Supporting Information

Palladium-Catalyzed Radical Arylation of *N*-Hydroxyphthalimides with Triphenyl Phosphites as an Unusual Arylating Agent via C(sp²)-O Bond Cleavage

Hafiz Noor,^{a,b} Pan Gao,^a Jiandong Guo,^a Shuwei Zhang,^a Xiaodong Jia,^a Yu Yuan, *^a

^aCollege of Chemistry and Chemical Engineering, Yangzhou University Yangzhou 225002, Jiangsu Province, P. R. China

^bFaculty of Education, Department of Chemistry, University of Al Fashir, Sudan

*Corresponding Authors: E-mail: yyuan@yzu.edu.cn

Table of Contents

1.	General information	.S2
2.	Preparation method of the starting material <i>N</i> -hydroxyphthalimide derivatives	S2
3.	Preparation method of the starting material triphenyl phosphite derivatives	.S2
4.	Preparation of labeled triphenyl phosphite	S3
5.	Distinguish of oxygen atom in the target product	.S4
6.	Preparation of complex 5a	.S4
7.	Preparation of complex 6a	.S4
8.	Optimization of the reaction conditions	S6
9.	General experimental procedure for the palladium-catalyzed radical arylation with triphenyl	
	phosphites as an un usual arylating agent	.S7
10.	Hydrolysis of <i>N</i> -aryloxyimide to Aryloxamine	S7
11.	Electron Paramagnetic Resonance (EPR) experiments	.S8
12.	Analytical data of products	<u>-20</u>
13.	Copies of ¹ H NMR, ¹³ C NMR, ¹⁹ F NMR, and ³¹ P NMR SpectraS22	-64
14.	References	365

1-General information

Unless otherwise noted, materials obtained from commercial suppliers are used without further purification. All reactions were performed under air atmosphere except the reaction of the synthesis of **5a** and **6a** complexes were performed under an argon atmosphere. All reactions under standard conditions were monitored by thin–layer chromatography (TLC) on gel F254 plates. Flash column chromatograph was carried out using 300–400 mesh silica gel at medium pressure. ¹H NMR and ¹³C NMR spectra were obtained with an Agilent Technologies 400 or 600 spectrometer. Mass spectra were obtained on a Bruker Dalton maXis instrument. Proton spectra were recorded in CDCl₃ or DMSO-d₆ and ¹H NMR chemical shifts were referenced to the residual signals of CHCl₃ (at δ = 7.26 ppm) and DMSO-d₆ (at δ = 2.50 ppm) respectively. ¹³C NMR chemical shifts were referenced against the central line of the solvent signal (for CHCl₃ at δ = 77.16 ppm and for DMSO-d₆ at δ = 39.52 ppm). Chemical shifts are given on δ scale (ppm). Coupling constants (J) are given in Hz. Multiplicities are indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), sext (sextet) or m (multiplet).

2. Preparation method of the starting material (*N*-hydroxyphthalimide) derivatives

A mixture of hydroxylamine hydrochloride (1.88g, 0.027 mol) and anhydrous sodium acetate (1.80g, 0.022 mol) in glacial acetic acid was refluxed for 5 min. The precipitated sodium chloride was filtered off and the desired 2,3-dicarboxylic acid anhydride (0.02 mol) was added to the filtrate. The mixture was refluxed for further 30 min. The crystalloid obtained on cooling was collected by filtration, dried, and then used directly.^[1]

3. Preparation method of the starting material (triphenyl phosphite) derivatives

To the solution of appropriate phenol derivatives (50 mmol) and pyridine (4.84 mL, 60 mmol) in dry acetonitrile (200 mL) was added dropwise phosphorus trichloride (1.37 mL, 16 mmol) at room temperature under an inert atmosphere N₂. The obtained mixture was refluxed for 5 h. After cooling the product precipitated or deposited as an oil or solid. It was washed with acetonitrile and dried in dessicator. Phosphites were characterized by their ³¹P NMR spectra (presence of only a single phosphorus signal) and used directly after synthesis.^[2]

S2

4. Preparation of labeled triphenyl phosphite

Step 1. Preparation of labeled phenol derivative

In an oven-dried quartz vial (20 × 100 mm) equipped with a stir bar was charged with 1-bromo-4methylbenzene (85.5 mg, 0.5 mmol, 1.0 equiv.), NiBr2·glyme (2.0 mol%), 2,2'- bipyridine-5,5'-diamine (dabpy, 2.0 mol%) and g-C₃N₄ (50 mg). Then, DMF/CH₃CN (1: 1, 3.0 mL), H₂¹⁸O (360 μ L, 20 equiv.) and Et₃N (0.75 mmol, 1.5 equiv.) were added and the vial was sealed with a rubber plug. The reaction mixture was stirred for 30 min.Thereafter, the mixture was degassed by bubbling nitrogen for 10 min. The reaction mixture was irradiated under a 300 W xenon lamp (>420 nm) at 25 °C with rapid stirring for 24 h. After that, the solvent was removed under vacuum directly. The residue was purified by flash column chromatography on silica gel using (petroleum ether: ethyl acetate 10: 01) as an eluent to afford the desired product.^[3]

Step 2. Preparation of labeled triphenyl phosphite derivative

To the solution of appropriate phenol derivatives (50 mmol) and pyridine (4.84 mL, 60 mmol) in dry acetonitrile (200 mL) was added dropwise phosphorus trichloride (1.37 mL, 16 mmol) at room temperature under an inert atmosphere N_2 . The obtained mixture was refluxed for 5 h. After cooling the product precipitated or deposited as an oil or solid. It was washed with acetonitrile and dried in desiccator. Phosphites were characterized by their ³¹P NMR spectra (presence of only a single phosphorus signal) and used directly after synthesis.

