Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2024

Electronic Supplementary Information For

Iron-Catalyzed Carboamination of Vinylarenes with Alkanes and Nitrogen Nucleophiles

Fengxiang Zhu* and Jianxin Xue

School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China. E-mail: zfx201989@sxu.edu.cn (F. Zhu).

Table of Content

1. General Methods	S2
2. Optimization of Reaction Conditions	S2
3. Typical reaction procedure for the synthesis of amines	S3
4. Unsuccessful examples	S3
5. Control experiments	S3-S4
6. Characterization data for products	S4-S13
7. References	S13
8. NMR Spectrum Copies	S14-S51

1. General Methods

NMR spectra were recorded on Bruker Avance NEO 600 M and 400 M. Chemical shifts (ppm) are given relative to solvent: references for CDCl₃ were 7.26 ppm (¹H-NMR) and 77.0 ppm (¹³C-NMR). ¹³C NMR spectra were acquired on a broad band decoupled mode. Multiplets were assigned as s (singlet), d (doublet), t (triplet), dd (doublet of doublet), m (multiplet) and br. s (broad singlet). All measurements were carried out at room temperature unless otherwise stated. Gas chromatography analysis was performed on a Shimadzu 2014 instrument with an FID detector and HP-5 capillary column (polydimethylsiloxane with 5% phenyl groups, 30 m, 0.32 mm i.d., 0.25 µm film thickness) using N₂ as carrier gas. HRMS was obtained on a Bruker Daltonics Bio-TOF-Q mass spectrometer by the ESI method. The products were isolated from the reaction mixture by column chromatography on silica gel 60, 0.063-0.2 mm, 70-230 mesh. All reactions were carried out under N₂ atmosphere. All the reagents were purchased from Heowns, Rhawn, and Laajoo chemical company.

2. Optimization of Reaction Conditions

S-Table 1. Optimization of Reaction Conditions. [a]

Entry	[M]	[O]	T (°C)	Yield (%)
1 ^{b)}	FeCl ₃	DTBP	130	58
2	FeBr ₂	DTBP	130	45
3	Fe(acac) ₂	DTBP	130	38
4	Fe(OTf) ₂	DTBP	130	34
5	Fe(BF ₄) ₂	DTBP	130	63
6	FeCl ₂	ТВНР	130	11 (6) ^b
7	FeCl ₂	BPO	130	2 (-) ^b
8	FeCl ₂	ТВРВ	130	12 (6) ^b
9	FeCl ₂	ТВРО	130	8 (2) ^b
10	FeCl ₂	ТВРА	130	14 (5) ^b

[a] Reaction conditions: **1a** (0.18 mmol, 1.8 equiv), **2a** (0.1 mmol, 1.0 equiv), DTBP (0.3 mmol, 3.0 equiv), [Fe] (20 mol%), Cy₃P·HBF₄ (10 mol%), cyclohexane (1 mL), 130 °C, N₂, and 13 h, yields were determined by GC analysis using hexadecane as internal standard. [b] 120 °C. TBHP: tert-butyl hydroperoxide (5.5mol/L in decane (over molecular sieve 4A)). BPO: benzoyl peroxide. TBPB: tert-butyl peroxybenzoate. TBPO: tert-butyl peroxide. TBPA: tert-butyl peroxyacetate.

3. Typical reaction procedure for the synthesis of amines:

General procedure: To a 10 mL oven-dried Schlenk tube equipped with a magnetic stirring bar was added $FeCl_2$ (20 mol%) and Cy_3P ·HBF₄ (10 mol%). The reaction vessel was evacuated and filled with N₂ three times. Subsequently, degassed cyclohexane (1.0 mL), alkene **1** (0.18 mmol, 1.8 equiv), amine **2** (0.1 mmol, 1.0 equiv), and DTBP (0.3 mmol, 3 equiv) was added separately via syringe under N₂ at room temperature. The reaction mixture was heated with stirring at 130 °C (no need for preheating) in an oil bath for 13 hours. Upon completion, the yellow clear liquid was concentrated under vacuum. The residue was purified by silica gel column chromatography using petroleum ether/AcOEt (20:1) as the eluent to give the corresponding products.

Scale up experiment: To a 50 mL oven-dried Schlenk tube equipped with a magnetic stirring bar was added FeCl₂ (20 mol%) and Cy₃P·HBF₄ (10 mol%). The reaction vessel was evacuated and filled with N₂ three times. Subsequently, degassed cyclohexane (20 mL), alkene **1a** (5.4 mmol, 1.8 equiv), amine **2a** (3 mmol, 1.0 equiv), and DTBP (9 mmol, 3 equiv) was added separately via syringe under N₂ at room temperature. The reaction mixture was heated with stirring at 130 °C (no need for preheating) in an oil bath for 13 hours. Upon completion, the yellow clear liquid was concentrated under vacuum. The residue was purified by silica gel column chromatography using petroleum ether/AcOEt (20:1) as the eluent to give the corresponding products.

4. Unsuccessful examples

5. Control experiments

General procedure: To a 10 mL oven-dried Schlenk tube equipped with a magnetic stirring bar was added $FeCl_2$ (20 mol%) and Cy_3P ·HBF₄ (10 mol%). The reaction vessel was evacuated and filled with N₂ three times. Subsequently, degassed cyclohexane (1.0 mL), alkene **1** (0.18 mmol, 1.8 equiv), amine **2** (0.1 mmol, 1.0 equiv), DTBP (0.3 mmol, 3 equiv) and TEMPO (0.3 mmol, 3 equiv) was added separately via syringe under N₂ at room temperature. The reaction mixture was heated with stirring at 130 °C (no need for preheating) in an oil bath for 13 hours. Upon completion, the reaction mixture was added hexadecane (20 mg) as internal standard. The reaction mixture was diluted with ethyl acetate (2 mL) and stir for 10 minutes. Finally, took 1 µL of the reaction solution and performed GC-MS detection. There was still a large amount of olefin remaining. Benzamide and its possible byproducts have not been discovered.

