-3-(((*E*)-6,7,7,7-tetrafluoro-6-(trifluoromethyl)hept-3-en-1-yl)oxy)-7,8,9,11,12,13,15,16-octahydro-6H-cyclopenta[a]phenanthren-17(14H)-one (**25**)

The title compound was prepared with (8R,9S,13S,14S)-13-methyl-3-(allyloxy)-7,8,9,11,12,13,15,16-octahydro-6H-cyclopenta[a]phenanthren-17(14H)-one (67.7 mg, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and DIPEA (52.2 µL, 0.3 mmol, 1.5 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a white solid (67.8 mg, 67 %, **25:25'** = 96:4, *E/Z* > 99:1).

 \mathbf{R}_{f} = 0.24 (ethyl acetate: petroleum ether, 1:10 (v:v)).

NMR Spectroscopy:

¹H NMR (400 MHz, Chloroform-*d*, 298 K) δ 7.20 (d, *J* = 8.5 Hz, 1H), 6.70 (d, *J* = 8.6 Hz, 1H), 6.64 (s, 1H), 5.80 (dt, *J* = 13.6, 6.7 Hz, 1H), 5.55 (dt, *J* = 15.0, 7.2 Hz, 1H), 3.97 (t, *J* = 5.6 Hz, 2H), 2.93 - 2.84 (m, 3H), 2.81 (d, *J* = 7.2 Hz, 1H), 2.57 - 2.44 (m, 3H), 2.39 (d, *J* = 8.9 Hz, 1H), 2.25 (d, *J* = 10.7 Hz, 1H), 2.19 - 2.10 (m, 1H), 2.10 - 1.89 (m, 3H), 1.64 - 1.41 (m, 6H), 0.91 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 220.95, 156.92, 137.87, 134.14, 132.29, 126.43, 121.01 (qd, *J* = 285.0 Hz, 27.3 Hz, CF(<u>C</u>F₃)₂), 120.05 (d, *J* = 6.1 Hz), 114.71, 112.24, 92.99 - 89.71 (m, <u>C</u>F(CF₃)₂), 66.93, 50.50, 48.09, 44.08, 38.47, 35.93, 32.61 (d, *J* = 21.1 Hz), 32.58, 31.69, 29.73, 26.63, 26.01, 21.66, 13.91.

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -75.84 (d, *J* = 7.3 Hz, CF(C<u>F</u>₃)₂, 6F), -182.04 (th,

J = 20.7, 6.8, 6.4 Hz, C<u>*F*(CF₃)</u>₂, 1F).

GC-MS: 506

HRMS (ESI) m/z [M+H]⁺: Calculated for C₂₆H₃₀F₇O₂⁺: 507.2129. Found: 507.2134.

2-(4-(Z-(4,5,5,5-tetrafluoro-4-(trifluoromethyl)pent-1-en-1-yl)oxy)phenyl)ethyl β -D-glucopyranoside tetraacetate (**26**)

The title compound was prepared with 2-(4-allyloxyphenyl)ethyl β -D-glucopyranoside tetraacetate (101.6 mg, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and DIPEA (52.2 µL, 0.3 mmol, 1.5 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a colorless oil (86.5 mg, 64 %, **26:26'** > 99:1, *Z/E* = 95:5).

R_f = 0.44 (MeOH: DCM, 1:20 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.07 (d, *J* = 8.5 Hz, 2H), 6.81 (d, *J* = 8.5 Hz, 2H), 6.53 (d, *J* = 6.1 Hz, 1H), 5.38 (d, *J* = 12.9 Hz, 1H), 5.25 (d, *J* = 10.5 Hz, 1H), 5.15 (t, *J* = 9.5 Hz, 1H), 5.06 (t, *J* = 9.6 Hz, 1H), 5.00 - 4.94 (m, 1H), 4.87 (q, *J* = 7.2 Hz, 1H), 4.51 - 4.46 (m, 2H), 4.14 - 4.08 (m, 2H), 3.08 (dd, *J* = 19.6, 7.5 Hz, 2H), 2.84 - 2.75 (m, 2H), 2.06 (s, 3H), 2.00 (s, 3H), 1.98 (s, 3H), 1.90 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 170.95, 170.40, 169.94, 169.65, 155.99, 142.01, 129.26, 128.01, 121.03 (qd, *J* = 285.5 Hz, 27.3 Hz, CF(<u>C</u>F₃)₂), 117.10, 99.47 (d, *J* = 20.3 Hz), 92.88 - 89.74 (m, <u>C</u>F(CF₃)₂), 73.96, 71.29, 70.57, 70.32, 70.02, 61.37, 37.75, 24.07 (d, *J* = 21.1 Hz), 21.18, 20.91, 20.60.

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -76.70 (d, *J* = 7.7 Hz, CF(C<u>*F*</u>₃)₂, 6F), -184.14 (dh, *J* = 23.0, 7.9 Hz, C<u>*F*</u>(CF₃)₂, 1F).

GC-MS: 676

HRMS (ESI) m/z [M+H]⁺: Calculated for C₂₈H₃₂F₁₀O₁₁⁺: 677.1827. Found: 677.1840.

((3aS,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-9-acetoxy-5a,5b,8,8,11a-pentamethyl-1-(4,5,5,5-tetrafluoro-4-(trifluoromethyl)pent-1-en-2-yl)icosahydro-3aH-cyclopenta[*a*]chrysen-3a-yl)methyl acetate (**29**)

The title compound was prepared with betulin acetate (105.2 mg, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and DIPEA (52.2 μ L, 0.3 mmol, 1.5 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a white solid (56.9 mg, 41 %).

 \mathbf{R}_{f} = 0.22 (ethyl acetate: petroleum ether, 1:5 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 4.60 (d, J = 41.1 Hz, 2H), 4.44 (dt, J = 10.5, 5.1 Hz, 1H), 4.22 (d, J = 11.1 Hz, 1H), 3.81 (d, J = 11.1 Hz, 1H), 2.41 (tt, J = 10.9, 5.1 Hz, 1H), 2.07 - 1.97 (m, 6H), 1.83 - 1.09 (m, 23H), 1.10 - 0.69 (m, 19H).

¹³**C NMR** (101 MHz, Chloroform-*d*, 298 K) δ 171.63, 171.04, 150.18, 120.66 (qd, J = 286.3, 28.5 Hz, CF(<u>C</u>F₃)₂), 109.98, 93.24 (m, <u>C</u>F(CF₃)₂), 80.95, 62.85, 55.44, 50.35, 48.83, 47.78, 46.37, 42.75, 38.45, 37.85, 37.62, 37.12, 34.61, 34.19, 29.72 (d, J = 17.0 Hz), 28.01, 27.12, 25.21, 23.76, 21.38, 21.11, 20.87, 19.18, 18.23, 16.56, 16.16 (d, J = 13.4 Hz), 14.79. ¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -75.65 (d, J = 7.0 Hz, CF(C<u>F₃)₂, 6F</u>), -182.09 (hept,

 $J = 7.2 \text{ Hz}, \text{ C}\underline{F}(\text{CF}_3)_2, 1\text{F}).$

GC-MS: 694

HRMS (ESI) m/z [M+H]⁺: Calculated for C₃₇H₅₄F₇O₄⁺: 695.3905. Found: 695.3918.

Melt point: 99.2 - 100.7 ℃.

(E)-6,7,7,7-tetrafluoro-6-(trifluoromethyl)hept-3-en-1-yl) 4-methoxybenzoate (31)

The title compound was prepared with pent-4-en-1-yl 4-methoxybenzoate (44.0 mg, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and DIPEA (52.2 μ L, 0.3 mmol, 1.5 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a colorless oil (65.2 mg, 84 %, **31:31'** > 99:1, *E/Z* = 95:5).

 \mathbf{R}_{f} = 0.62 (ethyl acetate: petroleum ether, 1:10 (v:v)).

NMR Spectroscopy:

¹H NMR (400 MHz, Chloroform-*d*, 298 K) δ 7.96 (d, *J* = 8.6 Hz, 2H), 6.90 (d, *J* = 8.5 Hz, 2H),
5.75 (dt, *J* = 14.2, 6.8 Hz, 1H), 5.54 (dt, *J* = 15.1, 7.2 Hz, 1H), 4.31 (t, *J* = 6.6 Hz, 2H), 3.84 (s,
3H), 2.81 (dd, *J* = 19.9, 7.3 Hz, 2H), 2.51 (q, *J* = 6.7 Hz, 2H).

¹³**C NMR** (101 MHz, Chloroform-*d*, 298 K) δ 166.33, 163.49, 133.74, 131.65, 122.67, 120.96 (qd, *J* = 285.5 Hz, 26.3 Hz, CF(<u>C</u>F₃)₂), 120.42 (d, *J* = 6.0 Hz), 113.65, 92.81 - 89.76 (m, <u>C</u>F(CF₃)₂), 63.45, 55.45, 32.55 (d, *J* = 20.8 Hz), 32.10.

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -75.91 (d, J = 6.9 Hz, CF(C<u>F</u>₃)₂, 6F), -182.14 (th, J = 21.0, 6.9 Hz, C<u>F</u>(CF₃)₂, 1F).

GC-MS: 388

HRMS (ESI) m/z [M+H]⁺: Calculated for C₁₆H₁₆F₇O₃⁺: 389.0982. Found: 389.0977.

(E)-6,7,7,7-tetrafluoro-6-(trifluoromethyl)hept-3-en-1-yl) 2-naphthoate (32)

The title compound was prepared with pent-4-en-1-yl 2-naphthoate (48.0 mg, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and DIPEA (52.2 μ L, 0.3 mmol, 1.5 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a colorless oil (75.1 mg, 92 %, **32:32'** > 99:1, *E*/*Z* = 95:5).

 \mathbf{R}_{f} = 0.67 (ethyl acetate: petroleum ether, 1:10 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 8.58 (s, 1H), 8.04 (d, *J* = 8.7 Hz, 1H), 7.94 (d, *J* = 7.7 Hz, 1H), 7.87 (d, *J* = 8.3 Hz, 2H), 7.56 (dt, *J* = 19.4, 6.9 Hz, 2H), 5.80 (dt, *J* = 15.1, 7.4 Hz, 1H), 5.59 (dt, *J* = 14.9, 7.4 Hz, 1H), 4.46 - 4.36 (m, 2H), 2.84 (dd, *J* = 19.9, 7.3 Hz, 2H), 2.58 (q, *J* = 6.8 Hz, 2H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 166.76, 135.65, 133.66, 132.58, 131.13, 129.42, 128.36, 128.23, 127.86, 127.48, 126.75, 125.27, 120.96 (qd, *J* = 286.8 Hz, 27.1 Hz, CF(<u>C</u>F₃)₂), 120.61 (d, *J* = 6.0 Hz), 92.92 - 89.76 (m, <u>C</u>F(CF₃)₂), 63.89, 32.58 (d, *J* = 21.1 Hz), 32.12.

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -75.82 (d, J = 7.3 Hz, CF(C<u>F</u>₃)₂, 6F), -182.08 (th, J = 21.1, 7.0 Hz, C<u>F</u>(CF₃)₂, 1F).

GC-MS: 408

HRMS (ESI) m/z [M+H]⁺: Calculated for C₁₉H₁₆F₇O₂⁺: 409.1033. Found: 409.1022.

(E)-6,7,7,7-tetrafluoro-6-(trifluoromethyl)hept-3-en-1-yl) cinnamate (33)

The title compound was prepared with pent-4-en-1-yl cinnamate (43.2 mg, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and DIPEA (52.2 μ L, 0.3 mmol, 1.5 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a pale-yellow oil (60.7 mg, 79 %, **33:33**' > 99:1, *E*/*Z* = 97:3).

 \mathbf{R}_{f} = 0.52 (ethyl acetate: petroleum ether, 1:20 (v:v)).

NMR Spectroscopy:

¹H NMR (400 MHz, Chloroform-*d*, 298 K) δ 8.07 (d, *J* = 7.0 Hz, 1H), 7.68 (d, *J* = 16.0 Hz, 1H), 7.54 - 7.43 (m, 2H), 7.43 - 7.30 (m, 2H), 6.42 (d, *J* = 16.1 Hz, 1H), 5.78 - 5.66 (m, 1H), 5.66 -5.47 (m, 1H), 4.24 (t, *J* = 6.6 Hz, 2H), 2.82 (dd, *J* = 19.9, 7.2 Hz, 2H), 2.46 (q, *J* = 6.8 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 166.95, 145.01, 134.37, 130.40, 129.88, 128.98, 128.15, 120.99 (qd, *J* = 284.5 Hz, 26.8 Hz, CF(<u>C</u>F₃)₂), 120.48 (d, *J* = 6.1 Hz), 117.97, 92.83 -89.79 (m, <u>C</u>F(CF₃)₂), 63.31, 32.56 (d, *J* = 20.7 Hz), 32.03.

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -75.87 (d, *J* = 6.8 Hz, CF(C<u>*F*</u>₃)₂, 6F), -182.05 (th, *J* = 21.0, 7.2 Hz, C<u>*F*(CF₃)₂, 1F).</u>

GC-MS: 384

HRMS (ESI) m/z [M+H]⁺: Calculated for C₁₇H₁₆F₇O₂⁺: 385.1033. Found: 385.1034.

(E)-6,7,7,7-tetrafluoro-6-(trifluoromethyl)hept-3-en-1-yl) 4-flurobenzoate (34)

The title compound was prepared with pent-4-en-1-yl 4-flurobenzoate (41.6 mg, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and DIPEA (52.2 μ L, 0.3 mmol, 1.5 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a colorless oil (67.7 mg, 90 %, **34:34'** = 98:2, *E/Z* = 97:3).

 \mathbf{R}_{f} = 0.69 (ethyl acetate: petroleum ether, 1:20 (v:v)).

NMR Spectroscopy:

¹H NMR (400 MHz, Chloroform-*d*, 298 K) δ 8.08 - 7.98 (m, 2H), 7.14 - 7.04 (m, 2H), 5.83 - 5.68 (m, 1H), 5.62 - 5.47 (m, 1H), 4.33 (t, *J* = 6.5 Hz, 2H), 2.81 (dd, *J* = 20.0, 7.3 Hz, 2H), 2.52 (q, *J* = 6.7 Hz, 2H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 165.88 (d, *J* = 253.8 Hz),165.59, 133.52, 132.15

(d, J = 9.2 Hz), 126.47 (d, J = 2.9 Hz), 120.94 (qd, J = 285.5 Hz, 27.3 Hz, $CF(\underline{C}F_3)_2$), 120.62 (d, J = 6.1 Hz), 115.53 (d, J = 22.1 Hz), 92.99 - 89.66 (m, $\underline{C}F(CF_3)_2$), 63.82, 32.51 (d, J = 21.1 Hz), 32.02.

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -75.97 (d, J = 6.7 Hz, CF(C<u>F</u>₃)₂, 6F), -105.71, -182.22 (th, J = 21.2, 6.7 Hz, C<u>F</u>(CF₃)₂, 1F).