7a Yellowish oil. ¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.11 (m, 4H), 7.01 (s, 4H), 6.82 – 6.74 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 153.7, 129.6, 125.9, 116.8. ³¹P NMR (CDCl₃,162 MHz) δ 127.6 ppm. HRMS m/z (ESI): calcd for C₁₈H₁₂Cl₃¹⁸O₃P, [M+H]⁺ 440.9609; found to be, 440.9599.

5. Distinguish of oxygen atom in the target product

When compound **7a** was used as the starting material to react with **1** under the standard conditions of the reaction system, the resulting product was then tested by HRMS, showing that no labelled oxygen atom was involved in the formed product. Indicating that the oxygen atom in the target product is coming from N-hydroxyphthalimide **1** rather than triphenyl phosphite **2**.

6. Preparation of complex 5a

The reaction was performed under argon atmosphere by using standard Schlenck techniques. To a solution of PdCl₂ (53.2 mg, 0.3 mmol) in benzene (5 mL) was added P(OPh)₃ (1.21 g, 3.9 mmol). The resulting mixture was stirred for 3 h at rt. The reaction mixture was then settled out without stirring for 1 h. The target catalyst was gradually precipitated as a white solid in the reaction mixture. The target complex was filtered off and was washed with ethyl ether (3 mL x 2). The resulting complex was dried in vacuo affording $Cl_2Pd[P(OPh)_{3}]_2$ as an off-white solid (85 mg, 35% yield).^[4]

5a (dichloro-bis-(triphenylphosphite) palladium (II), white solid 35% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.28 (dd, *J* = 8.6, 6.8 Hz, 12H), 7.27 – 7.18 (m, 6H), 7.14 (d, *J* = 8.3 Hz, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 150.5, 150.5, 150.4, 130.0, 125.9, 120.7, 120.7, 120.7. ³¹P NMR (CDCI₃,162 MHz) δ 83.6 ppm. The spectrum data were in accordance with the literature.^[4]

7. Preparation of complex 6a

The reaction was performed under argon atmosphere by using standard Schlenck techniques. To a solution of $Cl_2Pd[P(OPh)_3]_2$ (239.4 mg, 0.3 mmol) in benzene (5 mL) was added $P(OPh)_3$ (931 mg, 3.0 mmol). Then 100µ of distilled water was added to the formed solution. The resulting mixture was stirred for 1 h at rt. The reaction mixture was then settled out without stirring for 1 h. The target catalyst was gradually precipitated as a white solid in the reaction mixture. The target complex was filtered off and was washed with CH_3CN (3 mL x 2). The resulting complex was dried in vacuo affording $Cl_2Pd[P(OPh)_3]_2$ as an off-white solid (164 mg, 53% yield).^[4]

6a (tris-(triphenylphosphite) palladium (0), white solid 53% yield. ¹H NMR (400 MHz, C_6D_6) δ 7.04 (d, J = 7.9 Hz, 18H), 6.99 (t, J = 8.0 Hz, 18H), 6.83 (t, J = 7.3 Hz, 9H). ¹³C NMR (101 MHz, C_6D_6) ¹³C NMR (101 MHz, C_6D_6) ¹³C NMR (101 MHz, C_6D_6) δ 152.0, 129.3, 127.9, 127.7, 127.4, 123.8, 121.2. ³¹P NMR (C_6D_6 , 202 MHz,) δ 137.8 ppm. The spectrum data were in accordance with the literature.^[5]

S5

8. Table S1. Optimization of the reaction study^a

Entry	Catalyst	Equiv of	Equiv of	Solvent	Tomp 0C	Viold%b
Enuy	mol%	P(OPh)₃	AIBN	Solvent		TIEIU 70°
1	-	2.0	2.0	DCE	rt	0
2	CuCl 10	2.0	2.0	DCE	50	0
3	CuCl 10	2.0	2.0	DCE	80	0
4	Ni(acac) ₂ 10	2.0	2.0	DCE	80	0
5	Ni(acac) ₂ 10	3.0	2.0	DCE	80	0
6	Ni(acac) ₂ 10	4.0	2.0	DCE	80	trace
7	PdCl ₂ 5	4.0	-	DCE	80	0
8	PdCl ₂ 5	4.0	2.0	MeCN	80	trace
9	PdCl ₂ 10	5.0	2.0	MeCN	80	trace
10	PdCl ₂ 10	6.0	2.0	MeCN	80	trace
11	PdCl ₂ 20	6.0	2.0	MeCN	100	55
12	PdCl ₂ 20	6.0	-	MeCN	100	35
13	PdCl ₂ 20	6.0	2.0	MeCN/100µ H ₂ O	100	86
14	PdCl ₂ 20	6.0	-	MeCN/100µ H ₂ O	100	77
15	PdCl ₂ 20	5.0	2.0	MeCN/100µ H ₂ O	100	78
16	PdCl ₂ 20	4.0	2.0	MeCN/100µ H ₂ O	100	69
18	PdCl ₂ 20	3.0	2.0	MeCN/100µ H ₂ O	100	58
19	PdCl ₂ 20	7.0	2.0	MeCN/100µ H ₂ O	100	87
20	PdCl ₂ 20	6.0	1.0	MeCN/100µ H ₂ O	100	79
21	Pd(dba) ₃ 10	6.0	2.0	MeCN/100µ H ₂ O	100	79
22	Pd(OAc) ₂ 10	6.0	2.0	MeCN/100µ H ₂ O	100	67
23	PdCl ₂ 20	6.0	2.0	DCE/100µ H ₂ O	100	80
24	PdCl ₂ 20	6.0	2.0	THF/100μ H ₂ O	100	76
25	PdCl ₂ 20	6.0	2.0	toluene/100µ H ₂ O	100	16
26 ^c	PdCl ₂ 20	6.0	2.0	MeCN/100µ H ₂ O	100	78
27 ^d	PdCl ₂ 20	6.0	2.0	MeCN/100µ H ₂ O	100	65
^a Reaction co	onditions. ^b lsolated	l yield after chro	matography. °Re	eaction under O ₂ . dReacti	on under N ₂	1