General procedure: To a 10 mL oven-dried Schlenk tube equipped with a magnetic stirring bar was added FeCl₂ (20 mol%) and Cy₃P·HBF₄ (10 mol%). The reaction vessel was evacuated and filled with N₂ three times. Subsequently, degassed cyclohexane (1.0 mL), alkene **1** (0.18 mmol, 1.8 equiv), amine **2** (0.1 mmol, 1.0 equiv), DTBP (0.3 mmol, 3 equiv), CH₃CN (0.1 mL), and H₂O (0.2 mmol, 2 equiv) was added separately via syringe under N₂ at room temperature. The reaction mixture was heated with stirring at 130 °C (no need for preheating) in an oil bath for 13 hours. Upon completion, the reaction mixture was added hexadecane (20 mg) as internal standard. The reaction mixture was diluted with ethyl acetate (2 mL) and stir for 10 minutes. Finally, took 1 µL of the reaction solution and performed GC-MS detection.

6. Characterization data for products

N-(2-cyclohexyl-1-(4-methoxyphenyl)ethyl)benzamide (4aaa)

Purification by flash column chromatography (petroleum ether/EtOAc = 15:1). Colorless oil (23.6 mg, 70%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.67 (d, *J* = 7.2 Hz, 2H), 7.39 (t, *J* = 7.3 Hz, 1H), 7.33 (d, *J* = 7.5 Hz, 2H), 7.21 (d, *J* = 8.4 Hz, 2H), 6.79 (d, *J* = 8.5 Hz, 2H), 6.19 (d, *J* = 7.6 Hz, 1H), 5.17 (q, *J* = 7.8 Hz, 1H), 3.71 (s, 3H), 1.77 – 1.63 (m, 6H), 1.23 – 1.16 (m, 2H), 1.11 – 1.05 (m, 3H), 1.00 – 0.87 (m, 2H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 165.4, 157.8, 133.9, 133.8, 130.3, 127.5, 126.8, 125.9, 113.1, 54.3, 49.8, 43.0, 33.5, 32.3,

32.2, 25.5, 25.12, 25.09. GC-MS (EI-70 eV): m/z (%) 337 (5), 240 (63), 216 (12), 134 (18), 121 (15), 105 (100). HRMS (ESI): calcd for $C_{22}H_{27}NNaO_2^+$ [M+Na]⁺ 360.1934, found: 360.1933.

N-(2-cyclohexyl-1-(2-methoxyphenyl)ethyl)benzamide (4baa)

Purification by flash column chromatography (petroleum ether/EtOAc = 15:1). Colorless oil (19.5 mg, 58%).¹H NMR (400 MHz, Chloroform-*d*) δ 57.81 (d, *J* = 7.0 Hz, 2H), 7.51 (d, *J* = 7.1 Hz, 1H), 7.46 (t, *J* = 7.2 Hz, 2H), 7.30 (t, *J* = 7.8 Hz, 2H), 7.23 (d, *J* = 9.2 Hz, 1H), 6.96 (t, *J* = 7.9 Hz, 2H), 5.47 (q, *J* = 8.4 Hz, 1H), 3.95 (s, 3H), 1.92 – 1.67 (m, 7H), 1.28 – 1.14 (m, 4H), 1.07 – 0.91 (m, 2H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 166.2, 157.3, 135.2, 131.3, 130.3, 129.0, 128.6, 128.4, 127.0, 121.0, 111.2, 55.5, 50.4, 43.4, 34.8, 33.5, 33.2, 26.6, 26.3, 26.2. GC-MS (EI-70 eV): m/z (%)

337 (5), 240 (99), 216 (3), 134 (5), 121 (8), 105 (100). HRMS (ESI): calcd for $C_{22}H_{27}NNaO_2^+$ [M+Na]⁺ 360.1934, found: 360.1938.

N-(2-cyclohexyl-1-(3,4-dimethoxyphenyl)ethyl)benzamide (4caa)

Purification by flash column chromatography (petroleum ether/EtOAc = 15:1). Colorless oil (24.2 mg, 66%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.79 (d, *J* = 7.2 Hz, 2H), 7.52 (t, *J* = 7.3 Hz, 1H), 7.45 (t, *J* = 7.4 Hz, 2H), 6.95 (d, *J* = 8.2 Hz, 1H), 6.92 (s, 1H), 6.86 (d, *J* = 8.2 Hz, 1H), 6.36 (d, *J* = 8.1 Hz, 1H), 5.27 (q, *J* = 7.9 Hz, 1H), 3.90 (d, *J* = 6.9 Hz, 6H), 1.88 – 1.71 (m, 7H), 1.35 – 1.27 (m, 1H), 1.23 – 1.15 (m, 3H), 1.11 – 0.92 (m, 2H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 166.6, 149.0, 148.2, 135.5, 134.7, 131.5, 128.7, 127.0, 118.4, 111.2, 110.2,

55.98, 55.96, 51.2, 44.1, 34.6, 33.4, 33.2, 26.5, 26.23, 26.19. GC-MS (EI-70 eV): m/z (%) 367 (5), 270 (58), 246 (10), 121 (8), 105 (100), 77 (23). HRMS (ESI): calcd for $C_{23}H_{29}NNaO_3^+$ [M+Na]+ 390.2040, found: 390.2045.