GC-MS: 376

HRMS (ESI) m/z [M+H]⁺: Calculated for C₁₅H₁₃F₈O₂⁺: 377.0782. Found: 377.0779.

(E)-6,7,7,7-tetrafluoro-6-(trifluoromethyl)hept-3-en-1-yl) 4-nitrobenzoate (35)

The title compound was prepared with 4-pentenyl 4-nitrobenzoate (47.1 mg, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and DIPEA (52.2 μ L, 0.3 mmol, 1.5 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a light-yellow oil (70.9 mg, 88 %, **35:35'** > 99:1, *E*/*Z* = 97:3).

 $\mathbf{R}_{f} = 0.35$ (ethyl acetate: petroleum ether, 1:20 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 8.27 (d, *J* = 7.4 Hz, 2H), 8.17 (d, *J* = 8.9 Hz, 2H), 5.80 - 5.69 (m, 1H), 5.62 - 5.50 (m, 1H), 4.40 (t, *J* = 6.5 Hz, 2H), 2.82 (dd, *J* = 19.9, 7.2 Hz, 2H), 2.56 (d, *J* = 6.7 Hz, 2H).

¹³**C NMR** (101 MHz, Chloroform-*d*, 298 K) δ 164.67, 150.66, 135.57, 133.21, 130.75, 123.61, 120.97 (d, *J* = 5.9 Hz), 120.92 (qd, *J* = 285.5 Hz, 27.8 Hz, CF(<u>C</u>F₃)₂), 92.86 - 89.60 (m, <u>C</u>F(CF₃)₂), 64.58, 32.49 (d, *J* = 20.9 Hz), 31.94.

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -75.89 (d, *J* = 7.0 Hz, CF(C<u>F</u>₃)₂, 6F), -182.07 - -182.39 (m, C<u>F</u>(CF₃)₂, 1F).

GC-MS: 403

HRMS (ESI) m/z [M+H]⁺: Calculated for C₁₅H₁₃F₇NO₄⁺: 404.0727. Found: 404.0720.

(Z)-2-(4,5,5,5-tetrafluoro-4-(trifluoromethyl)pent-1-en-1-yl)isoindoline-1,3-dione (36)

The title compound was prepared with 2-allylisoindoline-1,3-dione (37.4 mg, 0.20 mmol, 1.0 equiv.), $i-C_3F_7$ -iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and DIPEA (52.2 µL,

0.3 mmol, 1.5 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a colorless oil (51.1 mg, 72 %, **36:36'** = 96:4, *E*/*Z* = 54:46).

 \mathbf{R}_{f} = 0.22 (ethyl acetate: petroleum ether, 1:5 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.94 - 7.82 (m, 2H), 7.82 - 7.68 (m, 2H), 6.83 (dd, *J* = 14.6, 1.6 Hz, 0.54H), 6.63 (dt, *J* = 15.0, 7.7 Hz, 0.54H), 6.42 (dd, *J* = 8.9, 1.9 Hz, 0.46H), 5.74 (q, *J* = 7.6 Hz, 0.46H), 3.05 (dd, *J* = 19.7, 6.9 Hz, 0.92H), 2.95 (dd, *J* = 19.6, 7.7 Hz, 1.08H).

¹³**C NMR** (101 MHz, Chloroform-*d*, 298 K) δ 166.44, 166.23, 134.77, 131.89, 131.54, 124.03, 123.91, 123.03, 121.14, 117.33, 108.60, 31.41 (d, *J* = 21.2 Hz), 28.15 (d, *J* = 19.3 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -75.78 (d, J = 7.2 Hz, CF(C<u>*F*</u>₃)₂, 3.30F), -76.23 (d, J = 6.7 Hz, CF(C<u>*F*</u>₃)₂, 2.76F), -181.85 (tp, J = 20.6, 6.9 Hz, C<u>*F*</u>(CF₃)₂, 0.54F), -183.49 (dtq, J

= 20.4, 13.9, 6.9 Hz, C<u>F(</u>CF₃)₂, 0.46F).

GC-MS: 355

HRMS (ESI) m/z [M+H]⁺: Calculated for C₁₄H₉F₇NO₂⁺: 356.0516. Found: 356.0511.

Visible-light promoted neophyl rearrangement of allylic alcohols

Optimization of reaction conditions

Photochemistry parameters screening

Scheme S17. Photochemistry parameters screening.

Under an ambient atmosphere, in a 10 mL screw-cap vial equipped with a magnetic stirring bar, 1,1-diphenylprop-2-en-1-ol (**S34**, 21.0 mg, 0.10 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (62.4 mg, 0.15 mmol, 1.5 equiv.), Eosin Y (3.2 mg, 5.0 mol%) were dissolved in dry MeCN (1 mL). Subsequently, DIPEA (26.1 μ L, 0.15 mmol, 1.5 equiv.) was added into the vial. The vial was sealed and the reaction was irradiated at visible light for 2 h, the temperature of the reaction systems was controlled within 25 - 35 °C by using the drum fan. After this, 10 μ L of *n*-dodecane was added as an internal standard and the reaction mixture was diluted with EtOAc. The crude reaction mixture was filtered through a plug of silica then subjected to GC-MS analysis.

Entry	LEDs (Wavelength, Power)	Yield of 40 (%) ^a
1	Green LEDs (525 nm, 10 W)	88
2	Green LEDs (525 nm, 25 W)	83
3	Blue LEDs (450 nm, 10 W)	59
4	White LEDs (100W)	71
5	UV (360-400nm)	14

Table S6. Photochemistry parameters screening. ^aThe yield was determined by GC-MS with *n*-dodecane as an internal standard.

Base screening

S34

PFPI reagent 2

Scheme S18. Base screening.

Under an ambient atmosphere, in a 10 mL screw-cap vial equipped with a magnetic stirring bar, 1,1-diphenylprop-2-en-1-ol (**S34**, 21.0 mg, 0.10 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (62.4 mg, 0.15 mmol, 1.5 equiv.), Eosin Y (3.2 mg, 5.0 mol%) were dissolved in dry MeCN (1 mL). Subsequently, base (0.15 mmol, 1.5 equiv.) was added into the vial. The vial was sealed and the reaction was irradiated at green light (525 nm) for 2 h, the temperature of the reaction systems was controlled within 25 - 35 °C by using the drum fan. After this, 10 μ L of *n*-dodecane was added as an internal standard and the reaction mixture was diluted with EtOAc. The crude reaction mixture was filtered through a plug of silica then subjected to GC-MS analysis.

Entry	Base	Yield of 40 (%) ^a
1	DIPEA	88
2	TEMDA	86
3	ТМР	93 (91 ^{<i>b</i>})
4	TMG	44
5	Et ₃ N	58

Table S7. Base screening. ^aThe yield was determined by GC-MS with *n*-dodecane as an internal standard. ^bYield of isolated product given.

Synthesis of the substrates

General procedure for preparation of allylic alcohols.

Scheme S19. Synthesis of allylic alcohols.8

To a solution of ketone (3.0 mmol, 1.0 equiv.) in THF (15 mL) at 0 °C was added vinylmagnesium bromide (4.5 mL, 1.0 M in THF, 1.5 equiv.) under an nitrogen atmosphere. After the reaction mixture was stirred at 0 °C for 1 h, the resulting solution was quenched by saturated aqueous NH₄Cl (5 mL) and H₂O (5 mL) and allowed to warm to room temperature. The resulting mixture was extracted with ethyl acetate (15 mL × 3), washed with brine (5 mL), dried over Na₂SO₄ and concentrated in vacuo. The crude product was purified by chromatography (silica gel, ethyl acetate: petroleum ether, 1:10 to 1:30 (v:v)) to afford the title compound which was characterized by GC-MS analysis, ¹H NMR and ¹³C NMR spectroscopy.

1,1-Diphenylprop-2-en-1-ol (S29)

Known compound.

The title compound was prepared with benzophenone (546.2 mg, 3.0 mmol, 1.0 equiv.), vinylmagnesium bromide (4.5 mL, 1.0 M in THF, 1.5 equiv.) in THF (15 mL). The mixture was stirred at 0 °C for 1 h. The crude product was purified by chromatography (silica gel, ethyl acetate: petroleum ether, 1:30 (v:v)) to afford the title compound as a colorless oil (573.3 mg, 91 %). $\mathbf{R}_{f} = 0.21$ (ethyl acetate: petroleum ether, 1:10 (v:v)).

NMR Spectroscopy:

¹H NMR (400 MHz, Chloroform-*d*, 298 K) δ 7.45 - 7.39 (m, 4H), 7.36 (m, 4H), 7.31 - 7.24 (m, 2H), 6.58 - 6.51 (m, 1H), 5.39 - 5.35 (m, 1H), 5.34 (m, 1H), 2.30 (s, 1H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 145.9, 143.5, 128.2, 127.3, 126.8, 114.0, 79.4.
 GC-MS: 210.

1,1-Di-p-tolylprop-2-en-1-ol (S30)

Known compound.

The title compound was prepared with 4,4'-dimethylbenzophenone (630.3 mg, 3.0 mmol, 1.0 equiv.), vinylmagnesium bromide (4.5 mL, 1.0 M in THF, 1.5 equiv.) in THF (15 mL). The mixture was stirred at 0 °C for 1 h. The crude product was purified by chromatography (silica gel, ethyl acetate: petroleum ether, 1:30 (v:v)) to afford the title compound as a colorless oil (642.6 mg, 90 %). $\mathbf{R}_{f} = 0.23$ (ethyl acetate: petroleum ether, 1:10 (v:v)).

NMR Spectroscopy:

¹H NMR (400 MHz, Chloroform-*d*, 298 K) δ 7.34 - 7.24 (m, 4H), 7.15 (m, 4H), 6.50 (dd, *J* = 17.1, 10.5 Hz, 1H), 5.34 (dd, *J* = 17.0, 1.2 Hz, 1H), 5.30 (dd, *J* = 10.6, 1.2 Hz, 1H), 2.36 (s, 6H), 2.24 (s, 1H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 143.8, 143.2, 136.9, 128.8, 126.9, 113.5, 79.2, 21.0.

GC-MS: 238.

1,1-Bis(4-methoxyphenyl)prop-2-en-1-ol (S31)

Known compound.

The title compound was prepared with 4,4'-dimethyloxybenzophenone (726.3 mg, 3.0 mmol, 1.0 equiv.), vinylmagnesium bromide (4.5 mL, 1.0 M in THF, 1.5 equiv.) in THF (15 mL). The mixture was stirred at 0 °C for 1 h. The crude product was purified by chromatography (silica gel, ethyl acetate: petroleum ether, 1:30 (v:v)) to afford the title compound as a colorless oil (769.5 mg, 95 %). $\mathbf{R}_{f} = 0.20$ (ethyl acetate: petroleum ether, 1:10 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.31 (d, *J* = 8.8 Hz, 4H), 6.85 (d, *J* = 8.8 Hz, 4H), 6.46 (dd, *J* = 17.2, 10.5 Hz, 1H), 5.30 (d, *J* = 17.3 Hz, 1H), 5.28 (d, *J* = 10.4 Hz, 1H), 3.81(s, 6H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 158.6, 143.9, 138.2, 128.1, 113.4, 78.8, 55.2. GC-MS: 270.

1,1-Bis(4-fluorophenyl)prop-2-en-1-ol (S32)

Known compound.

The title compound was prepared with 4,4'-difluorobenzophenone (654.2 mg, 3.0 mmol, 1.0 equiv.), vinylmagnesium bromide (4.5 mL, 1.0 M in THF, 1.5 equiv.) in THF (15 mL). The mixture was stirred at 0 °C for 1 h. The crude product was purified by chromatography (silica gel, ethyl acetate: petroleum ether, 1:30 (v:v)) to afford the title compound as a colorless oil (634.7 mg, 86 %). **R**_f = 0.30 (ethyl acetate: petroleum ether, 1:10 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.39 - 7.29 (m, 4H), 7.05 - 6.94 (m, 4H), 6.45 (dd, *J* = 17.1, 10.5 Hz, 1H), 5.33 (dd, *J* = 10.6, 1.0 Hz, 1H), 5.27 (dd, *J* = 17.1, 1.0 Hz, 1H), 2.24 (s, 1H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 162.0 (d, *J* = 246.5 Hz), 143.2, 141.3 (d, *J* = 3.8 Hz), 128.7 (d, *J* = 8.0 Hz), 115.1 (d, *J* = 21.4 Hz), 114.5, 78.7.

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -115.26 (tt, *J* = 8.6, 5.4 Hz, 2F).

GC-MS: 246.

1,1-Bis(4-chlorophenyl)prop-2-en-1-ol (S33)

Known compound.

The title compound was prepared with 4,4'-dichlorobenzophenone (750.0 mg, 3.0 mmol, 1.0 equiv.), vinylmagnesium bromide (4.5 mL, 1.0 M in THF, 1.5 equiv.) in THF (15 mL). The mixture was stirred at 0 °C for 1 h. The crude product was purified by chromatography (silica gel, ethyl acetate: petroleum ether, 1:30 (v:v)) to afford the title compound as a pale-yellow oil (725.6 mg, 87 %). $\mathbf{R}_{f} = 0.24$ (ethyl acetate: petroleum ether, 1:10 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.27 (s, 8H), 6.40 (dd, *J* = 17.2, 10.5 Hz, 1H), 5.33 (d, *J* = 10.4 Hz, 1H), 5.26 (d, *J* = 17.2 Hz, 1H), 2.35 (s, 1H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 143.7, 142.5, 133.3, 128.3, 128.4, 115.0, 78.7. GC-MS: 278.

1-(4-Chlorophenyl)-1-phenyl-2-propenol (S34)

Known compound.

The title compound was prepared with (4-chlorophenyl)(phenyl)methanone (648.1 mg, 3.0 mmol, 1.0 equiv.), vinylmagnesium bromide (4.5 mL, 1.0 M in THF, 1.5 equiv.) in THF (15 mL). The mixture was stirred at 0 °C for 1 h. The crude product was purified by chromatography (silica gel, ethyl acetate: petroleum ether, 1:30 (v:v)) to afford the title compound as a colorless oil (666.2 mg, 91 %). **R**_f = 0.24 (ethyl acetate: petroleum ether, 1:10 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.41 - 7.36 (m, 4H), 7.33 (d, *J* = 7.6 Hz, 2H), 7.32 (d, *J* = 7.6 Hz, 2H), 7.31 - 7.28 (m, 1H), 6.48 (dd, *J* = 17.2, 10.4 Hz, 1H), 5.36 (dd, *J* = 10.4, 1.2 Hz, 1H), 5.33 (dd, *J* = 17.4, 1.2 Hz, 1H), 2.36 (s, 1H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 145.3, 144.0, 143.0, 133.1, 128.3, 128.3, 128.4, 127.5, 126.8, 114.5, 79.1.