9. General experimental procedure for the Palladium-Catalyzed Radical Arylation of *N*-Hydroxyphthalimides with Triphenyl Phosphites as an Unusual Arylating Agent via C(sp²)-O Bond Cleavage

3a as an example:

To a solution of *N*-hydroxyphthalimide (NHPI) **1** (0.3 mmol, 49 mg, 1.0 equiv), 2,2'-Azobis(2methylpropionitrile) (AIBN) (0.6 mmol, 98.5 mg, 2.0 equiv), PdCl₂ (20 mol%, 10.6 mg), in acetonitrile (2.0 mL), triphenyl phosphite (TPP) **2** (1.8 mmol, 558.5 mg, 6.0 equiv), and distilled water (100 μ L) were added in a sealed tube equipped with a magnetic stirrer bar. The sealed tube was then tightly sealed with a screw cap, and the reaction system was stirred for 24 h at 100 °C in an air atmosphere. The reaction mixture was then cooled to room temperature. After the solvent was removed under vacuum directly, the residue was purified by flash column chromatography on silica gel using petroleum ether: ethyl acetate (05:01) as a gradient eluent to afford the desired product **3a**.

10. Hydrolysis of *N*-aryloxyimide to Aryloxamine

To a solution of **3a** (0.25 mmol, 60 mg) in 2.5 mL CHCl₃ under stirring conditions, NH₃(1.0 mL, 7N in methanol) was added dropwise at room temperature. Stirring was continued for 12 h and then concentrated under reduced pressure. After that the crude reaction mixture was adsorbed to silica and transfer to a plug of silica gel, washing with 20% Et_2O in pentane (100 mL). Removal of solvent under reduced pressure afforded yellowish oil **4a** in 91% yield.

S7

11. EPR Experiments

General

EPR experiments were carried out using (Bruker BioSpin GmbH). EPR spectrometer was used with the following instrumental parameters: microwave frequency = 9.849 GHz; incident microwave power 20 Mw; Center Field: 3508 G; scan range 200 G; modulation amplitude = 1 G; receiver gain: 1.00e+003; and time constant = 163.84 ms.

To a solution of *N*-hydroxyphthalimide 1 (0.3 mmol, 49 mg, 1.0 equiv), PdCl₂ (20 mol%, 10.6 mg), in benzene (2.0 mL), triphenyl phosphite **2** (1.8 mmol, 558.5 mg, 6.0 equiv), and 5,5-dimethyl-1-pyrroline N-oxide (DMPO) (1.8 mmol, 203.7 mg, 6.0 equiv) were added in a sealed tube. The sealed tube was then tightly sealed with a screw cap, and the reaction system was stirred for 6 hours at 100 °C in an air atmosphere. Then the solution was taken out into a small tube and was analyzed by EPR.

Figure S1. EPR spectrum of the spin adduct 8a generated upon the above-mentioned reaction conditions

12. Analytical data of products

2-phenoxyisoindoline-1,3-dione

3a was synthesized according to the above mentioned general experimental procedure in section 7. White solid (62 mg, 86% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.89 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.79 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.37 – 7.27 (m, 2H), 7.17 (d, *J* = 1.3 Hz, 1H), 7.18 – 7.08 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 162.9, 158.8, 134.9, 129.7, 128.8, 124.6, 124.0, 114.4. All spectral data correspond to those given in the literature.^[6]

2-(p-tolyloxy)isoindoline-1,3-dione

3b was synthesized according to the above mentioned general experimental procedure in section 7. White solid (68.5 mg, 90% yield).

¹H NMR (400 MHz, CDCI₃) δ 7.89 (dd, J = 5.4, 3.1 Hz, 2H), 7.78 (dd, J = 5.5, 3.1 Hz, 2H), 7.16 - 7.03 (m, 4H), 2.30 (s, 3H).
¹³C NMR (101 MHz, CDCI₃) δ 163.0, 156.9, 134.8, 134.3, 130.1, 128.8, 123.9, 114.7, 20.6. All spectral data correspond to those given in the literature.^[6]

2-(m-tolyloxy)isoindoline-1,3-dione

3c was synthesized according to the above mentioned general experimental procedure in section 7. White solid (64 mg, 84% yield).