N-(2-cyclohexyl-1-(4-methoxyphenyl)propyl)benzamide (4daa)

4daa

Purification by flash column chromatography (petroleum ether/EtOAc = 15:1). Colorless oil (19.3 mg, 55%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 – 7.73 (m, 5H), 7.52 (d, *J* = 7.5 Hz, 2H), 7.50 – 7.40 (m, 5H), 7.27 (t, *J* = 7.4 Hz, 4H), 6.89 (q, *J* = 7.9 Hz, 5H), 6.42 (t, *J* = 7.4 Hz, 2H), 5.28 (t, *J* = 7.4 Hz), 5.05 (t, *J* = 7.3 Hz), 3.82 (s, 6H), 1.83 – 1.68 (m, 12H), 1.37 – 1.29 (m, 6H), 1.19 – 1.08 (m, 9H), 0.93 – 0.86 (m, 3H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 131.5, 131.4, 128.7, 128.6, 128.4, 127.8, 127.0, 114.0, 55.9, 55.3, 55.1, 43.5, 39.5, 39.0,

32.4, 31.8, 28.1, 27.1, 26.8, 26.7, 26.6, 26.5, 12.5, 11.6. GC-MS (EI-70 eV): m/z (%) 351 (3), 240 (75), 137 (5), 121 (5), 105 (100), 77 (22). HRMS (ESI): calcd for C₂₃H₂₉NNaO₂⁺ [M+Na]⁺ 374.2091, found: 374.2091.

N-(2-cyclohexyl-1-(thiophen-2-yl)ethyl)benzamide (4eaa)

4eaa

Purification by flash column chromatography (petroleum ether/EtOAc = 15:1). Colorless oil (18.5 mg, 59%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.80 (d, *J* = 7.3 Hz, 2H), 7.54 (t, *J* = 7.3 Hz, 1H), 7.47 (t, *J* = 7.4 Hz, 2H), 7.25 (d, *J* = 5.0 Hz, 1H), 7.08 (d, *J* = 3.3 Hz, 1H), 7.00 (t, *J* = 8.1 Hz, 1H), 6.28 (d, *J* = 8.2 Hz, 1H), 5.66 (q, *J* = 7.9 Hz, 1H), 1.93 – 1.84 (m, 3H), 1.75 – 1.65 (m, 4H), 1.45 – 1.37 (m, 1H), 1.25 – 1.17 (m, 3H), 1.13 – 0.97 (m, 2H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 166.5, 146.7, 134.4, 131.7, 128.7, 127.03, 126.97, 124.6, 124.3, 46.9, 44.6, 34.6, 33.4, 33.0, 26.5, 26.21, 26.16.

GC-MS (EI-70 eV): m/z (%) 313 (11), 230 (2), 216 (40), 110 (13), 105 (100), 77 (27). HRMS (ESI): calcd for $C_{19}H_{23}NNaOS^+$ [M+Na]⁺ 336.1393, found: 336.1395.

N-(2-cyclohexyl-1-(4-methoxyphenyl)ethyl)-4-methylbenzamide (4aba)

Purification by flash column chromatography (petroleum ether/EtOAc = 15:1). Colorless oil (22.5 mg, 64%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.69 (d, *J* = 8.1 Hz, 2H), 7.32 (d, *J* = 8.6 Hz, 2H), 7.24 (d, *J* = 8.0 Hz, 2H), 6.90 (d, *J* = 8.6 Hz, 2H), 6.31 (d, *J* = 8.0 Hz, 1H), 5.27 (q, *J* = 7.8 Hz, 1H), 3.83 (s, 3H), 2.42 (s, 3H), 1.86 – 1.70 (m, 6H), 1.33 – 1.24 (m, 2H), 1.21 – 1.14 (m, 3H), 1.09 – 0.91 (m, 2H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 166.5, 158.7, 141.9, 135.0, 131.8, 129.2, 127.8, 127.0, 114.0, 55.3, 50.7, 44.1, 34.5, 33.3, 33.2, 26.6, 26.20, 26.17, 21.6. GC-MS (EI-70 eV): m/z (%) 351 (3), 254 (44), 216 (10), 134

(12), 119 (100), 91 (24). HRMS (ESI): calcd for $C_{23}H_{29}NNaO_2^+$ [M+Na]⁺ 374.2091, found: 374.2094.

4-(tert-butyl)-N-(2-cyclohexyl-1-(4-methoxyphenyl)ethyl)benzamide (4aca)

Purification by flash column chromatography (petroleum ether/EtOAc = 15:1). Colorless oil (26.3 mg, 67%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.74 (d, *J* = 8.3 Hz, 2H), 7.45 (d, *J* = 8.3 Hz, 2H), 7.32 (d, *J* = 8.5 Hz, 2H), 6.90 (d, *J* = 8.5 Hz, 2H), 6.42 (d, *J* = 8.1 Hz, 1H), 5.29 (q, *J* = 7.9 Hz, 1H), 3.82 (s, 3H), 1.93 – 1.63 (m, 8H), 1.35 (s, 9H), 1.21 – 1.14 (m, 3H), 1.09 – 0.91 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.5, 158.7, 154.9, 135.2, 131.8, 127.8, 126.9, 125.5, 114.0, 55.3, 50.7, 44.2, 35.0, 34.5, 33.4, 33.2, 31.2, 26.6, 26.24, 26.19. GC-MS (EI-70 eV): m/z (%) 393 (5), 296 (57), 216 (14), 161 (100), 134 (14),

4aca

118 (11). HRMS (ESI): calcd for $C_{26}H_{35}NNaO_2^+$ [M+Na]⁺416.2560, found: 416.2563.