GC-MS: 244.

1-(4-Bromophenyl)-1-phenyl-2-propenol (S35)

The title compound was prepared with (4-bromophenyl)(phenyl)methanone (779.9 mg, 3.0 mmol, 1.0 equiv.), vinylmagnesium bromide (4.5 mL, 1.0 M in THF, 1.5 equiv.) in THF (15 mL). The mixture was stirred at 0 °C for 1 h. The crude product was purified by chromatography (silica gel, ethyl acetate: petroleum ether, 1:30 (v:v)) to afford the title compound as a colorless oil (820.8 mg, 95 %). **R**_f = 0.27 (ethyl acetate: petroleum ether, 1:10 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.39 - 7.33 (m, 4H), 7.31 (d, *J* = 7.4 Hz, 2H), 7.28 (d, *J* = 7.4 Hz, 2H), 7.26 - 7.23 (m, 1H), 6.44 (dd, *J* = 17.1, 10.6 Hz, 1H), 5.35 (dd, *J* = 10.1, 1.2 Hz, 1H), 5.28 (dd, *J* = 17.0, 1.2 Hz, 1H), 2.32 (s, 1H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 144.7, 143.1, 142.5, 133.2, 128.0, 127.7, 127.6, 127.0, 126.2, 113.5, 76.3.

GC-MS: 288.

1-Methyl-1-biphenyl-2-propenol (S36)

The title compound was prepared with 4-acetylbiphenyl (588.3 mg, 3.0 mmol, 1.0 equiv.), vinylmagnesium bromide (4.5 mL, 1.0 M in THF, 1.5 equiv.) in THF (15 mL). The mixture was stirred at 0 °C for 1 h. The crude product was purified by chromatography (silica gel, ethyl acetate: petroleum ether, 1:30 (v:v)) to afford the title compound as a colorless oil (551.0 mg, 82 %). **R**_f = 0.32 (ethyl acetate: petroleum ether, 1:10 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.59 (dd, *J* = 8.2, 1.4 Hz, 2H), 7.53 - 7.47 (m, 4H), 7.47 - 7.42 (m, 2H), 7.42 - 7.34 (m, 1H), 5.99 (tq, *J* = 11.7, 1.1 Hz, 1H), 5.21 (dd, *J* = 11.7, 2.4 Hz, 1H), 5.09 (d, *J* = 2.4 Hz, 1H), 4.39 (s, 1H), 1.67 (d, *J* = 1.0 Hz, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*, 298 K) δ 145.71, 144.57, 140.84, 139.92, 129.09, 127.99, 127.26, 126.36, 111.95, 75.16, 28.51.

GC-MS: 224.

2-(Pyridin-4-yl)but-3-en-2-ol (S37)

Known compound.

The title compound was prepared with methyl (4-pyridyl) ketone (363.2 mg, 3.0 mmol, 1.0 equiv.),

vinyImagnesium bromide (4.5 mL, 1.0 M in THF, 1.5 equiv.) in THF (15 mL). The mixture was stirred at 0 °C for 1 h. The crude product was purified by chromatography (silica gel, ethyl acetate: petroleum ether, 1:15 (v:v)) to afford the title compound as a light-yellow oil (339.7 mg, 76 %). $\mathbf{R}_{f} = 0.40$ (ethyl acetate: petroleum ether, 1:2 (v:v)).

NMR Spectroscopy:

¹H NMR (400 MHz, Chloroform-*d*, 298 K) δ 8.58 (d, *J* = 4.0 Hz, 2H), 7.41 (d, *J* = 4.0 Hz, 2H),
6.18 - 6.10 (m, 1H), 5.32 (d, *J* = 16.1, 1H), 5.22 (d, *J* = 12.0, 1H), 2.36 (s, 1H), 1.64 (s, 3H).
¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 155.5, 149.5,149.4, 143.4, 120.5, 113.6, 74.1,
29.2.

GC-MS: 149.

2-(Thiophen-2-yl)but-3-en-2-ol (S38)

Known compound.

The title compound was prepared with 2-acetylthiophene (378.0 mg, 3.0 mmol, 1.0 equiv.), vinylmagnesium bromide (4.5 mL, 1.0 M in THF, 1.5 equiv.) in THF (15 mL). The mixture was stirred at 0 °C for 1 h. The crude product was purified by chromatography (silica gel, ethyl acetate: petroleum ether, 1:20 (v:v)) to afford the title compound as a pale-yellow oil (365.0 mg, 79 %). $\mathbf{R}_{f} = 0.37$ (ethyl acetate: petroleum ether, 1:5 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.24 (dd, *J* = 4.0, 2.4 Hz, 2H), 6.98 - 6.96 (m, 2H), 6.24 (d, *J* = 16.0, 8.0 Hz, 1H), 5.41 - 5.16 (m, 2H), 2.19 (s, 1H), 1.75 (s, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*, 298 K) δ 151.6, 144.2, 126.7, 124.6, 123.3, 112.5, 73.3, 30.1.

GC-MS: 154.

Substrate Scope

General procedure to access isoperfluoropropylated products.

Under an ambient atmosphere, in a 25 mL screw-cap vial equipped with a magnetic stirring bar, allylic alcohols (**38**, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) were dissolved in dry MeCN (2.0 mL, 0.1 M). Subsequently, TMP (50.6 μ L, 0.3 mmol, 1.5 equiv.) was added into the vial. The vial was sealed and the reaction was irradiated at green light (525 nm) for 2 h, the temperature of the reaction systems was controlled within 25 - 35 °C by using the drum fan. After this, the reaction was quenched with 10 mL 5% NaHCO₃ aqueous solution, then extracted with DCM (3 x 10 mL). The combined organic phase was dried with anhydrous Na₂SO₄ and concentrated under vacuum. The residue was further purified by column chromatography to afford corresponding isoperfluoropropylated products **39**, which was characterized by GC-MS analysis, ¹H NMR, ¹³C NMR, ¹⁹F NMR spectroscopy and HRMS.

Characterization of Products

4,5,5,5-Tetrafluoro-4-trifluoromethyl-1,2-diphenylbutan-1-one (40)

The title compound was prepared with 1,1-diphenylprop-2-en-1-ol (42.0 mg, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and TMP (50.6 μ L, 0.30 mmol, 1.5 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a colorless oil (68.8 mg, 91 %).

 \mathbf{R}_{f} = 0.65 (ethyl acetate: petroleum ether, 1:20 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.96 (dd, *J* = 7.1, 1.5 Hz, 2H), 7.55 - 7.45 (m, 1H), 7.39 (t, *J* = 7.6 Hz, 2H), 7.34 - 7.27 (m, 4H), 7.27 - 7.21 (m, 1H), 5.05 (d, *J* = 9.3 Hz, 1H), 3.65 (dd, *J* = 15.4, 9.4 Hz, 1H), 2.36 (dd, *J* = 21.5, 15.7 Hz, 1H).

¹³**C NMR** (101 MHz, Chloroform-*d*, 298 K) δ 196.51, 138.13, 135.71, 133.41, 129.59, 128.79 (d, *J* = 6.6 Hz), 127.98 (d, *J* = 4.5 Hz), 121.12 (qt, *J* = 285.9, 29.2 Hz, CF(<u>C</u>F₃)₂), 92.89 - 89.20 (m, <u>C</u>F(CF₃)₂), 46.63 (d, *J* = 5.5 Hz), 31.71 (d, *J* = 18.9 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -76.73 (qq, *J* = 29.2, 8.3 Hz, CF(C<u>*F*</u>₃)₂, 6F), -184.34 (dqt, *J* = 21.2, 14.3, 7.1 Hz, C<u>*F*</u>(CF₃)₂, 1F).

GC-MS: 378

HRMS (ESI) m/z [M+H]⁺: Calculated for C₁₈H₁₄F₇O⁺: 379.0927. Found: 379.0925.

4,5,5,5-Tetrafluoro-4-trifluoromethyl-1,2-di-p-tolylbutan-1-one (41)

The title compound was prepared with 1,1-di-*p*-tolylprop-2-en-1-ol (47.6 mg, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and TMP (50.6 μ L, 0.30 mmol, 1.5 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a colorless oil (78.8 mg, 97 %).

 \mathbf{R}_{f} = 0.61 (ethyl acetate: petroleum ether, 1:20 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.88 (d, *J* = 8.1 Hz, 2H), 7.19 (dd, *J* = 8.2, 2.9 Hz, 4H), 7.11 (d, *J* = 8.0 Hz, 2H), 5.00 (d, *J* = 9.3 Hz, 1H), 3.63 (td, *J* = 16.1, 15.6, 9.3 Hz, 1H), 2.34 (s, 3H), 2.28 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 196.14, 144.27, 137.71, 135.42, 133.20, 130.21, 129.44, 128.97, 127.79, 121.16 (qt, *J* = 285.9, 27.3 Hz, CF(<u>C</u>F₃)₂), 92.90 - 89.41 (m, <u>C</u>F(CF₃)₂), 46.06 (d, *J* = 5.1 Hz), 31.68 (d, *J* = 19.0 Hz), 21.61, 21.02.

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -76.72 (dq, J = 29.4, 8.3 Hz, CF(C<u>F_3)</u>₂, 6F), -184.46 (dtp, J = 21.6, 14.2, 7.3 Hz, C<u>F(</u>CF₃)₂, 1F).

GC-MS: 406

HRMS (ESI) m/z [M+H]⁺: Calculated for C₂₀H₁₈F₇O⁺: 407.1240. Found: 407.1244.

4,5,5,5-Tetrafluoro-4-trifluoromethyl-1,2-bis(4-methoxyphenyl)butan-1-one (42)

The title compound was prepared with 1,1-bis(4-methoxyphenyl)prop-2-en-1-ol (54.0 mg, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and TMP (50.6 μ L, 0.30 mmol, 1.5 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a colorless oil (84.9 mg, 97 %).

 \mathbf{R}_{f} = 0.56 (ethyl acetate: petroleum ether, 1:20 (v:v)).

NMR Spectroscopy:

¹H NMR (400 MHz, Chloroform-*d*, 298 K) δ 7.94 (d, J = 8.9 Hz, 2H), 7.20 (d, J = 8.8 Hz, 2H),
6.87 (d, J = 9.0 Hz, 2H), 6.82 (d, J = 8.8 Hz, 2H), 4.94 (dd, J = 9.2, 2.9 Hz, 1H), 3.79 (s, 3H),
3.73 (s, 3H), 3.59 (td, J = 15.5, 8.9 Hz, 1H), 2.31 (dd, J = 20.8, 16.3 Hz, 1H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 195.11, 163.71, 159.21, 131.14, 130.55, 128.97, 128.57, 121.15 (qt, *J* = 285.9, 27.8 Hz, CF(<u>C</u>F₃)₂), 114.88, 113.95, 92.90 - 89.47 (m, <u>C</u>F(CF₃)₂), 55.45, 55.25, 45.36 (d, *J* = 5.0 Hz), 31.72 (d, *J* = 18.9 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -76.73 (dq, J = 25.3, 8.6 Hz, CF(C<u>*F*</u>₃)₂, 6F), -184.59 (dtp, J = 21.3, 13.9, 7.1 Hz, C<u>*F*</u>(CF₃)₂, 1F).

GC-MS: 438

HRMS (ESI) m/z [M+H]⁺: Calculated for C₂₀H₁₈F₇O₃⁺: 439.1139. Found: 439.1139.

4,5,5,5-Tetrafluoro-4-trifluoromethyl-1,2-bis(4-fluorophenyl)butan-1-one (43)

The title compound was prepared with 1,1-bis(4-fluorophenyl)prop-2-en-1-ol (49.2 mg, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and TMP (50.6 μ L, 0.30 mmol, 1.5 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a colorless oil (73.7 mg, 89 %).

 $\mathbf{R}_{f} = 0.67$ (ethyl acetate: petroleum ether, 1:20 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 8.01 - 7.90 (m, 2H), 7.33 - 7.19 (m, 2H), 7.06 (t, *J* = 8.6 Hz, 2H), 7.00 (t, *J* = 8.6 Hz, 2H), 4.97 (dd, *J* = 9.2, 3.0 Hz, 1H), 3.58 (td, *J* = 15.6, 14.9, 9.1 Hz, 1H), 2.40 - 2.26 (m, 1H).

¹³**C NMR** (101 MHz, Chloroform-*d*, 298 K) δ 194.85, 165.97 (d, *J* = 255.9 Hz), 162.44 (d, *J* = 247.7 Hz), 133.66 (d, *J* = 3.4 Hz), 131.85 (d, *J* = 3.2 Hz), 131.45 (d, *J* = 9.5 Hz), 129.55 (d, *J* = 8.2 Hz), 121.05 (qt, *J* = 286.9, 29.2 Hz, CF(<u>C</u>F₃)₂), 116.62 (d, *J* = 21.7 Hz), 116.00 (d, *J* = 22.0 Hz), 92.73 - 89.42 (m, <u>C</u>F(CF₃)₂), 45.76 (d, *J* = 5.4 Hz), 31.71 (d, *J* = 18.9 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -76.85 (dq, J = 41.5, 8.6 Hz, CF(C<u>*F*</u>₃)₂, 6F), -104.12 (s, 1F), -113.60 (s, 1F), -184.45 (ddh, J = 21.3, 14.3, 7.1 Hz, C<u>*F*</u>(CF₃)₂, 1F).

GC-MS: 414

HRMS (ESI) m/z [M+H]⁺: Calculated for C₁₈H₁₂F₉O⁺: 415.0739. Found: 415.0730.

4,5,5,5-Tetrafluoro-4-trifluoromethyl-1,2-bis(4-chlorophenyl)butan-1-one (44)

The title compound was prepared with 1,1-bis(4-chlorophenyl)prop-2-en-1-ol (55.6 mg, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and TMP (50.6 μ L, 0.30 mmol, 1.5 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a colorless oil (83.8 mg, 94 %).

 \mathbf{R}_{f} = 0.61 (ethyl acetate: petroleum ether, 1:20 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.85 (d, *J* = 5.6 Hz, 2H), 7.37 (d, *J* = 5.6 Hz, 2H), 7.29 (d, *J* = 5.6 Hz, 2H), 7.19 (d, *J* = 5.6 Hz, 2H), 4.93 (d, *J* = 8.8 Hz, 1H), 3.56 (m, 1H), 2.41 - 2.22 (m, 1H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 195.01, 140.25, 136.17, 134.32, 133.68, 130.15, 129.90, 129.23, 121.00 (qt, *J* = 285.9, 29.0 Hz, CF(<u>C</u>F₃)₂), 92.50 - 89.39 (m, <u>C</u>F(CF₃)₂), 45.95 (d, *J* = 4.7 Hz), 31.52 (d, *J* = 18.8 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -76.74 (qq, *J* = 29.2, 8.2 Hz, CF(C<u>*F*</u>₃)₂, 6F), -184.34 (dqt, *J* = 21.2, 14.4, 7.1 Hz, C<u>*F*</u>(CF₃)₂, 1F).