¹**H NMR (400 MHz, CDCI₃)** δ 7.89 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.79 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.20 (t, *J* = 7.8 Hz, 1H), 7.00 – 6.90 (m, 3H), 2.32 (d, *J* = 0.8 Hz, 3H). ¹³**C NMR (101 MHz, CDCI₃)** δ 163.0, 158.9, 140.1, 134.9, 129.4, 128.8, 125.4, 123.9, 114.9, 111.3, 21.4. All spectral data correspond to those given in the literature.^[6]

2-(o-tolyloxy)isoindoline-1,3-dione

3d was synthesized according to the above mentioned general experimental procedure in section 7. White solid (56 mg, 74% yield).

¹H NMR (400 MHz, CDCI₃) δ 7.89 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.79 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.20 (ddd, *J* = 7.3, 1.8, 0.9 Hz, 1H), 7.10 (td, *J* = 7.8, 1.8 Hz, 1H), 7.02 (td, *J* = 7.4, 1.3 Hz, 1H), 6.93 (dd, *J* = 8.2, 1.2 Hz, 1H), 2.47 (s, 3H). ¹³C NMR (101 MHz, CDCI₃) δ 163.0, 157.0, 134.8, 131.5, 128.9, 127.0, 126.0, 124.3, 123.9, 112.7, 15.8. All spectral data correspond to those given in the literature.^[6]

2-(3,5-dimethylphenoxy)isoindoline-1,3-dione

3e was synthesized according to the above mentioned general experimental procedure in section 7. White solid (71 mg,88% yield).

¹H NMR (400 MHz, CDCI₃) δ 7.90 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.80 (dd, *J* = 5.5, 3.1 Hz, 2H), 6.78 – 6.73 (m, 3H), 2.27 (d, *J* = 0.8 Hz, 6H). ¹³C NMR (101 MHz, CDCI₃) δ 163.0, 158.9, 139.7, 134.8, 128.8, 126.3, 123.9, 111.8, 21.3. All spectral data correspond to those given in the literature.^[6]

2-(3-methoxyphenoxy)isoindoline-1,3-dione

3f was synthesized according to the above mentioned general experimental procedure in section 7. White solid (53.5 mg, 66% yield).

¹H NMR (400 MHz, CDCI₃) δ 7.87 (dd, J = 5.4, 3.1 Hz, 2H), 7.77 (dd, J = 5.5, 3.1 Hz, 2H), 7.19 (t, J = 8.6 Hz, 1H), 6.73 - 6.66 (m, 2H), 6.64 (ddd, J = 8.2, 2.2, 0.9 Hz, 1H), 3.75 (s, 3H). ¹³C NMR (101 MHz, CDCI₃)

 δ 162.8, 160.8, 159.9, 134.9, 130.2, 128.7, 123.9, 110.1, 106.0, 100.6, 55.5, 55.4. All spectral data correspond to those given in the literature.^[6]

2-(4-methoxyphenoxy)isoindoline-1,3-dione

3g was synthesized according to the above mentioned general experimental procedure in section 7. White solid (58 mg, 72% yield).

¹H NMR (400 MHz, DMSO-*d*₆) δ 7.96 – 7.81 (m, 4H), 7.23 – 7.14 (m, 2H), 6.98 – 6.84 (m, 2H), 3.70 (s, 3H).¹³C NMR (101 MHz, **DMSO-***d***₆)** δ 169.7, 163.4, 156.4, 152.9, 135.5, 135.0, 134.7, 133.0, 132.4, 129.0, 124.1, 123.7, 123.3, 115.7, 115.1, 55.9, 55.9. All spectral data correspond to those given in the literature.^[6]

2-(4-ethylphenoxy)isoindoline-1,3-dione

3h was synthesized according to the above mentioned general experimental procedure in section 7. White solid (55.5 mg, 69% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.94 – 7.84 (m, 2H), 7.83 – 7.75 (m, 2H), 7.18 – 7.06 (m, 4H), 2.60 (q, *J* = 7.6 Hz, 2H), 1.19 (td, *J* = 7.5, 0.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.0, 157.0, 140.7, 134.8, 129.0, 128.8, 123.9, 114.8, 28.1, 15.7. HRMS m/z (ESI): calcd for C₁₆H₁₃ NO₃, [M+H]⁺ 268.0968; found to be 268.0959.

2-(4-cyclohexylphenoxy)isoindoline-1,3-dione

3i was synthesized according to the above mentioned general experimental procedure in section 7. White solid (74.5 mg, 77% yield).

¹H NMR (400 MHz, CDCI₃) δ 7.88 (td, J = 7.5, 6.3, 2.9 Hz, 2H), 7.78 (td, J = 7.5, 6.3, 3.1 Hz, 2H), 7.18 – 7.04 (m, 4H), 1.82 (d, J = 9.2 Hz, 4H), 1.71 (dd, J = 10.5, 5.7 Hz, 1H), 1.35 (tt, J = 11.0, 5.6 Hz, 4H), 1.23 (s, 2H), 1.23 (d, J = 17.2 Hz, 0H). ¹³C NMR (101 MHz, CDCI₃) δ 163.0, 157.0, 144.6, 134.8, 128.8, 127.9, 127.9, 123.9, 114.6, 114.6, 43.8, 34.5, 34.5, 26.8, 26.8, 26.1. HRMS m/z (ESI): calcd for C₂₀H₁₉NO₃, [M+H]⁺ 322.1435; found to be 322.1438.