N-(2-cyclohexyl-1-(4-methoxyphenyl)ethyl)-4-methoxybenzamide (4ada)

Purification by flash column chromatography (petroleum ether/EtOAc = 15:1). Colorless oil (28.6 mg, 78%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.76 (d, *J* = 8.7 Hz, 2H), 7.32 (d, *J* = 8.6 Hz, 2H), 6.93 (d, *J* = 8.8 Hz, 2H), 6.90 (d, *J* = 8.6 Hz, 2H), 6.26 (d, *J* = 8.0 Hz, 1H), 5.25 (q, *J* = 7.8 Hz, 1H), 3.87 (s, 3H), 3.82 (s, 3H), 1.85 – 1.67 (m, 7H), 1.29 – 1.24 (m,1H), 1.21 – 1.14 (m, 3H), 1.07 – 0.93 (m, 2H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 166.1, 162.1, 158.7, 135.1, 128.8, 127.8, 127.0, 114.0, 113.7, 55.5, 55.4, 50.7, 44.1, 34.5, 33.32, 33.25, 26.6, 26.20, 26.17. GC-MS (EI-70 eV): m/z (%) 367 (3), 270 (33), 216 (11), 135

(100), 121 (8), 107 (7). HRMS (ESI): calcd for $C_{23}H_{29}NNaO_3^+$ [M+Na]⁺ 390.2040, found: 390.2045.

4-chloro-N-(2-cyclohexyl-1-(4-methoxyphenyl)ethyl)benzamide (4aea)

Purification by flash column chromatography (petroleum ether/EtOAc = 15:1). Colorless oil (27.5 mg, 74%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.70 (d, *J* = 8.5 Hz, 2H), 7.36 (d, *J* = 8.5 Hz, 2H), 7.30 (d, *J* = 8.6 Hz, 2H), 6.89 (d, *J* = 8.7 Hz, 2H), 6.59 (d, *J* = 8.0 Hz, 1H), 5.24 (q, *J* = 7.9 Hz, 1H), 3.82 (s, 3H), 1.87 – 1.61 (m, 7H), 1.27 – 1.23 (m, 1H), 1.23 – 1.15 (m, 3H), 1.05 – 0.90 (m, 2H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 165.6, 158.8, 137.6, 134.8, 133.1, 128.8, 128.5, 127.9, 114.1, 55.3, 51.0, 44.0, 34.5, 33.3, 26.5, 26.2. GC-MS (EI-70 eV): m/z (%) 371 (3), 274 (84), 216 (16), 139 (100), 134 (20), 111 (22). HRMS (ESI): calcd for $C_{22}H_{26}CINNaO_2^+$ [M+Na]⁺ 394.1544, found: 394.1539.

4-bromo-N-(2-cyclohexyl-1-(4-methoxyphenyl)ethyl)benzamide (4afa)

Purification by flash column chromatography (petroleum ether/EtOAc = 15:1). Colorless oil (27.8 mg, 67%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.62 (d, *J* = 8.2 Hz, 2H), 7.49 (d, *J* = 8.3 Hz, 2H), 7.30 (d, *J* = 8.4 Hz, 2H), 6.88 (d, *J* = 8.4 Hz, 2H), 6.78 (d, *J* = 8.1 Hz, 1H), 5.24 (q, *J* = 7.8 Hz, 1H), 3.82 (s, 3H), 1.87 – 1.64 (m, 7H), 1.27 – 1.24 (m, 1H), 1.21 – 1.14 (m, 3H), 1.06 – 0.90 (m, 2H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 165.8, 158.8, 134.8, 133.6, 131.7, 128.8, 127.9, 126.0, 114.1, 55.3, 51.0, 44.0, 34.5, 33.3, 26.6, 26.2. GC-MS (EI-70 eV): m/z (%) 415 (5), 320 (91), 216 (41), 185 (100), 173 (14), 134 (49).

HRMS (ESI): calcd for $C_{22}H_{26}BrNNaO_2^+$ [M+Na]⁺ 438.1039, found: 438.1041.

N-(2-cyclohexyl-1-(4-methoxyphenyl)ethyl)-2-fluorobenzamide (4aga)

Purification by flash column chromatography (petroleum ether/EtOAc = 15:1). Colorless oil (19.9 mg, 56%).¹H NMR (400 MHz, Chloroform-*d*) δ 8.11 (t, *J* = 8.8 Hz, 1H), 7.49 (q, *J* = 7.3 Hz, 1H), 7.33 (d, *J* = 8.6 Hz, 2H), 7.29 (d, *J* = 9.8 Hz, 1H), 7.14 (m, 1H), 6.98 (m, 1H), 6.91 (d, *J* = 8.7 Hz, 2H), 5.28 (q, *J* = 8.8, 8.1 Hz, 1H), 3.83 (s, 3H), 1.88 – 1.80 (m, 3H), 1.77 – 1.66 (m, 4H), 1.33 – 1.26 (m, 1H), 1.23 – 1.14 (m, 3H), 1.09 – 0.91 (m, 2H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 162.4, 160.7 (d, *J* = 247.5 Hz), 158.7, 135.0, 133.3 (d, *J* = 9.1

4aga

Hz), 132.3 (d, J = 2.0 Hz), 127.8, 124.9 (d, J = 3.0 Hz), 121.2 (d, J = 12.1 Hz), 116.0 (d, J = 25.3 Hz), 114.1, 55.3, 51.1, 44.5, 34.5, 33.4, 33.2, 26.6, 26.21, 26.16. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -106.28. GC-MS (EI-70 eV): m/z (%) 355 (3), 258 (91), 216 (5), 137 (11), 123 (100), 95 (13). HRMS (ESI): calcd for C₂₂H₂₆FNNaO₂⁺ [M+Na]⁺ 378.1840, found: 378.1839.