GC-MS: 446

HRMS (ESI) m/z [M+H]⁺: Calculated for C₁₈H₁₂Cl₂F₇O⁺: 447.0148. Found: 447.0150.

4,5,5,5-Tetrafluoro-4-trifluoromethyl-1-phenyl-2-(4-chlorophenyl)-butan-1-one (**45**) and 4,5,5,5-tetra-fluoro-4-trifluoromethyl-2-phenyl-1-(4-chlorophenyl)-butan-1-one (**45***)

The title compound was prepared with 1-(4-chlorophenyl)-1-phenyl-2-propenol (48.8 mg, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and TMP (50.6 μ L, 0.30 mmol, 1.5 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a colorless oil (64.3 mg, 78 %). NMR yield ratio **45/45*** = 3.4/1.

 \mathbf{R}_{f} = 0.62 (ethyl acetate: petroleum ether, 1:20 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.95 - 7.85 (m, 2H), 7.62 - 7.10 (m, 7H), 5.07 - 4.91 (m, 1H), 3.72 - 3.49 (m, 1H), 2.44 - 2.26 (m, 1H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 196.18, 195.26, 139.95, 137.79, 136.54, 135.42, 134.11, 133.97, 133.64, 130.20, 129.77, 129.70, 129.31, 129.11, 128.85, 128.78, 128.17, 127.87, 121.06 (qt, *J* = 286.4, 27.3 Hz, CF(<u>C</u>F₃)₂), 92.84 - 89.28 (m, <u>C</u>F(CF₃)₂), 46.73, 31.68, 31.50.

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -76.31 - -76.97 (m, CF(C<u>F</u>₃)₂, 6F), -184.05 - -184.60 (m, C<u>F(</u>CF₃)₂, 1F).

GC-MS: 412

HRMS (ESI) m/z [M+H]⁺: Calculated for C₁₈H₁₃ClF₇O⁺: 413.0538. Found: 413.0544.

4,5,5,5-Tetrafluoro-4-trifluoromethyl-1-phenyl-2-(4-bromophenyl)-butan-1-one (46)

The title compound was prepared with 1-(4-bromophenyl)-1-phenyl-2-propenol (57.6 mg, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and TMP (50.6 μ L, 0.30 mmol, 1.5 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a white solid (64.7 mg, 71 %).

 \mathbf{R}_{f} = 0.64 (ethyl acetate: petroleum ether, 1:20 (v:v)).

NMR Spectroscopy:

¹H NMR (400 MHz, Chloroform-*d*, 298 K) δ 7.92 (d, *J* = 7.1 Hz, 2H), 7.55 - 7.48 (m, 1H), 7.48
- 7.33 (m, 4H), 7.16 (d, *J* = 8.5 Hz, 2H), 4.99 (dd, *J* = 9.0, 3.1 Hz, 1H), 3.57 (td, *J* = 15.2, 14.4, 9.0 Hz, 1H), 2.40 - 2.26 (m, 1H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 196.12, 137.06, 135.39, 133.68, 132.75, 129.64, 128.88, 128.78, 122.20, 121.04 (qt, *J* = 286.4, 25.9 Hz, CF(<u>C</u>F₃)₂), 92.81 - 89.16 (m, <u>C</u>F(CF₃)₂), 45.95, 31.51 (d, *J* = 18.9 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -76.72 (dq, J = 60.2, 8.6 Hz, CF(C<u>F</u>₃)₂, 6F), -184.30 (ddq, J = 29.2, 14.3, 7.1 Hz, C<u>F</u>(CF₃)₂, 1F).

GC-MS: 456

HRMS (ESI) m/z [M+H]⁺: Calculated for C₁₈H₁₃BrF₇O⁺: 457.0033. Found: 457.0039.

Melt point: 63.2 - 63.9 ℃.

5,6,6,6-Tetrafluoro-5-trifluoromethyl-2-(4-biphenyl)-penta-2-one (47) and 4,5,5,5-Tetrafluoro-4-

trifluoromethyl-1-(4-biphenyl)-2-methyl-butan-1-one (47*)

The title compound was prepared with 1-methyl-1-biphenyl-2-propenol (44.8 mg, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and TMP (50.6 μ L, 0.30 mmol, 1.5 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a colorless oil (68.9 mg, 88 %). NMR yield ratio **47/47*** = 6.3/1.

 \mathbf{R}_{f} = 0.60 (ethyl acetate: petroleum ether, 1:20 (v:v)).

NMR Spectroscopy:

¹H NMR (400 MHz, Chloroform-*d*, 298 K) δ 7.69 (s), 7.66 - 7.52 (m), 7.48 - 7.41 (m), 7.39 - 7.35 (m), 7.39 - 7.30 (m), 7.28 (d, *J* = 8.3 Hz), 4.15 (dd, *J* = 8.3, 3.6 Hz, 1H), 3.44 (td, *J* = 15.8, 7.7 Hz, 1H), 2.34 - 2.20 (m, 1H), 2.15 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 204.43, 204.25, 143.05, 141.26, 140.29, 139.62, 137.50, 136.49, 128.96, 128.68, 128.44, 128.32, 128.21, 127.73, 127.55, 127.14, 120.86 (q, *J* = 286.4, CF(<u>C</u>F₃)₂), 93.06 - 89.20 (m, <u>C</u>F(CF₃)₂), 51.70 (d, *J* = 4.8 Hz), 30.23 (d, *J* = 19.1 Hz), 28.75.

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -75.54 (d, J = 6.6 Hz, CF(C<u>F</u>₃)₂), -76.79 (dp, J = 103.7, 8.8 Hz, CF(C<u>F</u>₃)₂), -182.20 - -182.40 (m, C<u>F</u>(CF₃)₂), -184.43 - -184.75 (m, C<u>F</u>(CF₃)₂).

GC-MS: 392

HRMS (ESI) m/z [M+H]⁺: Calculated for C₁₉H₁₆F₇O⁺: 393.1084. Found: 393.1084.

5,6,6,6-Tetrafluoro-5-trifluoromethyl-2-(pyridin-4-yl)-penta-2-one (48)

The title compound was prepared with 2-(pyridin-4-yl)but-3-en-2-ol (29.8 mg, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and TMP (50.6 μ L, 0.30 mmol, 1.5 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a pale-yellow oil (34.9 mg, 55 %).

 \mathbf{R}_{f} = 0.42 (ethyl acetate: petroleum ether, 1:2 (v:v)).

NMR Spectroscopy:

¹H NMR (400 MHz, Chloroform-*d*, 298 K) δ 8.39 (d, *J* = 7.9 Hz, 2H), 7.84 (d, *J* = 7.9 Hz, 2H), 4.26 (dd, *J* = 8.4, 3.6 Hz, 1H), 3.54 (td, *J* = 17.3, 16.5, 9.1 Hz, 1H), 2.47 - 2.32 (m, 1H), 2.27 (s, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*, 298 K) δ 194.70, 136.54, 131.34, 131.09, 121.00 (qt, *J* = 285.9, 28.2 Hz, CF(<u>C</u>F₃)₂), 92.84 - 89.26 (m, <u>C</u>F(CF₃)₂), 47.46, 33.40 (d, *J* = 18.8 Hz), 28.18. ¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -73.81 (d, *J* = 6.9 Hz, CF(C<u>F₃)₂, 6F), -172.05 (m, C<u>F</u>(CF₃)₂, 1F).</u>

GC-MS: 317

HRMS (ESI) m/z [M+H]⁺: Calculated for C₁₂H₁₁F₇NO⁺: 318.0723. Found: 318.0723.

5,6,6,6-Tetrafluoro-5-trifluoromethyl-2-(thiophen-2-yl)-penta-2-one (49)

The title compound was prepared with 2-(thiophen-2-yl)but-3-en-2-ol (30.8 mg, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and TMP (50.6 μ L, 0.30 mmol, 1.5 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a colorless oil (39.9 mg, 62 %).

 $\mathbf{R}_{f} = 0.57$ (ethyl acetate: petroleum ether, 1:20 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.39 - 7.26 (m, 1H), 7.03 - 6.85 (m, 2H), 4.86 (d, *J* = 11.5 Hz, 1H), 3.65 - 3.39 (m, 1H), 2.40 - 2.16 (m, 1H), 1.90 (s, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*, 298 K) δ 193.91, 131.14, 130.03, 127.88, 121.15 (qt, *J* = 285.5, 8.6 Hz, CF(<u>C</u>F₃)₂), 113.28, 92.81 -89.41 (m, <u>C</u>F(CF₃)₂), 44.89 (d, *J* = 5.0 Hz), 31.20 (d, *J* = 18.8 Hz), 28.12.

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -77.04 (d, *J* = 7.8 Hz, CF(C<u>*F*</u>₃)₂, 6F), -184.73 (dp, *J* = 26.8, 7.7 Hz, C<u>*F*</u>(CF₃)₂, 1F).

GC-MS: 322

HRMS (ESI) m/z [M+H]⁺: Calculated for C₁₁H₁₀F₇OS⁺: 323.0335. Found: 323.0347.

Visible-light promoted isoperfluoropropylation of terminal alkynes

General procedure to access isoperfluoropropylated products.

Scheme S21. General procedure to access isoperfluoropropylated products.

Under an ambient atmosphere, in a 25 mL screw-cap vial equipped with a magnetic stirring bar, terminal alkynes (**50**, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) were dissolved in dry MeCN (2.0 mL, 0.1 M). Subsequently, DIPEA (52.2 μ L, 0.30 mmol, 1.5 equiv.) was added into the vial. The vial was sealed and the reaction was irradiated at green light (525 nm) for 2 h, the temperature of the reaction systems was controlled within 25 - 35 °C by using the drum fan. After this, the reaction was quenched with 10 mL 5% NaHCO₃ aqueous solution, then extracted with DCM (3 x 10 mL). The combined organic phase was dried with anhydrous Na₂SO₄ and concentrated under vacuum. The residue was further purified by column chromatography to afford corresponding isoperfluoropropylated products **51**, which was characterized by GC-MS analysis, ¹H NMR, ¹³C NMR, ¹⁹F NMR spectroscopy and HRMS.

Characterization of Products

4-(3,4,4,4-Tetrafluoro-3-(trifluoromethyl)but-1-yn-1-yl)-1,1'-biphenyl (52)

The title compound was prepared with 4-ethynyl-1,1'-biphenyl (35.5 mg, 0.20 mmol, 1.0 equiv.), *i*- C_3F_7 -iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and DIPEA (52.2 µL, 0.3 mmol, 1.5 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a colorless oil (33.2 mg, 48 %).

 \mathbf{R}_{f} = 0.69 (ethyl acetate: petroleum ether, 1:20 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.67 - 7.56 (m), 7.47 (t, *J* = 7.5 Hz), 7.43 - 7.36 (m).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 143.92, 139.79, 133.13 (d, *J* = 2.9 Hz), 129.09,

128.34, 127.37, 127.24, 119.48 (qd, J = 287.3, 29.4 Hz, $CF(\underline{C}F_3)_2$), 117.60 (d, J = 4.0 Hz), 93.66 (d, J = 9.0 Hz), 73.62 (d, J = 26.3 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -76.77 (d, J = 11.6 Hz, CF(C<u>F</u>₃)₂, 6F), -165.19 (hept, J = 11.0 Hz, C<u>F(</u>CF₃)₂, 1F).

GC-MS: 346

HRMS (ESI) m/z [M+H]⁺: Calculated for C₁₇H₁₀F₇⁺: 347.0665. Found: 347.0668.

2-(3,4,4,4-Tetrafluoro-3-(trifluoromethyl)but-1-yn-1-yl)naphthalene (53)

The title compound was prepared with 2-ethynylnaphthalene (30.4 mg, 0.20 mmol, 1.0 equiv.), *i*- C_3F_7 -iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and DIPEA (52.2 µL, 0.30 mmol, 1.5 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a colorless oil (39.0 mg, 61 %).

 \mathbf{R}_{f} = 0.72 (ethyl acetate: petroleum ether, 1:20 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 8.13 (s, 1H), 7.84 (d, *J* = 9.0 Hz, 3H), 7.65 - 7.51 (m, 3H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 134.03, 133.94, 133.91, 132.60, 128.61, 128.22, 128.19, 128.01, 127.82, 127.25, 119.48 (dd, *J* = 289.6, 29.5 Hz, CF(<u>C</u>F₃)₂), 116.02 (d, *J* = 4.1 Hz), 94.08 (d, *J* = 8.3 Hz), 86.42 - 82.14 (m, <u>C</u>F(CF₃)₂).

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -76.70 (d, J = 11.0 Hz, CF(C<u>F</u>₃)₂, 6F), -165.11 (hept, J = 10.9 Hz, C<u>F</u>(CF₃)₂, 1F).

GC-MS: 320

HRMS (ESI) m/z [M+H]⁺: Calculated for C₁₅H₈F₇⁺: 321.0509. Found: 321.0501.

4-(3,4,4,4-Tetrafluoro-3-(trifluoromethyl)but-1-yn-1-yl)phenetole (54)

The title compound was prepared with 4-ethoxyphenylacetylene (29.2 mg, 0.20 mmol, 1.0 equiv.), i-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and DIPEA (52.2 µL, 0.30 mmol, 1.5 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a pale-yellow oil (25.2 mg, 40 %).

 \mathbf{R}_{f} = 0.55 (ethyl acetate: petroleum ether, 1:20 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.48 (d, *J* = 7.0 Hz, 2H), 6.87 (d, *J* = 6.9 Hz, 2H), 4.05 (q, *J* = 7.0 Hz, 2H), 1.42 (t, *J* = 6.9 Hz, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*, 298 K) δ 161.14, 134.41, 119.50 (qd, *J* = 287.5, 29.0 Hz, CF(<u>C</u>F₃)₂), 114.82, 110.53 (d, *J* = 3.8 Hz), 94.28 (d, *J* = 8.7 Hz), 86.91 - 83.96 (m, <u>C</u>F(CF₃)₂), 72.08 (d, *J* = 26.8 Hz), 63.80, 14.65.

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -76.89 (d, J = 11.6 Hz, CF(C<u>F</u>₃)₂, 6F), -164.22 (hept, J = 11.0 Hz, C<u>F</u>(CF₃)₂, 1F).

GC-MS: 314

HRMS (ESI) m/z [M+H]⁺: Calculated for C₁₃H₁₀F₇O⁺: 315.0614. Found: 315.0617.

4-(3,4,4,4-Tetrafluoro-3-(trifluoromethyl)but-1-yn-1-yl)benzonitrile (55)

The title compound was prepared with 4-cyanophenylacetylene (25.4 mg, 0.20 mmol, 1.0 equiv.), i-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and DIPEA (52.2 µL, 0.30 mmol, 1.5 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a colorless oil (45.4 mg, 77 %).

 \mathbf{R}_{f} = 0.61 (ethyl acetate: petroleum ether, 1:20 (v:v)).