2-(4-(tert-butyl)phenoxy)isoindoline-1,3-dione

3j was synthesized according to the above mentioned general experimental procedure in section 7. White solid (73 mg, 82% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.88 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.78 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.37 – 7.29 (m, 2H), 7.14 – 7.06 (m, 2H), 1.27 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 163.0, 156.7, 147.6, 134.8, 128.8, 126.6, 123.9, 114.2, 34.3, 31.4. All spectral data correspond to those given in the literature.^[6]

2-(4-fluorophenoxy)isoindoline-1,3-dione

3k was synthesized according to the above mentioned general experimental procedure in section 7. White solid (54 mg, 70% yield).

¹H NMR (400 MHz, CDCI₃) δ 7.88 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.78 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.24 – 7.14 (m, 2H), 7.05 – 6.94 (m, 2H). ¹³C NMR (101 MHz, CDCI₃) δ 162.9, 160.8, 158.4, 154.9, 154.9, 134.9, 128.7, 124.0, 117.1, 117.1, 116.4, 116.1. All spectral data correspond to those given in the literature.^[6]

2-(4-chlorophenoxy)isoindoline-1,3-dione

3I was synthesized according to the above mentioned general experimental procedure in section 7. White solid (66 mg, 80% yield).

¹H NMR (400 MHz, CDCI₃) δ 7.89 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.80 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.32 – 7.24 (m, 2H), 7.16 – 7.07 (m, 2H). ¹³C NMR (101 MHz, CDCI₃) δ 162.8, 157.5, 135.0, 129.8, 129.7, 128.7, 124.1, 116.2. All spectral data correspond to those given in the literature.^[7]

2-(4-bromophenoxy)isoindoline-1,3-dione

3m was synthesized according to the above mentioned general experimental procedure in section 7. White solid (78 mg, 82% yield).

¹H NMR (400 MHz, CDCI₃) δ 7.89 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.79 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.46 – 7.38 (m, 2H), 7.10 – 7.01 (m, 2H). ¹³C NMR (101 MHz, CDCI₃) δ 162.8, 158.0, 135.0, 132.6, 128.7, 124.1, 117.2, 116.5. All spectral data correspond to those given in the literature.^[6]

2-(4-iodophenoxy)isoindoline-1,3-dione

3n was synthesized according to the above mentioned general experimental procedure in section 7. White solid (55 mg, 50% yield).

¹H NMR (400 MHz, CDCI₃) δ 7.89 (dd, J = 5.5, 3.1 Hz, 2H), 7.79 (dd, J = 5.5, 3.1 Hz, 2H), 7.65 – 7.56 (m, 2H), 6.97 – 6.89 (m, 2H).
¹³C NMR (101 MHz, CDCI₃) δ 162.7, 158.9, 138.6, 135.0, 128.7, 124.1, 116.7, 87.6. All spectral data correspond to those given in the literature.^[7]

2-(3-bromophenoxy)isoindoline-1,3-dione

3o was synthesized according to the above mentioned general experimental procedure in section 7. White solid (74.5 mg, 78% yield).

¹H NMR (400 MHz, CDCI₃) δ 7.91 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.82 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.33 – 7.21 (m, 2H), 7.20 (t, *J* = 8.1 Hz, 1H), 7.11 (ddd, *J* = 8.2, 2.5, 1.1 Hz, 1H). ¹³C NMR (101 MHz, CDCI₃) δ 162.7, 159.3, 135.1, 130.9, 128.7, 127.8, 124.1, 122.9, 117.7, 113.3. All spectral data correspond to those given in the literature.^[6]

2-(3-chlorophenoxy)isoindoline-1,3-dione

3p was synthesized according to the above mentioned general experimental procedure in section 7. White solid (62 mg, 75% yield).

¹H NMR (400 MHz, CDCI₃) δ 7.92 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.82 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.26 (t, *J* = 8.2 Hz, 1H), 7.18 - 7.03 (m, 3H). ¹³C NMR (101 MHz, CDCI₃) δ 162.7, 159.3, 135.2, 135.1, 130.6, 128.7, 124.9, 124.1, 114.9, 112.7. All spectral data correspond to those given in the literature.^[7]

2-(4-(trifluoromethyl)phenoxy)isoindoline-1,3-dione

3q was synthesized according to the above mentioned general experimental procedure in section 7. White solid (60 mg, 65% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.92 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.82 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.64 – 7.56 (m, 2H), 7.27 – 7.19 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 162.6, 161.0, 161.0, 135.1, 128.7, 127.3, 127.3, 127.3, 127.3, 127.2, 126.9, 126.6, 126.3, 125.2, 124.2, 122.5, 114.2. All spectral data correspond to those given in the literature.^[6]

methyl 4-((1,3-dioxoisoindolin-2-yl)oxy)benzoate

3r was synthesized according to the above mentioned general experimental procedure in section 7. White solid (57 mg, 64% yield).

¹H NMR (400 MHz, DMSO-*d*₆) δ 7.99 – 7.86 (m, 2H), 7.79 (s, 2H), 7.77, 7.44 – 7.36 (m, 2H), 6.86 – 6.78 (m, 2H), 3.78 (d, *J* = 22.5 Hz, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 169.7, 166.5, 165.8, 163.1, 162.4, 162.4, 135.6, 134.7, 133.0, 131.9, 131.8, 129.2, 125.9, 124.2, 123.3, 120.7, 115.8, 113.7, 52.6, 52.5, 52.0, 52.0. All spectral data correspond to those given in the literature.^[7]

2-([1,1'-biphenyl]-4-yloxy)isoindoline-1,3-dione

3s was synthesized according to the above mentioned general experimental procedure in section 7. White solid (45 mg, 47% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.92 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.87 – 7.76 (m, 2H), 7.59 – 7.48 (m, 4H), 7.46 – 7.38 (m, 2H), 7.38 – 7.29 (m, 1H), 7.33 – 7.21 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 162.9, 158.4, 140.2, 137.9, 134.9, 128.8, 128.5, 127.3, 127.0, 124.0, 114.8. HRMS m/z (ESI): calcd for C₂₀H₁₃NO₃, [M+H]* 316.0968; found to be, 316.0961.