N-(2-cyclohexyl-1-(4-methoxyphenyl)ethyl)-4-(trifluoromethyl)benzamide (4aha)

Purification by flash column chromatography (petroleum ether/EtOAc = 15:1). Colorless oil (28.4 mg, 70%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.85 (d, *J* = 8.1 Hz, 2H), 7.64 (d, *J* = 8.1 Hz, 2H), 7.32 (d, *J* = 8.6 Hz, 2H), 6.90 (d, *J* = 8.6 Hz, 2H), 6.68 (d, *J* = 8.0 Hz, 1H), 5.26 (q, *J* = 8.1 Hz, 1H), 3.82 (s, 3H), 1.89 – 1.73 (m, 5H), 1.71 – 1.64 (m, 2H), 1.32 – 1.25 (m, 1H), 1.22 – 1.15 (m, 3H), 1.08 – 0.90 (m, 2H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 165.5, 158.9, 138.0, 134.6,133.1 (q, *J* = 33.3 Hz), 127.9, 127.5, 125.6 (q, *J* = 4.0 Hz), 123.7 (q, *J* = 273.7 Hz), 114.1, 55.3, 51.2, 43.9, 34.5, 33.3, 33.2, 26.5, 26.2. GC-MS

(EI-70 eV): m/z (%) 405 (5), 308 (100), 216 (10), 173 (88), 145 (26), 121 (10). HRMS (ESI): calcd for $C_{23}H_{26}F_3NNaO_2^+$ [M+Na]⁺ 428.1808, found: 428.1803.

N-(2-cyclohexyl-1-(4-methoxyphenyl)ethyl)-[1,1'-biphenyl]-4-carboxamide (4aia)

Purification by flash column chromatography (petroleum ether/EtOAc = 15:1). White solid (30.1 mg, 73%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.87 (d, *J* = 8.3 Hz, 2H), 7.67 (d, J = 8.3 Hz, 2H), 7.63 (d, J = 7.2 Hz, 2H), 7.50 (t, J = 7.4 Hz, 2H), 7.43 (d, J = 7.3 Hz, 1H), 7.35 (d, J = 8.6 Hz, 2H), 6.92 (d, J = 8.7 Hz, 2H), 6.40 (d, J = 7.9 Hz, 1H), 5.31 (q, J = 7.9 Hz, 1H), 3.83 (s, 3H), 1.90 – 1.76 (m, 4H), 1.74 – 1.66 (m, 3H), 1.34 – 1.31 (m, 1H), 1.23 – 1.16 (m, 3H), 1.11 – 0.96 (m, 2H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 140.1, 133.4, 129.0, 128.1, 127.9, 127.5, 127.3, 114.1, 55.4, 50.9, 44.1, 34.6, 33.34, 33.27, 26.6, 26.22, 26.19. HRMS (ESI): calcd for C₂₈H₃₁NNaO₂⁺ [M+Na]⁺ 436.2247, found: 436.2245.

4-cyano-N-(2-cyclohexyl-1-(4-methoxyphenyl)ethyl)benzamide (4aja)

Purification by flash column chromatography (petroleum ether/EtOAc = 15:1). White solid (13.8 mg, 38%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.87 (d, *J* = 8.3 Hz, 2H), 7.75 (d, *J* = 8.3 Hz, 2H), 7.31 (d, *J* = 1.6 Hz, 2H), 6.92 (d, *J* = 8.6 Hz, 2H), 6.36 (d, *J* = 8.0 Hz, 1H), 5.26 (q, *J* = 7.8 Hz, 1H), 3.84 (s, 3H), 1.89 – 1.78 (m, 4H), 1.76 – 1.69 (m, 3H), 1.27 – 1.24 (m, 1H), 1.21 – 1.17 (m, 3H), 1.09 – 0.96 (m, 2H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 159.0, 138.7, 134.2, 132.5, 127.9, 127.7, 118.2, 115.0, 114.2, 55.4, 51.3, 43.8, 34.5, 33.3, 33.2, 29.8, 26.5, 26.2. GC-MS (EI-70 eV): m/z (%) 362 (4), 265 (98), 216 (21), 173

(8), 134 (28), 130 (100). HRMS (ESI): calcd for $C_{23}H_{26}N_2NaO_2^+$ [M+Na]⁺ 385.1886, found: 385.1888.

N-(2-cyclohexyl-1-(4-methoxyphenyl)ethyl)-N-methylbenzamide (4aka)

Purification by flash column chromatography (petroleum ether/EtOAc = 15:1). Colorless oil (15.4 mg, 44%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 – 7.39 (m, 6H), 7.19 (d, *J* = 8.3 Hz, 1H), 6.93 (d, *J* = 8.7 Hz, 2H), 6.16 (q, *J* = 7.8 Hz, 0.5H), 4.95 (t, *J* = 7.8 Hz, 0.5H), 3.85 (s, 3H), 2.89 (s, 1.5H), 2.61, (s, 1.5H), 2.08 – 1.61 (m, 7H), 1.94 – 1.61 (m, 4H), 1.04 – 0.75 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.9, 129.5, 129.4, 129.2, 128.6, 128.5, 128.3, 126.9, 126.7, 114.0, 113.8, 58.3, 55.4, 51.6, 39.6, 37.1, 34.8, 34.2, 34.0, 33.6, 33.4,

33.0, 31.6, 28.1, 26.63, 26.56, 26.4, 26.3, 26.0. GC-MS (EI-70 eV): m/z (%) 351 (6), 254 (19), 216 (37), 173 (11), 134 (45), 105 (100). HRMS (ESI): calcd for C₂₃H₂₉NNaO₂⁺ [M+Na]⁺ 374.2091, found: 374.2090.

N-(2-cyclohexyl-1-(4-methoxyphenyl)ethyl)benzenesulfonamide (4ala)

Purification by flash column chromatography (petroleum ether/EtOAc = 15:1). Colorless oil (26.5 mg, 71%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.67 (d, *J* = 7.9 Hz, 2H), 7.47 (t, *J* = 7.4 Hz, 1H), 7.35 (t, *J* = 7.7 Hz, 2H), 6.95 (d, *J* = 8.6 Hz, 2H), 6.68 (d, *J* = 8.6 Hz, 2H), 5.20 (d, *J* = 7.3 Hz, 1H), 4.37 (q, *J* = 7.5 Hz, 1H), 3.77 (s, 3H), 1.68 – 1.58 (m, 5H), 1.57 – 1.45 (m, 2H), 1.18 – 1.03 (m, 4H), 0.93 – 0.79 (m, 2H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 158.7, 140.7, 133.4, 132.2, 128.7, 127.7, 127.0, 113.8, 55.3, 45.5, 33.9, 33.1, 32.9, 26.4,

26.1, 26.0. GC-MS (EI-70 eV): m/z (%) 373 (3), 276 (100), 216 (9), 134 (24), 121 (11), 77 (41). HRMS (ESI): calcd for $C_{21}H_{27}NNaO_3S^+$ [M+Na]⁺ 396.1604, found: 396.1606.