NMR Spectroscopy:

¹H NMR (400 MHz, Chloroform-*d*, 298 K) δ 7.73 - 7.64 (m, 4H).

¹³**C NMR** (101 MHz, Chloroform-*d*, 298 K) δ 133.20 (d, *J* = 2.9 Hz), 132.40, 123.43 (d, *J* = 3.8 Hz), 119.24 (qd, *J* = 285.9, 29.2 Hz, CF(<u>C</u>F₃)₂), 117.71, 114.73, 91.08 (d, *J* = 8.3 Hz), 86.81 - 83.46 (m, <u>C</u>F(CF₃)₂), 85.10.

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -76.57 (d, *J* = 10.9 Hz, CF(C<u>*F*</u>₃)₂, 6F), -166.88 (hept, *J* = 10.7 Hz, C<u>*F*</u>(CF₃)₂, 1F).

GC-MS: 295

HRMS (ESI) m/z [M+H]⁺: Calculated for C₁₂H₅F₇N⁺: 296.0305. Found: 296.0300.

4-(3,4,4,4-Tetrafluoro-3-(trifluoromethyl)but-1-yn-1-yl)benzaldehyde (56)

The title compound was prepared with 4-ethynylbenzaldehyde (26.0 mg, 0.20 mmol, 1.0 equiv.), *i*- C_3F_7 -iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and DIPEA (52.2 µL, 0.30 mmol, 1.5 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a colorless oil (37.0 mg, 62 %).

 $\mathbf{R}_{f} = 0.34$ (ethyl acetate: petroleum ether, 1:10 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 10.02 (s, 1H), 8.22 (d, *J* = 6.7 Hz, 2H), 7.67 (d, *J* = 6.7 Hz, 2H).

¹³**C NMR** (101 MHz, Chloroform-*d*, 298 K) δ 191.55, 137.12, 130.28, 129.19, 128.33, 120.24 (qd, *J* = 284.5, 27.5 Hz, CF(<u>C</u>F₃)₂), 117.15 (d, *J* = 29.1 Hz), 89.12 (d, *J* = 8.2 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -75.91 (d, *J* = 6.8 Hz, CF(C<u>*F*</u>₃)₂, 6F), -182.14 (hept,

J = 7.7, 7.1 Hz, C<u>*F*(</u>CF₃)₂, 1F).

GC-MS: 298

HRMS (ESI) m/z [M+H]⁺: Calculated for C₁₂H₆F₇O⁺: 299.0301. Found: 299.0300.

Visible-light promoted hydroisoperfluoropropylation of terminal alkenes

General procedure to access hydroisoperfluoropropylated products.

Scheme S22. General procedure to access hydroisoperfluoropropylated products.

Under an ambient atmosphere, in a 25 mL screw-cap vial equipped with a magnetic stirring bar, terminal alkenes (**4**, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) were dissolved in dry MeCN (2.0 mL, 0.1 M). Subsequently, 1,4-cyclohexadiene (37.8 μ L, 0.40 mmol, 2.0 equiv.) was added into the vial. The vial was sealed and the reaction was irradiated at green light (525 nm) for 2 h, the temperature of the reaction systems was controlled within 25 - 35 °C by using the drum fan. After this, the reaction was quenched with 10 mL 5% NaHCO₃ aqueous solution, then extracted with DCM (3 x 10 mL). The combined organic phase was dried with anhydrous Na₂SO₄ and concentrated under vacuum. The residue was further purified by column chromatography to afford corresponding isoperfluoropropylated products **57**, which was characterized by GC-MS analysis, ¹H NMR, ¹³C NMR, ¹⁹F NMR spectroscopy and HRMS.

Characterization of Products

2-Methoxy-4-(4,5,5,5-tetrafluoro-4-(trifluoromethyl)pentyl)phenyl acetate (58)

The title compound was prepared with eugenol acetate (41.2 mg, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and 1,4-cyclohexadiene (37.8 μ L, 0.40 mmol, 2.0 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a colorless oil (69.9 mg, 93 %).

 $\mathbf{R}_{f} = 0.44$ (ethyl acetate: petroleum ether, 1:20 (v:v)).

NMR Spectroscopy:

¹H NMR (400 MHz, Chloroform-*d*, 298 K) δ 6.96 (d, *J* = 7.9 Hz, 1H), 6.83 - 6.71 (m, 2H), 3.82 (s, 3H), 2.66 (t, *J* = 7.6 Hz, 2H), 2.30 (s, 3H), 2.17 - 2.01 (m, 2H), 1.91 (p, *J* = 7.8 Hz, 2H).
¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 169.26, 151.14, 139.47, 138.30, 122.83, 121.16

(qd, *J* = 284.5, 27.3 Hz, CF(<u>C</u>F₃)₂), 120.46, 112.46, 93.55 - 89.85 (m, <u>C</u>F(CF₃)₂), 55.86, 35.54, 28.52 (d, *J* = 20.6 Hz), 23.06, 20.67.

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -76.29 (d, J = 6.8 Hz, CF(C<u>F</u>₃)₂, 6F), -183.61 (dtp, J = 20.4, 13.8, 7.0 Hz, C<u>F</u>(CF₃)₂, 1F).

GC-MS: 376

HRMS (ESI) m/z [M+H]⁺: Calculated for C₁₅H₁₆F₇O₃⁺: 377.0982. Found: 377.0977.

1-Bromo-4-((4,5,5,5-tetrafluoro-4-(trifluoromethyl)pentyl)oxy)benzene (59)

The title compound was prepared with 1-bromo-4-(allyloxy)benzene (42.4 mg, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and 1,4-cyclohexadiene (37.8 μ L, 0.40 mmol, 2.0 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a colorless oil (61.3 mg, 80 %).

 \mathbf{R}_{f} = 0.61 (ethyl acetate: petroleum ether, 1:10 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.37 (d, *J* = 8.9 Hz, 2H), 6.76 (d, *J* = 9.0 Hz, 2H), 3.96 (t, *J* = 5.8 Hz, 2H), 2.37 - 2.23 (m, 2H), 2.06 (dt, *J* = 16.9, 6.0 Hz, 2H).

¹³**C NMR** (101 MHz, Chloroform-*d*, 298 K) δ 157.75, 132.43, 121.16 (qd, *J* = 287.2, 27.5 Hz, CF(<u>C</u>F₃)₂), 116.31, 113.37, 93.56 - 89.94 (m, <u>C</u>F(CF₃)₂), 66.95, 26.00 (d, *J* = 20.7 Hz), 21.81. ¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -76.33 (d, *J* = 6.9 Hz, CF(C<u>F₃)₂, 6F</u>), -184.22 (ddh, *J* = 26.9, 13.2, 6.6 Hz, C<u>F</u>(CF₃)₂, 1F).

GC-MS: 382

HRMS (ESI) m/z [M+H]⁺: Calculated for C₁₂H₁₁BrF₇O⁺: 382.9876. Found: 382.9879.

1-(4-((4,5,5,5-Tetrafluoro-4-(trifluoromethyl)pentyl)oxy)phenyl)ethan-1-one (60)

The title compound was prepared with 1-(4-(allyloxy)phenyl)ethanone (35.2 mg, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and 1,4-cyclohexadiene (37.8 μ L, 0.40 mmol, 2.0 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a colorless oil (59.5 mg, 86 %).

 $\mathbf{R}_{f} = 0.57$ (ethyl acetate: petroleum ether, 1:20 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.93 (d, *J* = 8.9 Hz, 2H), 6.92 (d, *J* = 7.0 Hz, 2H), 4.07 (t, *J* = 5.8 Hz, 2H), 2.57 (s, 3H), 2.38 - 2.24 (m, 2H), 2.09 (dq, *J* = 11.9, 5.8 Hz, 2H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 197.95, 162.75, 130.94, 121.13 (qd, *J* = 286.9, 27.6 Hz, CF(<u>C</u>F₃)₂), 114.25, 93.51 - 89.84 (m, <u>C</u>F(CF₃)₂), 66.95, 26.29, 25.95 (d, *J* = 20.6 Hz), 21.73.

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -76.32 (d, J = 6.6 Hz, CF(C<u>F</u>₃)₂, 6F), -184.24 (dtq, J = 20.1, 13.5, 6.8 Hz, C<u>F</u>(CF₃)₂, 1F).

GC-MS: 346

HRMS (ESI) m/z [M+H]⁺: Calculated for C₁₄H₁₄F₇O₂⁺: 347.0877. Found: 347.0865.

2-Chloro-1-((6,7,7,7-tetrafluoro-6-(trifluoromethyl)heptyl)oxy)-4-(trifluoromethyl)benzene (61)

The title compound was prepared with 1-chloro-2-(pent-4-en-1-yloxy)-5-trifluromethylbenzene (52.8 mg, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and 1,4-cyclohexadiene (37.8 μ L, 0.40 mmol, 2.0 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a colorless oil (82.4 mg, 95 %).

 \mathbf{R}_{f} = 0.65 (ethyl acetate: petroleum ether, 1:20 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.62 (d, *J* = 2.4 Hz, 1H), 7.46 (dd, *J* = 8.7, 2.4 Hz, 1H), 6.94 (d, *J* = 8.6 Hz, 1H), 4.07 (t, *J* = 6.2 Hz, 2H), 2.19 - 2.04 (m, 1H), 1.95 - 1.85 (m, 1H), 1.75 - 1.52 (m, 2H).

¹³**C NMR** (101 MHz, Chloroform-*d*, 298 K) δ 157.05, 137.42, 127.54 (d, *J* = 3.8 Hz), 125.11 (d, *J* = 3.8 Hz), 123.40, 123.07 (q, *J* = 135.6 Hz), 121.20 (qd, *J* = 285.5, 27.8 Hz, CF(<u>C</u>F₃)₂), 112.55, 92.56 - 89.11 (m, <u>C</u>F(CF₃)₂), 68.86, 28.99 (d, *J* = 20.7 Hz), 28.59, 26.25, 21.29 (d, *J* = 5.1 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -61.81 (s, 3F), -76.42 (d, J = 6.7 Hz, CF(C<u>F₃</u>)₂, 6F), -183.82 (tdp, J = 20.3, 13.8, 7.1, 6.7 Hz, C<u>F(</u>CF₃)₂, 1F).

GC-MS: 434

HRMS (ESI) m/z [M+H]⁺: Calculated for C₁₅H₁₄ClF₁₀O⁺: 435.0568. Found: 435.0565.

6,7,7,7-Tetrafluoro-6-(trifluoromethyl)heptyl cinnamate (62)

The title compound was prepared with pent-4-en-1-yl cinnamate (43.2 mg, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and 1,4cyclohexadiene (37.8 μ L, 0.40 mmol, 2.0 equiv.) in MeCN (2.0 mL, 0.1 M). The product was obtained as a colorless oil (67.2 mg, 87 %).

 \mathbf{R}_{f} = 0.48 (ethyl acetate: petroleum ether, 1:20 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.69 (d, *J* = 16.1 Hz, 1H), 7.54 - 7.49 (m, 2H), 7.38 (t, *J* = 3.4 Hz, 3H), 6.43 (d, *J* = 16.3 Hz, 1H), 4.22 (d, *J* = 2.8 Hz, 2H), 2.08 (dt, *J* = 17.5, 7.0 Hz, 2H), 1.77 - 1.72 (m, 2H), 1.68 - 1.58 (m, 2H), 1.53 - 1.42 (m, 2H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 167.09, 144.94, 134.47, 130.40, 128.98, 128.16, 121.19 (qd, *J* = 286.8, 27.4 Hz, CF(<u>C</u>F₃)₂), 118.08, 93.42 - 90.01 (m, <u>C</u>F(CF₃)₂), 64.21, 29.00 (d, *J* = 20.6 Hz), 28.40, 26.30, 21.26.

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -76.28 (d, J = 6.1 Hz, CF(C<u>*F*</u>₃)₂, 6F), -183.68 (dq, J = 21.2, 13.7 Hz, C<u>*F*</u>(CF₃)₂, 1F).

GC-MS: 386

HRMS (ESI) m/z [M+H]⁺: Calculated for C₁₇H₁₈F₇O₂⁺: 387.1190. Found: 387.1181.
Mechanistic investigations

Scheme S23. Radical trap reaction of TEMPO.

Under an ambient atmosphere, in a 25 mL screw-cap vial equipped with a magnetic stirring bar, allyl benzene (**1**, 26.5 μ L, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (6.4 mg, 5 mol%) and 2, 2, 6, 6-tetramethylpiperidinyl-1-oxide (TEMPO, 62.4 mg, 0.40 mmol, 2.0 equiv.) were dissolved in dry MeCN (2 mL). Subsequently, DIPEA (52.2 μ L, 0.30 mmol, 1.5 equiv.) was added into the vial. The vial was sealed and the reaction was irradiated at green LEDs (525 nm) for 2 h, the temperature of the reaction systems was controlled within 25 - 35 °C by using the drum fan. After this, the crude reaction mixture was diluted with EtOAc and filtered through a plug of silica then subjected to LC-HRMS analysis.

HRMS (ESI) m/z [M+H]⁺: Calculated for C₁₂H₁₉F₇NO⁺: 326.1349. Found: 326.1357.

Electron paramagnetic resonance (EPR) experiment

Scheme S24. Radical trap reaction of PBN.

Under an ambient atmosphere, in a 25 mL screw-cap vial equipped with a magnetic stirring bar, allyl benzene (**1**, 26.5 µL, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.40 mmol, 1.5 equiv.), Eosin Y (6.4 mg, 5.0 mol%) and phenyl *tert*-butyl nitrone (PBN, 70.8 mg, 0.40 mmol, 2.0 equiv.) were dissolved in dry MeCN (2 mL). Subsequently, DIPEA (52.2 µL, 0.40 mmol, 2.0 equiv.) was added into the vial. The vial was sealed and the reaction was irradiated at green LEDs (525 nm) for 2 h, the temperature of the reaction systems was controlled within 25 - 35 °C by using the drum fan. After this, the crude reaction mixture was filtered through a plug of silica then analyzed by EPR. The EPR showed a EPR signal of nitroxide (g = 2.0063, a^N = 14.76, a^H = 2.08) which indicated that the isoperfluoropropyl group must be substituted at the β-carbon atom of nitroxide. The hyperfine coupling constants could not be calculated due to the poor resolution of the spectrum.

Figure S2. The EPR spectrum of N-O radical 64.

Radical clock experiment

Scheme S25. Radical clock reaction of cyclopropyl styrene derivatives.