5-methyl-2-phenoxyisoindoline-1,3-dione

3t was synthesized according to the above mentioned general experimental procedure in section 7. White solid (65 mg, 85% yield).

¹H NMR (400 MHz, CDCI₃) δ 7.78 (d, *J* = 7.7 Hz, 1H), 7.74 – 7.68 (m, 1H), 7.58 (ddd, *J* = 7.6, 1.6, 0.8 Hz, 1H), 7.37 – 7.27 (m, 2H), 7.16 (q, *J* = 1.4, 0.9 Hz, 1H), 7.18 – 7.07 (m, 2H), 2.53 (s, 3H). ¹³C NMR (101 MHz, CDCI₃) δ 163.2, 163.1, 158.9, 146.4, 135.4, 129.7, 129.1, 126.1, 124.5, 123.9, 114.3, 22.2. HRMS m/z (ESI): calcd for C₁₅H₁₁NO₃, [M+H]⁺ 254.0812; found to be, 254.0805.

4-methyl-2-phenoxyisoindoline-1,3-dione

3u was synthesized according to the above mentioned general experimental procedure in section 7. White solid (61 mg, 80% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.70 (dd, *J* = 7.4, 1.0 Hz, 1H), 7.67 – 7.41 (m, 2H), 7.35 – 7.27 (m, 2H), 7.19 – 7.11 (m, 2H), 7.10 (td, *J* = 7.2, 1.1 Hz, 1H), 2.67 (d, *J* = 8.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.1, 168.3, 163.7, 163.0, 158.9, 138.8, 138.3, 137.3, 136.6, 134.4, 133.8, 133.1, 129.7, 129.3, 129.1, 125.4, 124.5, 121.6, 121.1, 114.4, 17.7, 17.5. HRMS m/z (ESI): calcd for C₁₅H₁₁NO₃, [M+H]⁺ 254.0812; found to be, 254.0805.

5-bromo-2-phenoxyisoindoline-1,3-dione

3v was synthesized according to the above mentioned general experimental procedure in section 7. White solid (68 mg, 71% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 1.6 Hz, 1H), 7.93 (dd, J = 7.9, 1.7 Hz, 1H), 7.76 (dd, J = 8.0, 0.5 Hz, 1H), 7.38 – 7.28 (m, 2H), 7.19 – 7.09 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.2, 161.6, 158.7, 137.9, 130.3, 129.9, 129.8, 127.3, 127.3, 127.2, 125.4, 124.8, 114.5. HRMS m/z (ESI): calcd for C₁₄H₈BrNO₃, [M+H]⁺ 317.9760; found to be, 317.9752.

5-chloro-2-phenoxyisoindoline-1,3-dione

3w was synthesized according to the above mentioned general experimental procedure in section 7. White solid (62.5 mg, 76% yield).

¹H NMR (400 MHz, CDCI₃) δ 7.89 – 7.80 (m, 2H), 7.76 (dd, *J* = 8.0, 1.8 Hz, 1H), 7.38 – 7.28 (m, 2H), 7.19 – 7.09 (m, 3H). ¹³C NMR (101 MHz, CDCI₃) δ 162.0, 161.7, 158.7, 141.7, 134.9, 130.4, 129.8, 126.8, 125.3, 124.8, 124.4, 124.4, 114.5. HRMS m/z (ESI): calcd for C₁₄H₈CINO₃, [M+ H]⁺ 274.0265; found to be, 274.0258.

5-methyl-2-(p-tolyloxy)isoindoline-1,3-dione

3y was synthesized according to the above mentioned general experimental procedure in section 7. White solid (77 mg, 96% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.7 Hz, 1H), 7.68 (dt, *J* = 1.5, 0.7 Hz, 1H), 7.56 (ddd, *J* = 7.7, 1.6, 0.8 Hz, 1H), 7.15 - 7.02 (m, 4H), 2.51 (s, 3H), 2.29 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.2, 163.1, 157.0, 146.3, 135.3, 134.2, 130.1, 129.1, 126.1, 124.4, 123.9, 114.6, 22.1, 20.6, 20.6. HRMS m/z (ESI): calcd for C₁₆H₁₃ NO₃, [M+H]⁺ 268.0968; found to be, 268.0961.

4-methyl-2-(p-tolyloxy)isoindoline-1,3-dione

3z was synthesized according to the above mentioned general experimental procedure in section 7. White solid (73 mg, 91% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.74 – 7.56 (m, 2H), 7.52 (dt, *J* = 7.8, 0.9 Hz, 1H), 7.15 – 7.04 (m, 4H), 2.70 (s, 3H), 2.30 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.8, 163.1, 157.0, 138.8, 137.2, 134.2, 130.1, 129.2, 125.5, 121.5, 114.8, 20.6, 20.6, 17.7, 17.6. HRMS m/z (ESI): calcd for C₁₆H₁₃ NO₃, [M+H]⁺ 268.0968; found to be, 268.0961.