4-(tert-butyl)-N-(2-cyclohexyl-1-(4-methoxyphenyl)ethyl)benzenesulfonamide (4ama)

Purification by flash column chromatography (petroleum ether/EtOAc = 15:1). White solid (35.6 mg, 83%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.59 (d, *J* = 8.5 Hz, 2H), 7.34 (d, *J* = 8.5 Hz, 2H), 6.94 (d, *J* = 8.6 Hz, 2H), 6.65 (d, J = 8.6 Hz, 2Hz), 6.65 (d, J = 8.6 Hz, 2H), 6.65 (d, J = 8.6

2H), 5.18 (d, J = 7.6 Hz, 1H), 4.36 (q, J = 7.6 Hz, 1H), 3.77 (s, 3H), 1.66 – 1.58 (m, 6H), 1.52 – 1.45 (m, 1H), 1.33 (s, 9H), 1.17 – 1.07 (m, 4H), 0.92 – 0.77 (m, 2H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 158.6, 155.8, 137.5, 133.5, 127.6, 127.0, 125.6, 113.6, 55.17, 55.19, 45.7, 35.0, 33.8, 33.2, 32.8, 31.1, 26.4, 26.11, 26.05. GC-MS (EI-70 eV): m/z (%) 429 (3), 232 (100), 216 (13), 198 (24), 134 (25), 121 (14). HRMS (ESI): calcd for C₂₅H₃₅NNaO₃S⁺ [M+Na]⁺ 452.2230, found: 452.2236.

N-(2-cyclohexyl-1-(4-methoxyphenyl)ethyl)-2-methylbenzenesulfonamide (4ana)

Purification by flash column chromatography (petroleum ether/EtOAc = 15:1). White solid (22.4 mg, 58%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.84 (d, *J* = 7.9 Hz, 1H), 7.37 (t, *J* = 7.5 Hz, 1H), 7.21 (t, *J* = 7.6 Hz, 1H), 7.16 (d, *J* = 7.5 Hz, 1H), 6.92 (d, *J* = 8.6 Hz, 2H), 6.66 (d, *J* = 8.6 Hz, 2H), 5.20 (d, *J* = 7.4 Hz, 1H), 4.29 (q, *J* = 7.7 Hz, 1H), 3.76 (s, 3H), 2.50 (s, 3H), 1.71 – 1.54 (m, 7H), 1.16 – 1.05 (m,4H), 0.92 – 0.78 (m, 2H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 158.7, 138.5, 136.8, 133.3, 132.5, 132.2, 129.6, 127.6, 126.0, 113.7, 55.3, 55.2,

45.2, 33.9, 33.02, 32.98, 26.5, 26.11, 26.05, 20.3. GC-MS (EI-70 eV): m/z (%) 387 (5), 290 (100), 216 (16), 173 (7), 134 (29), 121 (17). HRMS (ESI): calcd for $C_{22}H_{29}NNaO_3S^+$ [M+Na]+ 410.1760, found: 410.1756.

N-(2-cyclohexyl-1-(4-methoxyphenyl)ethyl)-4-methoxybenzenesulfonamide (4aoa)

Purification by flash column chromatography (petroleum ether/EtOAc = 15:1). White solid (24.6 mg, 61%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.58 (d, *J* = 8.8 Hz, 2H), 6.95 (d, *J* = 8.6 Hz, 2H), 6.81 (d, *J* = 8.9 Hz, 2H), 6.70 (d, *J* = 8.6 Hz, 2H), 4.99 (d, *J* = 7.1 Hz, 1H), 4.33 (q, *J* = 7.5 Hz, 1H), 3.85 (s, 3H), 3.78 (s, 3H), 1.71 - 1.59 (m, 6H), 1.56 - 1.50 (m, 1H), 1.17 - 1.07 (m, 4H), 0.92 - 0.81 (m, 2H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 162.5, 158.7, 133.5, 132.4, 129.2, 127.7, 113.8, 113.8, 55.6, 55.3, 55.2, 45.6, 33.9, 33.1, 32.9, 26.5, 26.1, 26.0. GC-MS (EI-70 eV): m/z (%) 403 (3), 306 (100), 216 (7), 171 (51), 134 (22), 121

(12). HRMS (ESI): calcd for $C_{22}H_{29}NNaO_4S^+$ [M+Na]⁺ 426.1710, found: 426.1708.

4-chloro-N-(2-cyclohexyl-1-(4-methoxyphenyl)ethyl)benzenesulfonamide (4apa)

Purification by flash column chromatography (petroleum ether/EtOAc = 15:1). White solid (23.6 mg, 58%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.53 (d, *J* = 8.6 Hz, 2H), 7.26 (d, *J* = 8.6 Hz, 2H), 6.91 (d, *J* = 8.6 Hz, 2H), 6.66 (d, *J* = 8.6 Hz, 2H), 5.46 (d, *J* = 7.6 Hz, 1H), 4.38 (q, *J* = 7.7 Hz, 1H), 3.77 (s, 3H), 1.68 – 1.61 (m, 6H), 1.55 – 1.48 (m, 1H), 1.20 – 1.06 (m, 4H), 0.93 – 0.80 (m, 2H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 158.8, 139.4, 138.4, 132.9, 128.8, 128.5, 127.7, 113.8, 55.5, 55.4, 45.4, 33.9, 33.1, 32.9, 26.4, 26.1, 26.0. GC-MS (EI-70 eV): m/z (%) 407 (2), 310 (100), 216 (13), 175 (18), 134 (14), 111 (25). HRMS

(ESI): calcd for $C_{21}H_{26}CINNaO_3S^+$ [M+Na]⁺ 430.1214, found: 430.1218.