Under an ambient atmosphere, in a 25 mL screw-cap vial equipped with a magnetic stirring bar, cyclopropyl styrene (**65**, 28.8 mg, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (5 mol%, 6.4 mg) and *n*-Bu₄NI (147.8 mg, 0.40 mmol, 2.0 equiv.) were dissolved in dry MeCN (2.0 mL, 0.1 M). Subsequently, DIPEA (52.2 μ L, 0.3 mmol, 1.5 equiv.) was added into the vial. The vial was sealed and the reaction was irradiated at green light (525 nm) for 2 h, the temperature of the reaction systems was controlled within 25 - 35 °C by using the drum fan. After this, the reaction was quenched with 10 mL 5% NaHCO₃ aqueous solution, then extracted with DCM (3 x 10 mL). The combined organic phase was dried with anhydrous Na₂SO₄ and concentrated under vacuum. The residue was further purified by column chromatography to afford corresponding isoperfluoropropylated product **66**, which was characterized by GC-MS analysis, ¹H NMR, ¹³C NMR, ¹⁹F NMR spectroscopy and HRMS.

6-iodide-1,1,1,2-Tetrafluoro-2-(trifluoromethyl)-2-phenylhept-2-ene (66)

The product was obtained as a colorless oil (67.8 mg, 77 %).

 $\mathbf{R}_{f} = 0.78$ (ethyl acetate: petroleum ether, 1:10 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.40 - 7.26 (m, 5H), 5.83 (t, *J* = 7.3 Hz, 1H), 3.37 (d, *J* = 22.0 Hz, 2H), 3.24 (t, *J* = 6.9 Hz, 2H), 2.83 (q, *J* = 7.0 Hz, 2H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 142.10, 135.04, 132.24, 128.43, 127.65, 126.55, 120.87 (qd, *J* = 287.4, 286.6, 27.9 Hz, CF(<u>C</u>F₃)₂), 93.71 - 89.86 (m, <u>C</u>F(CF₃)₂), 33.06, 28.72 (d, *J* = 19.4 Hz), 4.01.

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -76.07 (d, J = 6.7 Hz, CF(C<u>F</u>₃)₂, 6F), -182.22 (tdp, J = 21.7, 14.1, 7.2 Hz, C<u>F</u>(CF₃)₂, 1F).

GC-MS: 440

HRMS (ESI) m/z [M+H]⁺: Calculated for C₁₄H₁₃F₇I⁺: 440.9945. Found: 440.9939.

Deuterium-labeling experiment

Scheme S26. Deuterium-labeling experiment of α -deuterated allyl benzene.

Under an ambient atmosphere, in a 25 mL screw-cap vial equipped with a magnetic stirring bar, α deuterated allyl benzene (**67**, 24.0 mg, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.) and Eosin Y (6.4 mg, 5 mol%) were dissolved in dry MeCN (2 mL). Subsequently, DIPEA (52.2 µL, 0.30 mmol, 1.5 equiv.) was added into the vial. The vial was sealed and the reaction was irradiated at green LEDs (525 nm) for 2 h, the temperature of the reaction systems was controlled within 25 - 35 °C by using the drum fan. After this, 10 µL of *n*-dodecane was added as an internal standard. The crude reaction mixture was diluted with EtOAc and filtered through a plug of silica then subjected to GC-MS analysis.

GC-MS: 287; GC yield 74%, n-dodecane as internal standard.

GC-MS: 288; GC yield <1%, *n*-dodecane as internal standard.

Isotopic (H/D) kinetic experiment

Scheme S27. Isotopic H/D kinetic experiment

Under an ambient atmosphere, in a 25 mL screw-cap vial equipped with a magnetic stirring bar, α deuterated allyl benzene (**67***, 23.8 mg, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.) and Eosin Y (6.4 mg, 5 mol%) were dissolved in dry MeCN (2 mL). Subsequently, DIPEA (52.2 µL, 0.30 mmol, 1.5 equiv.) was added into the vial. The vial was sealed and the reaction was irradiated at green LEDs (525 nm) for 20 min - 2 h, the temperature of the reaction systems was controlled within 25 - 35 °C by using the drum fan. After this, 10 µL of 1,2-dibromoethane was added as an internal standard. The reaction was quenched with 10 mL 5% NaHCO₃ aqueous solution, then extracted with DCM (3 x 10 mL). The combined organic phase was dried with anhydrous Na₂SO₄ and concentrated under vacuum. The crude products subjected to NMR analysis. The yield was determined by ¹H NMR and average yields was obtained by measuring three times.

Entry	Time (min)	NMR yield of 3 (%)	NMR yield of 3D-1 (%)
1	20	17	13
2	40	29	20
3	60	36	27
4	80	41	31
5	100	45	33
6	120	47	36

Table S8. Photochemistry parameters screening

NMR Spectroscopy:

¹H NMR (400 MHz, Chloroform-*d*, 298 K) δ 7.46 - 7.26 (m, 5H), 6.62 (d, *J* = 15.7 Hz, 0.57 H),
6.15 (dt, *J* = 15.9, 7.5 Hz, 1H), 3.04 (dd, *J* = 20.0, 7.5 Hz, 2H).

GC-MS: 286 and 287.

Figure S3. The ¹H NMR spectrum of 3 and 3-D1.

Figure S4. The reaction time-course curve.

Intermediate D trap experiment

Scheme S28. Intermediate D trap experiment

Under an ambient atmosphere, in a 25 mL screw-cap vial equipped with a magnetic stirring bar, allyl benzene (**1**, 26.5 μ L, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (6.4 mg, 5 mol%) were dissolved in dry MeCN (2 mL). Subsequently, DIPEA (52.2 μ L, 0.30 mmol, 1.5 equiv.) was added into the vial. The vial was sealed and the reaction was irradiated at green LEDs (525 nm) for 5 min, the temperature of the reaction systems was controlled within 25 - 35 °C by using the drum fan. After this, the crude reaction mixture was quenched by H₂O (0.5 mL) and stirred for another 1 h. Finally, the mixture was diluted with EtOAc and filtered through a plug of silica then subjected to LC-HRMS analysis.

HRMS (ESI) m/z [M+H]⁺: Calculated for C₁₄H₁₅F₇NO⁺: 346.1036. Found: 346.1022.

Stoichiometric reactivity of Intermediate D

Scheme S29. Stoichiometric reactivity of Intermediate D

Under an ambient atmosphere, in a 25 mL screw-cap vial equipped with a magnetic stirring bar, amide (**68**, 34.5 mg, 0.10 mmol, 1.0 equiv.) were dissolved in dry MeCN (1 mL). Next, a solution of the triflic anhydride (0.105 mmol, 17.7 μ L, 1.05 equiv) in MeCN (1 mL) was added to the mixture at -40°C and stirred for 10 min. Next, DIPEA (26.1 μ L, 0.15 mmol, 1.5 equiv.) was added into the vial and stirred for another 1 h. Finally, 10 μ L of benzotrifluoride was added as an internal standard and the reaction mixture was diluted with EtOAc. The crude reaction mixture was filtered through a plug of silica then subjected to ¹⁹F NMR analysis.

Electrochemical studies⁹

Cyclic voltammetry (CV) experiments were conducted in a Schlenk tube that contained the substance dissolved in a 0.1 M solution of tetrabutylammonium hexafluorophosphate in dry acetonitrile. A platinum wire working electrode and a platinum mesh counter electrode were used.

The voltage was measured via a Luggin capillary against an Ag/Ag⁺ reference and was referenced externally against the ferrocene/ferrocenium ion pair. The scan rate used in each CV experiment is indicated case by case. The relevant parameters were controlled by a CHI660E electrochemical workstation.

Figure S5. Cyclic voltammogram for PFPI reagent **2** [0.1M] in [0.1 M] TBAPF₆ in dry CH₃CN. Measurement started by oxidation from 0 to -2.0 V and finishing at 0 V. Platinum wire working electrode, Ag/Ag⁺ reference electrode, platinum mesh counter electrode. One irreversible reduction observed at -1.22 V.

Absorption spectroscopy analysis.

The absorption profiles of the different reaction component were recorded in order to identify the photoactive species (Figure S6).

UV-visible absorption spectra were recorded on an UV-2700 spectrophotometer, equipped with a temperature control unit at 25 °C. The samples were measured in Starna Fluorometer Microquartz cuvettes (volume: 1.8 ml, path length: 10 mm) equipped with a PTFE-stopper. The spectra were aquired from 250 to 700 nm using 1.0 nm steps. All measurements were performed in MeCN at the following concentrations: allylbenzene, DIPEA and *i*-C₃F₇-iodine(III) reagent (1/100 of the reaction concentration); Eosin Y (0.1 mM, 1/10 of the reaction concentration).

Stern-Volmer luminescence quenching experiments¹⁰

Fluorescence quenching studies were performed using a Hitachi F-4600 spectrofluorometer. In each experiment, Eosin Y and various concentrations of *i*-C₃F₇-iodine(III) reagent or DIPEA were combined in MeCN in Starna Fluorometer Microquartz cuvettes (volume: 1.8 ml, path length: 10 mm) equipped with a PTFE-stopper. The excitation wavelength was fixed at 450 nm (incident light slit regulated to 5 mm); the emission light was acquired from 500 nm to 800 nm (emission light slit regulated to 5 mm). A solvent blank was subtracted from all the measurements. The excitation wavelength was chosen in order to avoid saturation of the emission detector. The results shown in Figure S8-S11 indicate that *i*-C₃F₇-iodine(III) reagent quenches the excited state of Eosin Y and its emission. No change in the absorption spectra of the solution was observed during the addition of *i*-C₃F₇-iodine(III) reagent.

соон

1.0 equiv, 0.1 mM

0 - 10 equiv 0- 1.0 mM

hv, 450 nm

Figure S7. Quenching of the emission of Eosin Y*(0.10 mM in acetonitrile) in the presence of increasing amounts of $i-C_3F_7$ -iodine(III) reagent.

The Stern-Volmer plot, reported in Figure S8, shows a linear correlation between the amounts of *i*- C_3F_7 -iodine(III) reagent and the ratio I⁰/I. On the basis of the following Equation 1, it is possible to calculate the Stern-Volmer constant K_{SV}.

We calculated a Stern-Volmer quenching constant of 1860.2 M⁻¹

Figure S8. Stern-Volmer quenching plot using *i*-C₃F₇-iodine(III) reagent as a quencher.

Figure S9. Quenching of the emission of Eosin Y*(0.10 mM in acetonitrile) in the presence of increasing amounts of DIPEA.

The Stern-Volmer plot, reported in Figure S9, shows a linear correlation between the amounts of DIPEA and the ratio I^0/I . On the basis of the following Equation 1, it is possible to calculate the Stern-Volmer constant K_{SV} .

We calculated a Stern-Volmer quenching constant of 180 M⁻¹

Figure S10. Stern-Volmer quenching plot using DIPEA as a quencher.

Quantum yield measurement ¹¹

The quantum yield Φ of the visible light-mediated isoperfluoropropylation of allyl benzene (**1**) with *i*-C₃F₇-lodine(III) reagent (**2**) was determined using a method developed by Riedle and coworkers. For irradiation, a green LED ($\lambda_{max} = 525$ nm) was used. The radiant power was detected with a commercial optical power meter (PowerMax USB - PS19Q Power Sensor from Coherent) using computer-aided read out with PowerMax software.

Under an ambient atmosphere, in a 25 mL screw-cap vial equipped with a magnetic stirring bar, allyl benzene (**1**, 26.5 μ L, 0.20 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (124.8 mg, 0.30 mmol, 1.5 equiv.), Eosin Y (6.4 mg, 5 mol%) and 2, 2, 6, 6-tetramethylpiperidinyl-1-oxide (TEMPO, 62.4 mg, 0.40 mmol, 2.0 equiv.) were dissolved in dry MeCN (2.0 mL). Subsequently, DIPEA (52.2 μ L, 0.30 mmol, 1.5 equiv.) was added into the vial. An oven-dried fluorescence cuvette equipped with a magnetic stirring bar and a septum was flushed with nitrogen. Immediately prior to the quantum yield measurement, 2.0 mL of the reaction solution was transferred to the fluorescence cuvette under nitrogen atmosphere. The whole measurement was carried out in a dark room to minimize ambient light. First of all, the radiant power of light transmitted by a fluorescence cuvette with blank solution P_{ref} was measured. Following the fluorescence cuvette with the blank solution was exchanged by the fluorescence cuvette containing the prepared reaction mixture and the transmitted radiant power P_{sample} was determined for an irradiation time of Δt = 30 min. Afterwards the reaction yield or rather the molar amount of product molecules generated n_{product} was determined by ¹⁹F-NMR analysis using trifluoromethylbenzene as internal standard.

The quantum yield Φ was calculated as the following:

$$\Phi = \frac{N_{\text{product}}}{N_{\text{ph,abs}}} = \frac{n_{\text{product}} \cdot N_{\text{A}} \cdot h \cdot c}{P_{\text{abs}} \cdot \Delta t \cdot \lambda} = \frac{n_{\text{product}} \cdot N_{\text{A}} \cdot h \cdot c}{(P_{\text{ref}} - P_{\text{sample}}) \cdot \Delta t \cdot \lambda \cdot f} \quad [\text{Eq. 2}]$$

Here, Φ is the quantum yield, N_{product} is the number of created molecules, N_{ph,abs} is the number of absorbed photons, n_{product} is the molar amount of product molecules generated in [mol], N_A is Avogadro's constant in [mol⁻¹], *h* is Planck's constant in [Js], *c* is the speed of light in [m/s], P_{abs} is the radiant power absorbed in [W], Δ t is the irradiation time in [s], λ is the wavelength of the irradiation source in [m], P_{ref} is the radiant power transmitted by a fluorescence cuvette with blank solution in [W], P_{sample} is the radiant power transmitted by the fluorescence cuvette containing the reaction sample in [W] and f is a correction factor depending on the reflection coefficient R of the air-glass-interface.

Neglecting second order effects, the correction factor f can be calculated from:

$$f = \frac{1 + R \cdot \frac{P_{sample}}{P_{ref}}}{1 - R} \text{ [Eq. 3]}$$

The reflection coefficient R for a fused silica cuvette and an irradiation wavelength of λ = 525 nm is equal to R = 0.0354.

Having this formula in hands, the preceding data obtained from the measurement could be used to calculate the final value for the quantum yield Φ as the following:

n _{product}	$0.068 \cdot 10^{-3} \text{ mol}$	N_A	$6.022 \cdot 10^{23} \text{ mol}^{-1}$
P _{sample}	$1.17 \cdot 10^{-3} \mathrm{W}$	h	$6.626 \cdot 10^{-34}$ Js
P _{ref}	$37.4 \cdot 10^{-3} \mathrm{W}$	С	2.998 · 10 ⁸ m/s
Δt	1800 s	R	0.0354

λ 525 · 10⁻⁹ m

$$f = \frac{1 + R \cdot \frac{P_{sample}}{P_{ref}}}{1 - R} = \frac{1 + 0.0354 \cdot \frac{1.17 \cdot 10^{-3} \text{ W}}{37.4 \cdot 10^{-3} \text{ W}}}{1 - 0.0354} = 1.038 \text{ [Eq. 4]}$$
$$\Phi = \frac{n_{\text{product}} \cdot N_{\text{A}} \cdot h \cdot c}{(P_{ref} - P_{sample} \cdot \Delta t \cdot \lambda \cdot f)} =$$

 $=\frac{0.068\,\cdot\,10^{-3}\,\text{mol}\,\cdot\,6.022\,\cdot\,10^{23}\,\text{mol}^{-1}\,\cdot\,6.626\,\cdot\,10^{-34}\,\text{Js}\,\cdot\,2.998\,\cdot\,10^{8}\,\text{m/s}}{(37.4\,\cdot\,10^{-3}\,\text{W}-\,1.3\,\cdot\,10^{-3}\,\text{W}\,\cdot\,1800\,\text{s}\,\cdot\,525\,\cdot\,10^{-9}\,\text{m}\,\cdot\,1.038}$

 $= 0.2297 \cong 23.0\%$ [Eq. 5]

Gram-scale reactions and further transformations

Gram-scale reactions

Scheme S30. Gram-scale synthesis of 8.