5-chloro-2-(4-chlorophenoxy)isoindoline-1,3-dione

3aa was synthesized according to the above mentioned general experimental procedure in section 7. White solid (58 mg, 63% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.82 (m, 2H), 7.77 (dd, *J* = 8.0, 1.8 Hz, 1H), 7.37 – 7.18 (m, 2H), 7.18 – 7.08 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 161.9, 161.6, 157.3, 141.9, 135.1, 130.3, 130.1, 129.7, 126.7, 125.4, 124.5, 116.4. HRMS m/z (ESI): calcd for C₁₄H₇Cl₂NO₃, [M+H]⁺ 307.9876; found to be, 307.9870.

5-bromo-2-(4-bromophenoxy)isoindoline-1,3-dione

3ab was synthesized according to the above mentioned general experimental procedure in section 7. White solid (80 mg, 67% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.04 (dd, *J* = 1.7, 0.5 Hz, 1H), 7.95 (dd, *J* = 8.0, 1.7 Hz, 1H), 7.77 (dd, *J* = 8.0, 0.6 Hz, 1H), 7.48 – 7.40 (m, 2H), 7.10 – 7.01 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 162.0, 161.5, 157.9, 138.0, 132.7, 130.2, 130.1, 127.4, 127.1, 125.4, 117.5, 116.6. HRMS m/z (ESI): calcd for C₁₄H₇Br₂NO₃, [M+H]⁺ 397.8845; found to be, 397.8840.

2-(4-bromophenoxy)-5-chloroisoindoline-1,3-dione

3ac was synthesized according to the above mentioned general experimental procedure in section 7. White solid (76 mg, 72% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.78 (m, 2H), 7.77 (dd, *J* = 8.0, 1.9 Hz, 1H), 7.48 – 7.40 (m, 2H), 7.10 – 7.01 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 161.9, 161.6, 157.9, 154.8, 141.9, 135.1, 132.7, 132.4, 130.3, 126.6, 125.4, 124.5, 117.5, 117.2, 116.6. HRMS m/z (ESI): calcd for C₁₄H₇BrClNO₃, [M+H]⁺ 351.9371; found to be, 351.9365.

3ad was synthesized according to the above mentioned general experimental procedure in section 7. White solid (72 mg, 68% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.04 (dd, *J* = 1.8, 0.5 Hz, 1H), 7.95 (dd, *J* = 8.0, 1.7 Hz, 1H), 7.77 (dd, *J* = 7.9, 0.5 Hz, 1H), 7.34 – 7.25 (m, 2H), 7.16 – 7.07 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 162.0, 161.5, 157.3, 138.0, 130.2, 130.1, 130.1, 129.7, 127.4, 127.1, 125.4, 116.4. HRMS m/z (ESI): calcd for C₁₄H₇BrCINO₃, [M+H]⁺ 351.9371; found to be, 351.9365.

5-chloro-2-(p-tolyloxy)isoindoline-1,3-dione

3ae was synthesized according to the above mentioned general experimental procedure in section 7. White solid (66.5 mg, 77% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.89 – 7.80 (m, 2H), 7.75 (dd, *J* = 8.0, 1.8 Hz, 1H), 7.16 – 7.03 (m, 4H), 2.30 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.1, 161.8, 156.8, 141.6, 134.8, 134.6, 130.4, 130.1, 126.8, 125.2, 124.4, 124.3, 114.9, 20.6, 20.6. HRMS m/z (ESI): calcd for C₁₅H₁₀CINO₃, [M+H]⁺ 288.0422; found to be, 288.0415.

2-(4-chlorophenoxy)-5-methylisoindoline-1,3-dione

3af was synthesized according to the above mentioned general experimental procedure in section 7. White solid (75 mg, 87% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 7.7 Hz, 1H), 7.71 (dt, *J* = 1.5, 0.8 Hz, 1H), 7.60 (ddd, *J* = 7.6, 1.6, 0.8 Hz, 1H), 7.26 (t, *J* = 8.1 Hz, 1H), 7.17 – 7.08 (m, 2H), 7.05 (ddd, *J* = 8.4, 2.5, 1.0 Hz, 1H), 2.54 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.1, 162.9, 157.5, 146.6, 135.5, 129.7, 129.6, 129.0, 126.0, 124.6, 124.0, 116.1, 22.2. HRMS m/z (ESI): calcd for C₁₅H₁₀ClNO₃, [M+H]⁺ 288.0422; found to be, 288.0415.

2-(3-chlorophenoxy)-5-methoxyisoindoline-1,3-dione

3ag was synthesized according to the above mentioned general experimental procedure in section 7. White solid (67.5 mg, 74% yield).

¹H NMR (400 MHz, CDCI₃) δ 7.82 (dd, *J* = 8.4, 0.8 Hz, 1H), 7.38 (dd, *J* = 2.4, 0.9 Hz, 1H), 7.30 – 7.19 (m, 2H), 7.17 – 7.11 (m, 1H), 7.08 (dddt, *J* = 20.8, 8.3, 2.5, 1.0 Hz, 2H), 3.94 (d, *J* = 1.0 Hz, 3H).¹³C NMR (101 MHz, CDCI₃) δ 165.4, 162.9, 162.7, 159.5, 135.2, 131.3, 130.5, 126.1, 124.7, 120.6, 120.3, 114.8, 112.6, 109.1, 56.2, 56.2. HRMS m/z (ESI): calcd for C₁₅H₁₀CINO₄, [M+H]⁺ 303.0298; found to be, 303.0295.