N-(2-cyclohexyl-1-(4-methoxyphenyl)ethyl)-4-fluorobenzenesulfonamide (4aqa)

Purification by flash column chromatography (petroleum ether/EtOAc = 15:1). White solid (21.4 mg, 54%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.64 (d, *J* = 5.1 Hz, 1H), 7.62 (d, *J* = 5.1 Hz, 1H), 6.98 (t, *J* = 8.5 Hz, 2H), 6.93 (d, J = 8.5 Hz, 2H), 6.93 (d, J = 8.5 Hz, 2H), 6.9

2H), 6.67 (d, J = 8.5 Hz, 2H), 5.42 (d, J = 7.5 Hz, 1H), 4.38 (q, J = 7.6 Hz, 1H), 3.77 (s, 3H), 1.68 – 1.61 (m, 6H), 1.56 – 1.49 (m, 1H), 1.18 – 1.10 (m, 4H), 0.93 – 0.81 (m, 2H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 164.7 (d, J = 254.5 Hz), 158.8, 137.0 (d, J = 3.0 Hz), 133.1, 129.8 (d, J = 9.1 Hz), 127.7, 115.8 (d, J = 23.2 Hz), 113.8, 55.5, 55.3, 45.5, 33.9, 33.1, 32.9, 26.4, 26.1, 26.0. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -106.28. GC-MS (EI-70 eV): m/z (%) 391 (3), 294 (100), 216 (11), 159 (29), 134 (15), 121 (13). HRMS (ESI): calcd for C₂₁H₂₆FNNaO₃S⁺ [M+Na]⁺ 414.1510, found: 414.1515.

N-(2-cyclohexyl-1-(4-methoxyphenyl)ethyl)-4-(trifluoromethyl)benzenesulfonamide (4ara)

Purification by flash column chromatography (petroleum ether/EtOAc = 15:1). White solid (28.7 mg, 65%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.69 (d, *J* = 8.2 Hz, 2H), 7.54 (d, *J* = 8.4 Hz, 2H), 6.87 (d, *J* = 8.6 Hz, 2H), 6.60 (d, *J* = 8.6 Hz, 2H), 5.41 (d, *J* = 7.6 Hz, 1H), 4.43 (q, *J* = 7.7 Hz, 1H), 3.73 (s, 3H), 1.73 – 1.61 (m, 6H), 1.55 – 1.48(m, 1H), 1.20 – 1.07 (m, 4H), 0.96 – 0.86 (m, 2H).¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 158.9, 144.4, 133.6 (q, *J* = 33.3 Hz), 132.5, 127.7, 127.6, 125.7 (q, *J* = 4.0 Hz), 120.6 (q, *J* = 274.7 Hz), 113.7, 55.7, 55.2, 45.3, 33.9, 33.1, 32.9, 26.4, 26.1, 26.0. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ

-63.09. GC-MS (EI-70 eV): m/z (%) 441 (4), 344 (100), 216 (6), 209 (7), 134 (25), 121 (10). HRMS (ESI): calcd for $C_{22}H_{26}F_3NNaO_3S^+$ [M+Na]⁺ 464.1478, found: 464.1481.

N-(2-cyclohexyl-1-(4-methoxyphenyl)ethyl)-4-(trifluoromethoxy)benzenesulfonamide (4asa)

Purification by flash column chromatography (petroleum ether/EtOAc = 15:1). White solid (27.4 mg, 60%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.65 (d, *J* = 8.8 Hz, 2H), 7.11 (d, *J* = 8.4 Hz, 2H), 6.90 (d, *J* = 8.6 Hz, 2H), 6.64 (d, *J* = 8.6 Hz, 2H), 5.56 (d, *J* = 7.7 Hz, 1H), 4.41 (q, *J* = 7.7 Hz, 1H), 3.74 (s, 3H), 1.71 – 1.59 (m, 6H), 1.54 – 1.46 (m, 1H), 1.20 – 1.06 (m, 4H), 0.95 – 0.82 (m, 2H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 158.9, 151.5, 139.3, 132.8, 131.2 (q, *J* = 349.5 Hz), 129.5, 129.2, 128.6, 127.7, 127.4, 120.6, 120.2 (q, *J* = 260.6 Hz), 113.7, 55.5, 55.2, 45.4, 33.9, 33.1, 32.9, 26.4, 26.1, 26.0.¹⁹F NMR (376 MHz,

Chloroform-*d*) δ -57.77. GC-MS (EI-70 eV): m/z (%) 457 (3), 360 (100), 225 (19), 161 (15), 134 (22), 121 (8). HRMS (ESI): calcd for C₂₂H₂₆F₃NNaO₄S⁺ [M+Na]⁺ 480.1427, found: 480.1222.

N-(2-cyclohexyl-1-(4-methoxyphenyl)ethyl)thiophene-2-sulfonamide (4ata)

Purification by flash column chromatography (petroleum ether/EtOAc = 15:1). White solid (15.5 mg, 41%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 (d, *J* = 6.1 Hz, 1H), 7.36 (d, *J* = 4.9 Hz, 1H), 7.03 (d, *J* = 8.6 Hz, 2H), 6.93 (t, *J* = 7.8 Hz, 1H), 6.75 (d, *J* = 8.6 Hz, 2H), 5.17 (d, *J* = 7.4 Hz, 1H), 4.44 (q, *J* = 7.5 Hz, 1H), 3.79 (s, 3H), 1.72 - 1.56 (m, 7H), 1.21 - 1.09 (m, 4H), 0.94 - 0.81 (m, 2H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 158.8, 141.8, 133.4, 132.3, 131.7, 127.6, 127.1, 113.9, 55.6, 55.4, 45.6, 33.9, 33.1, 33.0, 26.5, 26.13, 26.09.