Under an ambient atmosphere, in a 25 mL screw-cap vial equipped with a magnetic stirring bar, 1-1-methyl-2-allylbenzene (**S11**, 396.3 mg, 3.0 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (1.87 g, 4.5 mmol, 1.5 equiv.), Eosin Y (5 mol%, 96.2 mg) were dissolved in dry MeCN (15 mL, c = 0.2 M). Subsequently, DIPEA (783.6 µL, 4.5 mmol, 1.5 equiv.) was added into the vial. The vial was sealed and the reaction was irradiated at green light (525 nm) for 2 h, the temperature of the reaction systems was controlled within 25 - 35 °C by using the drum fan. After this, the reaction was quenched with 50 mL 5% NaHCO₃ aqueous solution, then extracted with DCM (3 x 30 mL). The combined organic phase was dried with anhydrous Na₂SO₄ and concentrated under vacuum. The obtained residue was purified by chromatography on silica gel eluting with EtOAc: petroleum ether (1: 100 - 1: 50 (v/v)) to afford 657.2 mg of **8** as a colorless oil (73% yield).

Scheme S31. Gram-scale synthesis of 19.

Under an ambient atmosphere, in a 25 mL screw-cap vial equipped with a magnetic stirring bar, 1-1-bromo-4-(allyloxy)benzene (**S19**, 635.9 mg, 3.0 mmol, 1.0 equiv.), *i*-C₃F₇-iodine(III) (1.87 g, 4.5 mmol, 1.5 equiv.), Eosin Y (5 mol%, 96.2 mg) were dissolved in dry MeCN (15 mL, 0.2 M). Subsequently, DIPEA (783.6 μ L, 4.5 mmol, 1.5 equiv.) was added into the vial. The vial was sealed and the reaction was irradiated at green light (525 nm) for 2 h, the temperature of the reaction systems was controlled within 25 - 35 °C by using the drum fan. After this, the reaction was quenched with 50 mL 5% NaHCO₃ aqueous solution, then extracted with DCM (3 x 30 mL). The combined organic phase was dried with anhydrous Na₂SO₄ and concentrated under vacuum. The obtained residue was purified by chromatography on silica gel eluting with EtOAc: petroleum ether (1: 50 - 1: 30 (v/v)) to afford 1.01 g of **19** as a colorless oil (89% yield).

Further transformations

Scheme S32. Reduction of aldehyde 22.

In a 25 mL screw-cap vial equipped with a magnetic stirring bar, (*E*)-2-((6,7,7,7-tetrafluoro-6-(trifluoromethyl)hept-3-en-1-yl)oxy)phenyl aldehyde (**22**, 35.8 mg, 0.1 mmol, 1.0 equiv.) and NaBH₄ (4.2 mg, 0.11 mmol, 1.1 equiv.) were dissolved in dry MeOH (1 mL, 0.1 M) at 0 °C. The mixture was stirred for 0.5 hours and then quenched with 5 mL water. After this, the reaction mixture was extracted with DCM (3 x 5 mL). The combined organic phase was dried with anhydrous Na₂SO₄ and concentrated under vacuum. The obtained residue was purified by chromatography on silica gel eluting with EtOAc: petroleum ether (1: 30 - 1: 10 (v/v)) to afford 33.8 mg of **69** as a pale-yellow oil (94% yield).

 \mathbf{R}_{f} = 0.30 (ethyl acetate: petroleum ether, 1:10 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.30 - 7.21 (m, 2H), 6.95 (d, *J* = 7.5 Hz, 1H), 6.85 (d, *J* = 8.3 Hz, 1H), 5.84 - 5.73 (m, 1H), 5.62 - 5.54 (m, 1H), 4.66 (s, 1H), 4.11 - 3.94 (m, 2H), 2.83 (dd, *J* = 19.9, 6.8 Hz, 2H), 2.59 (t, *J* = 6.1 Hz, 2H).

¹³**C NMR** (101 MHz, Chloroform-*d*, 298 K) δ 156.70, 133.94, 129.30, 129.02, 128.87, 120.96, 120.71, 120.95 (qd, *J* = 284.5, 27.4 Hz, CF(<u>C</u>F₃)₂), 111.10, 92.95 - 89.81 (m, <u>C</u>F(CF₃)₂), 66.83, 62.31, 32.62, 32.36 (d, *J* = 8.9 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -75.85 (d, J = 6.7 Hz, CF(C<u>F</u>₃)₂, 6F), -182.25 (ddh, J = 27.4, 20.9, 6.9 Hz, C<u>F</u>(CF₃)₂, 1F).

GC-MS: 360

HRMS (ESI) m/z [M+H]⁺: Calculated for C₁₅H₁₆F₇O₂⁺: 361.1033. Found: 361.1027.

Scheme S33. Epoxidation of alkene 8.

In a 25 mL screw-cap vial equipped with a magnetic stirring bar, (E)-2-methyl-(4,5,5,5-tetrafluoro-4-(trifluoromethyl)pent-1-en-1-yl)benzene (**8**, 30.0 mg, 0.1 mmol, 1.0 equiv.) and 3chloroperbenzoic acid (*m*-CPBA, 25.9 mg, 0.15 mmol, 1.5 equiv.) were dissolved in CH₂Cl₂ (2 mL) and phosphate buffer (2 mL, pH= 7.0) at room temperature. The mixture was stirred for 12 hours and then quenched with 5 mL water. After this, the reaction mixture was extracted with DCM (3 x 5 mL). The combined organic phase was dried with anhydrous Na_2SO_4 and concentrated under vacuum. The obtained residue was purified by chromatography on silica gel eluting with EtOAc: petroleum ether (1: 50 - 1: 30 (v/v)) to afford 24.3 mg of **70** as a colorless oil (77% yield).

 \mathbf{R}_{f} = 0.48 (ethyl acetate: petroleum ether, 1:20 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.39 - 7.11 (m, 4H), 4.38 (d, *J* = 11.7 Hz, 1H), 3.55 (dt, *J* = 11.5, 5.5 Hz, 1H), 3.23 (d, *J* = 13.4 Hz, 1H), 3.05 (d, *J* = 13.4 Hz, 1H), 2.35 (s, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*, 298 K) δ 135.19, 135.07, 130.17, 127.78, 125.42, 125.21, 120.76 (qd, J = 285.5, 27.7 Hz, CF(<u>C</u>F₃)₂), 93.03 - 89.41 (m, <u>C</u>F(CF₃)₂), 60.85, 55.90 (d, J = 6.0 Hz), 32.44 (d, J = 20.9 Hz), 19.25.

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -76.90 (d, J = 7.6 Hz, CF(C<u>*F*</u>₃)₂, 6F), -184.05 (dhept, J = 23.3, 7.5 Hz, C<u>*F*</u>(CF₃)₂, 1F).

GC-MS: 316

HRMS (ESI) m/z [M+H]⁺: Calculated for C₁₃H₁₂F₇O⁺: 317.0771. Found: 317.0766.

Scheme S34. Suzuki coupling of 19.

Under an ambient atmosphere, in a 10 mL screw-cap vial equipped with a magnetic stirring bar, (*Z*)-1-bromo-4-((4,5,5,5-tetrafluoro-4-(trifluoromethyl)pent-1-en-1-yl)oxy)benzene (**19**, 38.0 mg, 0.1 mmol, 1.0 equiv.), [4-(diphenylamino)phenyl]boronic acid (34.7 mg, 0.12 mmol, 1.2 equiv.), K_2CO_3 (20.7 mg, 0.15 mmol, 1.5 equiv.) and $Pd(PPh_3)_4$ (5.8 mg, 0.005 mmol, 5.0 mol%) were dissolved in dry THF (2 mL, 0.05 M). The mixture was stirred at 80 °C for 8 hours and then quenched with 5 mL water. After this, the reaction mixture was extracted with DCM (3 x 10 mL). The combined organic phase was dried with anhydrous Na₂SO₄ and concentrated under vacuum. The obtained residue was purified by chromatography on silica gel eluting with EtOAc: petroleum ether (1: 30 - 1: 10 (v/v)) to afford 43.5 mg of **71** as an off-white solid (80% yield).

 \mathbf{R}_{f} = 0.37 (ethyl acetate: petroleum ether, 1:5 (v:v)).

NMR Spectroscopy:

¹H NMR (400 MHz, Chloroform-*d*, 298 K) δ 7.52 (d, *J* = 8.4 Hz, 2H), 7.47 - 7.38 (m, 4H), 7.31

- 7.20 (m, 4H), 7.17 - 7.08 (m, 5H), 7.07 - 6.99 (m, 3H), 6.63 (d, *J* = 5.7 Hz, 1H), 4.85 (d, *J* = 6.4 Hz, 1H), 3.10 (dd, *J* = 19.7, 7.1 Hz, 2H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 147.79 (d, J = 6.1 Hz), 129.37 (d, J = 3.7 Hz), 128.00, 127.61, 127.39, 124.49, 124.40, 124.17, 124.06, 123.04, 122.91, 116.99, 24.15 (d, J = 22.5 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -76.11 (d, J = 6.8 Hz, CF(C<u>F</u>₃)₂, 6F), -182.20 (ddp, J = 20.8, 14.3, 7.3 Hz, C<u>F</u>(CF₃)₂, 1F).

GC-MS: 545

HRMS (ESI) m/z [M+H]⁺: Calculated for C₃₀H₂₃F₇NO⁺: 546.1662. Found: 546.1669.

Scheme S35. β-fluorine elimination of 3.

Under an ambient atmosphere, in a 10 mL screw-cap vial equipped with a magnetic stirring bar, a solution of (*E*)-(4,5,5,5-tetrafluoro-4-(trifluoromethyl)pent-1-en-1-yl)benzene (**3**, 28.6 mg, 0.1 mmol, 1.0 equiv.) in anhydrous THF (1 mL) was cooled to - 80 °C. LDA (0.11 mmol, 1.1 equiv. 0.5 M in THF) was added at -80 °C slowly under stirring. Then, the mixture was stirred at - 80 °C for 0.5 hours and then quenched with 5 mL saturated ammonium chloride solution. After this, the reaction mixture was extracted with DCM (3 x 10 mL). The combined organic phase was dried with anhydrous Na₂SO₄ and concentrated under vacuum. The obtained residue was purified by chromatography on silica gel eluting with EtOAc: petroleum ether (1: 100 - 1: 50 (v/v)) to afford 10.9 mg of **72** as a colorless oil (41% yield).

 \mathbf{R}_{f} = 0.79 (ethyl acetate: petroleum ether, 1:20 (v:v)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*, 298 K) δ 7.55 - 7.49 (m, 2H), 7.44 - 7.37 (m, 3H), 7.17 (d, *J* = 10.1 Hz, 2H), 7.09 - 6.99 (m, 1H).

¹³C NMR (101 MHz, Chloroform-*d*, 298 K) δ 146.91, 141.63, 134.95, 130.53, 129.13, 128.54
(d, *J* = 29.0 Hz, <u>C</u>(CF₃)₂), 128.07, 121.74 (qd, *J* = 273.0, 11.7 Hz, C(<u>C</u>F₃)₂), 120.03.

¹⁹**F NMR** (376 MHz, Chloroform-*d*, 298 K) δ -57.45 (d, *J* = 6.9 Hz, 3F), -63.17 (d, *J* = 6.8 Hz, 3F).

GC-MS: 266

HRMS (ESI) m/z [M+H]⁺: Calculated for C₁₂H₉F₆⁺: 267.0603. Found: 267.0601.

X-Ray crystal structures

Crystal Structure of C₁₈H₁₂BrF₇O

The low temperature (109±2°K) single-crystal X-ray experiments were performed on a Rigaku diffractometer with Cu K_a radiation. Unit cell was obtained and refined by 7515 reflections with 4.1° < θ < 66.7°. No decay was observed in data collection. Raw intensities were corrected for Lorentz and polarization effects, and for absorption by empirical method. Direct phase determination yielded the positions of all non-hydrogen atoms. All non-hydrogen atoms were subjected to anisotropic refinement. All hydrogen atoms of carbons were generated geometrically with C-H bonds of 0.95-1.00 Å according to criteria described in the SHELXTL manual (Bruker, 1997). They were included in the refinement with U_{iso}(H) = 1.2U_{eq} of their parent atoms. The final full-matric least-square refinement on *F*² converged with *R*1 = 0.0674 and *wR*2 = 0.1726 for 2715 observed reflections [I ≥ 2 σ (I)]. The final difference electron density map shows no features. Details of crystal parameters, data collection and structure refinement are given in Table 1.

Data collection was controlled by CrysAlisPro, Agilent Technologies, Version 1.171.36.32 (Oxford, 2013). Computations were performed using the SHELXTL NT ver. 5.10 program package (Bruker, 1997) on an IBM PC 586 computer. Analytic expressions of atomic scattering factors were employed, and anomalous dispersion corrections were incorporated (*International Tables for X-ray Crystallography*, 1989). Crystal drawings were produced with XP (Bruker, 1997).

References

- Bruker. (1997) SHELXTL. Structure Determination Programs, Version 5.10, Bruker AXS Inc.,6300 Enterprise Lane, Madison, WI 53719-1173, USA.
- International Tables for X-ray Crystallography: (1989) Vol. C (Kluwer Academic Publishers, Dordrecht) Tables 4.2.6.8 and 6.1.1.4.
- Oxford. (2013) CrysAlisPro, Agilent Technologies, Version 1.171.36.32, Oxford Diffraction Ltd., 68 Milton Park, Abingdon, Oxfordshire, OX14 4RX, UK.