3ah was synthesized according to the above mentioned general experimental procedure in section 7. White solid (60 mg, 69% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.81 (dd, *J* = 4.6, 3.7 Hz, 1H), 7.77 – 7.64 (m, 2H), 7.16 – 7.06 (m, 4H), 2.30 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 161.6, 160.7, 156.8, 136.5, 135.6, 134.7, 132.1, 130.8, 130.1, 124.7, 122.3, 115.3, 20.6. HRMS m/z (ESI): calcd for C₁₅H₁₀ClNO₃, [M+ H]⁺ 288.0422; found to be, 288.0413.

2-(4-bromophenoxy)-4-methylisoindoline-1,3-dione

3ai was synthesized according to the above mentioned general experimental procedure in section 7. White solid (77.5 mg, 78% yield).

¹H NMR (400 MHz, CDCI₃) δ 7.75 – 7.60 (m, 2H), 7.55 (m, 1H), 7.50 – 7.38 (m, 2H), 7.11 – 7.02 (m, 2H), 2.68 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCI₃) δ 163.6, 162.9, 158.1, 139.0, 137.4, 134.5, 132.6, 129.1, 125.4, 121.7, 121.7, 117.1, 116.5, 17.7, 17.7. HRMS m/z (ESI): calcd for C₁₅H₁₀BrNO₃, [M+ H]⁺ 331.9917; found to be, 331.9911.

2-methoxyisoindoline-1,3-dione

3al was synthesized according to the above mentioned general experimental procedure in section 7. White solid (49.5 mg, 93% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.85 – 7.67 (m, 4H), 4.09 – 3.99 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.3, 134.5, 128.8, 123.5, 65.8. All spectral data correspond to those given in the literature.^[8]

2-ethoxyisoindoline-1,3-dione

3am was synthesized according to the above mentioned general experimental procedure in section 7. White solid (44 mg, 83% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.81 (td, *J* = 5.2, 3.4 Hz, 2H), 7.73 (qd, *J* = 5.2, 2.4 Hz, 2H), 4.25 (qd, *J* = 7.0, 1.4 Hz, 2H), 1.39 (td, *J* = 7.1, 1.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.7, 134.4, 128.9, 123.5, 74.1, 13.6. All spectral data correspond to those given in the literature.^[8]

O-phenylhydroxylamine

4a was synthesized according to the following general experimental procedure: To a solution of **3a** (0.25 mmol, 60 mg) in 2.5 mL CHCl₃ under stirring conditions, NH₃(1.0 mL, 7N in methanol) was added dropwise at room temperature. Stirring was continued for 12 h and then concentrated under reduced pressure. After that the crude reaction mixture was adsorbed to silica and transfer to a plug of silica gel, washing with 20% Et₂O in pentane (100 mL). Removal of solvent under reduced pressure afforded yellowish oil **4a** in 91%yield.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 – 7.33 (m, 2H), 7.00 (q, *J* = 7.5 Hz, 1H), 6.87 (dd, *J* = 8.5, 4.8 Hz, 2H), 3.77 (s, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 155.2, 129.9, 121.1, 115.5. All spectral data correspond to those given in the literature.^[6]

S21

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

S29

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹⁹F NMR, CDCI₃, 471 MHz

80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -18(f1 (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

80	70	60	50	40	30	20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180
												1	f1 (ppm)												

61.99

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

S61

14. References

- [1] B. Lv, P. Gao, S. Zhang, X. Jia, M. Wang, Y. Yuan, Org. Chem. Front. 2021, 8, 5440-5445.
- a) M. G. vel Górniak, A. Czernicka, P. Młynarz, W. Balcerzak, P. Kafarski, *Beilstein J. Org. Chem.* 2014, 10, 741-745; b) M. Mao, L. Zhang, H. Yao, L. Wan, Z. Xin, ACS omega 2020, 5, 9503-9509; c) M. Oba, Y. Okada, K. Nishiyama, W. Ando, Org. Lett. 2009, 11, 1879-1881; d) C. T. Estorach, A. Orejón, A. M. Masdeu-Bultó, Green Chem. 2008, 10, 545-552; eY. Zhang, Z. Cai, Y. Chi, X. Zeng, S. Chen, Y. Liu, G. Tang, Y. Zhao, Org. Lett. 2021, 23, 5158-5163.
- [3] K. Wang, M. Tong, Y. Yang, B. Zhang, H. Liu, H. Li, F. Zhang, *Green Chem.* **2020**, *22*, 7417-7423.
- [4] a) A. M. Trzeciak, J. J. Ziółkowski, *Monatsh. Chem.* 2000, 131, 1281-1291; b) A. M. Trzeciak, Z. Ciunik, J. J. Ziółkowski, *Organometallics* 2002, *21*, 132-137.
- [5] T. Yurino, S. Saito, M. Ichihashi, T. Ohkuma, J. Org. Chem. 2022, 87, 2864-2872.
- [6] R. Ghosh, B. Olofsson, Org. lett. **2014**, *16*, 1830-1832.
- [7] L. C. M. Castro, N. Chatani, *Synthesis* **2014**, *46*, 2312-2316.
- [8] a) J. N. Kim, K. M. Kim, E. K. Ryu, *Synth. commun.* **1992**, *22*, 1427-1432; b) N. Pawar, U. Kapadi, D. Hundiwale, P. Kumbhar, *J. Sci. Ind. Res.* **2002**, 61, 454-456.