Table 1. Details of Data Collection, Processing and Structure Refinement

Sample code CCDC No	46 2262771	
Molecular formula	$C_{18}H_{12}BrF_7O$	
Molecular weight	457.19	
Color and habit	colorless prism	
Crystal size	$0.01 \times 0.02 \times 0.05$ m	m
Crystal system	monoclinic	
Space group	C2/c (No. 15)	
Unit cell parameters $a = 2c$ b = 1 c = 1 V = 3c	8.7901(4) Å $\alpha = 90$ 1.39160(10) Å $\beta = 10^{-1}$ 1.1231(2) Å $\gamma = 90$ 8486.46(9) Å ³ $Z = 8$	0.00° 7.1140(10)° 0.00° <i>F</i> (000) = 1808
Density (calcd)	1.742 g/cm ³	
Diffractometer	XtaLAB AFC11 (RING	C): quarter-chi single
Radiation	Cu K _α , λ = 1.54178 Å	<u>.</u>
Temperature	109±2K	
Scan type	ω-scan	
Data collection range	-34 < h < 28, -13 < k	< 13, -8 < I < 12; θ_{max} = 66.6°
Reflections measured Total: 12	2043 Unique (<i>n</i>): 298	31 Observed [I $\ge 2\sigma(I)$]: 2715
Absorption coefficient	3.950 mm ⁻¹	
Minimum and maximum transmissio	n 0.643, 1.000	
No. of variables, <i>p</i>	244	
Weighting scheme $w = \frac{1}{\sigma^2}$	$\frac{1}{F_o^2) + (0.0784P)^2 + 28.3}$	$\rho = (F_{\rm o}^2 + 2F_{\rm c}^2)/3$
$R1 = \frac{\Sigma F_o - F_c }{\Sigma F_o } \text{ (for all reflections)}$	0.0713	0.0674 (for observed data)
$wR2 = \sqrt{\frac{\Sigma[w(F_o^2 - F_c^2)^2]}{\Sigma w(F_o^2)^2}} \text{ (for all reflection)}$	ctions)	0.1757 0.1726 (for observed
data)		
Goof = S = $\sqrt{\frac{\Sigma[w(F_o^2 - F_c^2)^2]}{n - p}}$	1.085	
Largest and mean Δ/σ	0.000, 0.000	

Residual extrema in final difference map -0.953 to 1.207 e Å⁻³

Atoms	x	У	Ζ	U _{eq.}
Br(1)	0.05964(2)	0.54794(5)	0.63703(7)	0.0541(3)
F(1)	0.24003(11)	0.2560(3)	0.7063(5)	0.0764(14)
F(2)	0.28410(16)	0.2199(7)	0.9539(6)	0.141(3)
F(3)	0.33392(12)	0.2334(3)	0.8461(4)	0.0637(10)
F(4)	0.31854(14)	0.0719(5)	0.9182(4)	0.0931(17)
F(5)	0.30965(13)	0.1453(5)	0.6219(4)	0.0789(13)
F(6)	0.23907(16)	0.0871(9)	0.5432(4)	0.155(3)
F(7)	0.2895(3)	-0.0163(5)	0.6797(8)	0.147(3)
O(1)	0.14749(11)	-0.0524(3)	0.8378(3)	0.0251(7)
C(1)	0.13609(14)	-0.0214(4)	0.7284(4)	0.0188(8)
C(2)	0.16678(14)	0.0712(4)	0.6858(4)	0.0200(8)
C(3)	0.21707(14)	0.0763(4)	0.7841(4)	0.0225(9)
C(4)	0.25631(15)	0.1462(4)	0.7488(4)	0.0274(9)
C(5)	0.29926(18)	0.1685(6)	0.8672(6)	0.0478(15)
C(6)	0.2741(2)	0.0881(7)	0.6480(5)	0.0566(18)
C(7)	0.09127(14)	-0.0674(3)	0.6362(4)	0.0195(8)
C(8)	0.08121(15)	-0.0501(4)	0.5067(4)	0.0240(9)
C(9)	0.04015(15)	-0.0987(4)	0.4240(4)	0.0283(10)
C(10)	0.00825(15)	-0.1637(4)	0.4691(4)	0.0285(10)
C(11)	0.01748(15)	-0.1803(4)	0.5969(4)	0.0272(9)
C(12)	0.05872(15)	-0.1332(4)	0.6801(4)	0.0234(9)
C(13)	0.13899(14)	0.1870(4)	0.6717(4)	0.0215(8)
C(14)	0.12559(15)	0.2324(4)	0.7722(4)	0.0268(9)
C(15)	0.10113(17)	0.3388(4)	0.7625(5)	0.0344(11)
C(16)	0.09039(17)	0.3984(4)	0.6500(5)	0.0361(11)
C(17)	0.10231(17)	0.3549(4)	0.5475(5)	0.0340(11)
C(18)	0.12657(15)	0.2484(4)	0.5584(4)	0.0267(9)

Table 2. Atomic coordinates and equivalent isotropic temperature factors* (Å²)

 $^{*}U_{eq.}$ defined as one third of the trace of the orthogonalized **U** tensor.

	• • • •	,	
Br(1)-C(16)	1.906(5)	C(4)-C(6)	1.516(8)
F(1)-C(4)	1.370(6)	C(4)-C(5)	1.539(7)
F(2)-C(5)	1.308(7)	C(7)-C(8)	1.397(6)
F(3)-C(5)	1.317(6)	C(7)-C(12)	1.396(6)
F(4)-C(5)	1.287(8)	C(8)-C(9)	1.381(6)
F(5)-C(6)	1.315(7)	C(9)-C(10)	1.384(7)
F(6)-C(6)	1.297(7)	C(10)-C(11)	1.380(7)
F(7)-C(6)	1.282(10)	C(11)-C(12)	1.381(6)
O(1)-C(1)	1.216(5)	C(13)-C(14)	1.386(6)
C(1)-C(7)	1.488(5)	C(13)-C(18)	1.392(6)
C(1)-C(2)	1.538(5)	C(14)-C(15)	1.390(7)
C(2)-C(13)	1.527(6)	C(15)-C(16)	1.376(7)
C(2)-C(3)	1.537(5)	C(16)-C(17)	1.375(7)
C(3)-C(4)	1.524(6)	C(17)-C(18)	1.387(7)
O(1)-C(1)-C(7)	120.8(4)	F(7)-C(6)-C(4)	111.5(5)
O(1)-C(1)-C(2)	119.8(4)	F(6)-C(6)-C(4)	109.0(5)
C(7)-C(1)-C(2)	119.3(3)	F(5)-C(6)-C(4)	113.7(6)
C(13)-C(2)-C(3)	113.3(3)	C(8)-C(7)-C(12)	118.7(4)
C(13)-C(2)-C(1)	107.1(3)	C(8)-C(7)-C(1)	122.4(4)
C(3)-C(2)-C(1)	108.3(3)	C(12)-C(7)-C(1)	118.9(4)
C(4)-C(3)-C(2)	116.8(3)	C(9)-C(8)-C(7)	120.4(4)
F(1)-C(4)-C(6)	107.3(5)	C(8)-C(9)-C(10)	120.2(4)
F(1)-C(4)-C(3)	111.2(4)	C(11)-C(10)-C(9)	120.0(4)
C(6)-C(4)-C(3)	113.6(4)	C(12)-C(11)-C(10)	120.2(4)
F(1)-C(4)-C(5)	104.6(4)	C(11)-C(12)-C(7)	120.5(4)
C(6)-C(4)-C(5)	110.1(4)	C(14)-C(13)-C(18)	119.0(4)
C(3)-C(4)-C(5)	109.6(4)	C(14)-C(13)-C(2)	120.0(4)
F(4)-C(5)-F(2)	104.6(7)	C(18)-C(13)-C(2)	121.0(4)
F(4)-C(5)-F(3)	107.9(5)	C(13)-C(14)-C(15)	121.2(4)
F(2)-C(5)-F(3)	108.3(5)	C(16)-C(15)-C(14)	118.3(4)
F(4)-C(5)-C(4)	111.7(5)	C(17)-C(16)-C(15)	122.1(4)
F(2)-C(5)-C(4)	110.3(5)	C(17)-C(16)-Br(1)	118.9(4)
F(3)-C(5)-C(4)	113.6(5)	C(15)-C(16)-Br(1)	119.0(4)
F(7)-C(6)-F(6)	110.7(8)	C(16)-C(17)-C(18)	119.0(4)
F(7)-C(6)-F(5)	106.9(6)	C(17)-C(18)-C(13)	120.4(4)
F(6)-C(6)-F(5)	104.9(5)		

Table 3. Bond lengths (Å) and bond angles (°)

Table 4. Anisotropic thermal parameters* (Å2)

Atoms	<i>U</i> ₁₁	U_{22}	U_{33}	U_{23}	<i>U</i> ₁₃	<i>U</i> ₁₂
Br(1)	0.0426(4)	0.0311(4)	0.0764(5)	-0.0036(3)	-0.0013(3)	0.0124(2)
F(1)	0.0276(16)	0.046(2)	0.149(4)	0.052(2)	0.015(2)	0.0028(14)
F(2)	0.054(3)	0.243(7)	0.128(4)	-0.145(5)	0.031(3)	-0.054(3)
F(3)	0.0313(16)	0.060(2)	0.088(3)	0.0080(19)	-0.0002(16)	-0.0239(15)
F(4)	0.042(2)	0.128(4)	0.080(3)	0.060(3)	-0.0275(19)	-0.029(2)
F(5)	0.044(2)	0.139(4)	0.064(2)	0.016(2)	0.0321(18)	-0.015(2)
F(6)	0.051(3)	0.378(10)	0.041(2)	-0.067(4)	0.019(2)	-0.062(4)
F(7)	0.249(8)	0.055(3)	0.226(7)	-0.034(4)	0.206(7)	-0.010(4)
O(1)	0.0233(15)	0.0327(17)	0.0172(16)	0.0026(11)	0.0025(12)	-0.0020(12)
C(1)	0.0161(18)	0.0231(19)	0.017(2)	-0.0003(15)	0.0038(15)	0.0033(15)
C(2)	0.0169(19)	0.025(2)	0.017(2)	-0.0012(15)	0.0029(15)	-0.0015(16)
C(3)	0.021(2)	0.028(2)	0.016(2)	0.0007(16)	0.0013(16)	-0.0006(16)
C(4)	0.020(2)	0.028(2)	0.031(2)	0.0061(18)	0.0011(17)	-0.0009(17)
C(5)	0.024(2)	0.066(4)	0.053(4)	-0.029(3)	0.012(2)	-0.019(3)
C(6)	0.035(3)	0.109(6)	0.028(3)	-0.012(3)	0.012(2)	-0.025(3)
C(7)	0.0174(18)	0.0184(18)	0.020(2)	-0.0018(15)	0.0017(16)	0.0041(15)
C(8)	0.020(2)	0.030(2)	0.021(2)	0.0010(16)	0.0030(16)	0.0000(16)
C(9)	0.022(2)	0.040(3)	0.016(2)	-0.0036(17)	-0.0042(16)	-0.0015(19)
C(10)	0.019(2)	0.030(2)	0.031(3)	-0.0073(18)	-0.0010(17)	-0.0006(17)
C(11)	0.019(2)	0.029(2)	0.034(3)	-0.0035(18)	0.0068(18)	-0.0021(17)
C(12)	0.023(2)	0.025(2)	0.020(2)	-0.0001(16)	0.0039(16)	0.0008(16)
C(13)	0.0171(19)	0.024(2)	0.020(2)	-0.0010(16)	-0.0003(15)	-0.0027(16)
C(14)	0.024(2)	0.029(2)	0.025(2)	-0.0029(17)	0.0023(17)	-0.0022(17)
C(15)	0.029(2)	0.031(2)	0.041(3)	-0.010(2)	0.007(2)	-0.0017(19)
C(16)	0.027(2)	0.021(2)	0.051(3)	-0.002(2)	-0.002(2)	0.0015(18)
C(17)	0.029(2)	0.029(2)	0.036(3)	0.0062(19)	-0.003(2)	-0.0041(19)
C(18)	0.023(2)	0.029(2)	0.023(2)	0.0003(17)	-0.0004(17)	-0.0046(17)

The exponent takes the form: $-2\pi^2 \Sigma \Sigma U_{ij} h_i h_j \mathbf{a}_i^ \mathbf{a}_j^*$

Atoms	X	У	Z	U _{eq.}	
H(2)	0.1706	0.0479	0.6026	0.024	
H(3A)	0.2131	0.1101	0.8624	0.027	
H(3B)	0.2289	-0.0051	0.8032	0.027	
H(8)	0.1028	-0.0047	0.4752	0.029	
H(9)	0.0338	-0.0874	0.3361	0.034	
H(10)	-0.0200	-0.1969	0.4122	0.034	
H(11)	-0.0046	-0.2244	0.6278	0.033	
H(12)	0.0650	-0.1456	0.7679	0.028	
H(14)	0.1333	0.1900	0.8491	0.032	
H(15)	0.0921	0.3697	0.8317	0.041	
H(17)	0.0941	0.3972	0.4705	0.041	
H(18)	0.1348	0.2171	0.4881	0.032	

Table 5. Coordinates and isotropic temperature factors* ($Å^2$) for H atoms

*The exponent takes the form: -8 $\pi^2 U sin^2 \theta / \lambda^2$

Figure S12. A packing view along the *b* direction

NMR Spectra

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

—

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

fl (ppm)

fl (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

		'																					'	' ' '
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	-20
fl (ppm)																								

fl (ppm)

fl (ppm)

S**202**

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

fl (ppm)

fl (ppm)

-133.94

220 210 200 190 180 170 160 150 140 130 120 110 100 Ó -10 -20 fl (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

REFERENCRS

- 1. Matoušek, V.; Pietrasiak, E.; Schwenk, R.; Togni, A. J. Org. Chem. 2013, 78, 6763.
- 2. Borrel, J.; Waser. J. Org. Lett. 2022, 24, 142.
- 3. Li, Y.; Wang, X.; Guo, Y.; Zhu, Z.; Wu, Y.; Gong, Y. Chem. Commun. 2016, 52, 796.
- 4. Wang, X.; Ye, Y.; Zhang, S.; Feng, J.; Xu, Y.; Zhang, Y.; Wang, J. J. Am. Chem. Soc. 2011, 133, 16410.
- 5. Zhang, K.; Liu, J. B.; Qing, F. L. Chem. Commun. 2014, 50, 14157.
- 6. Wu, X.; Chu, L.; Qing, F. L. Angew. Chem. Int. Ed. 2013, 52, 2198.
- 7. Gourab, K.; Theresa, S.; Kari, R.; Franziska, S. Angew. Chem. Int. Ed. 2020, 59, 21930.
- 8. Wu, Z.; Wang, D.; Liu, Y.; Huan, L.; Zhu, C. J. Am. Chem. Soc. 2017, 139, 1388.
- 9. Emilien, L. S.; Eleni, G.; Igor, A. D.; Will, C. H.; Paolo, M. J. Am. Chem. Soc. 2023, 145, 47.
- 10. Peter, B.; Huang, H. M.; Teresa, F.; Laskar, R.; Glorius F. Chem. Sci. 2022, 13, 7855.
- 11. Megerle, U.; Lechner, R.; König, B.; Riedle, E. Photochem. Photobiol. Sci. 2010, 9, 1400.