GC-MS (EI-70 eV): m/z (%) 379 (3), 282 (100), 216 (9), 173 (3), 147 (28), 121 (14). HRMS (ESI): calcd for $C_{19}H_{25}NNaO_3S_2^+$ [M+Na]⁺ 402.1168, found: 402.1168.

N-(2-cyclohexyl-1-(4-methoxyphenyl)ethyl)aniline^[1] (4aua)

Purification by flash column chromatography (petroleum ether/EtOAc = 50:1). Colorless oil (16.4 mg, 53%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.29 (d, *J* = 8.5 Hz, 2H), 7.13 (t, *J* = 7.8 Hz, 2H), 6.89 (d, *J* = 8.5 Hz, 2H), 6.67 (t, *J* = 7.3 Hz, 1H), 6.56 (d, *J* = 7.9 Hz, 2H), 4.41 (t, *J* = 7.9 Hz, 1H), 3.82 (s, 3H), 1.88 – 1.66 (m, 6H), 1.64 – 1.57 (m, 1H), 1.41 – 1.35 (m, 1H), 1.30 – 1.17 (m, 3H), 1.08 – 0.91 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.4, 147.5, 136.8, 129.2,

127.3, 117.06, 114.0, 113.3, 55.3, 54.7,47.4, 34.5, 33.8, 33.1, 26.6, 26.3, 26.2. GC-MS (EI-70 eV): m/z (%) 309 (6), 216 (47), 212 (73), 173 (22), 134 (60), 121 (100).

4-chloro-N-(2-cyclohexyl-1-(4-methoxyphenyl)ethyl)aniline (4ava)

Purification by flash column chromatography (petroleum ether/EtOAc = 50:1). Colorless oil (23.3 mg, 68%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.25 (d, *J* = 8.6 Hz, 2H), 7.05 (d, *J* = 8.8 Hz, 2H), 6.89 (d, *J* = 8.6 Hz, 2H), 6.46 (d, *J* = 8.7 Hz, 2H), 4.35 (t, *J* = 7.9 Hz, 1H), 3.82 (s, 3H), 1.79 – 1.66 (m, 6H), 1.63 – 1.56 (m, 1H), 1.34 – 1.27 (m, 1H), 1.24 – 1.16 (m, 3H), 1.05 – 0.91 (m, 2H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 158.5, 146.0, 136.2, 129.0, 127.3, 121.6,

114.4, 114.1, 55.3, 54.9, 47.2, 34.4, 33.8, 33.1, 26.6, 26.3, 26.1. GC-MS (EI-70 eV): m/z (%) 343 (5), 246 (22), 216 (56), 173 (24), 134 (72), 121 (100). HRMS (ESI): calcd for $C_{21}H_{26}CINNaO^+$ [M+Na]⁺ 366.1595, found: 366.1599.

N-(2-cyclohexyl-1-(4-methoxyphenyl)ethyl)-4-fluoroaniline (4av'a)

Purification by flash column chromatography (petroleum ether/EtOAc = 50:1). Colorless oil (21.6 mg, 66%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.27 (d, *J* = 8.6 Hz, 2H), 6.90 (d, *J* = 8.6 Hz, 2H), 6.83 (t, *J* = 8.8 Hz, 2H), 6.48 (d, *J* = 4.4 Hz, 1H), 6.46 (d, *J* = 4.4 Hz, 1H), 4.34 (t, *J* = 8.0 Hz, 1H), 3.83 (s, 3H), 1.86 - 1.66 (m, 6H), 1.63 - 1.56 (m, 1H), 1.34 - 1.28 (m, 1H), 1.25 - 1.17 (m, 3H), 1.07 - 0.91 (m, 2H).¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 158.5, 155.6 (d, *J*

= 235.3 Hz), 143.9, 136.6, 127.4, 115.6 (d, J = 22.2 Hz), 114.1, 114.0, 55.4, 55.3, 47.4, 34.4, 33.8, 33.1, 26.6, 26.3, 26.2. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -128.57. GC-MS (EI-70 eV): m/z (%) 327 (4), 230 (26), 216 (64), 173 (29), 134 (94), 121 (100). HRMS (ESI): calcd for C₂₁H₂₆FNNaO⁺ [M+Na]⁺ 350.1891, found: 350.1887.

N-(2-cyclohexyl-1-(4-methoxyphenyl)ethyl)-4-(trifluoromethyl)aniline (4av"a)

Purification by flash column chromatography (petroleum ether/EtOAc = 50:1). Colorless oil (29.4 mg, 78%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.35 (d, *J* = 8.5 Hz, 2H), 7.27 (d, *J* = 8.6 Hz, 2H), 6.91 (d, *J* = 8.6 Hz, 2H), 6.56 (d, *J* = 8.5 Hz, 2H), 4.44 (t, *J* = 7.9 Hz, 1H), 3.83 (s, 3H), 1.86 – 1.59 (m, 7H), 1.40 – 1.29, (m, 1H), 1.25 – 1.17 (m, 3H), 1.09 – 0.95 (m, 2H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 158.6, 149.9, 135.8, 127.2, 129.0 (q, *J* = 4.0 Hz), 125.1 (q, *J* = 7.9 Hz), 125.1 (q, J = 7.9 Hz), 125.1 (q, J = 7.9 Hz), 125.1 (q, J = 7.

260.6 Hz), 118.5 (q, J = 32.3 Hz), 114.1, 112.4, 55.3, 54.4, 47.1, 34.4, 33.8, 33.0, 26.5, 26.3, 26.1. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -60.88. GC-MS (EI-70 eV): m/z (%) 377 (5), 280 (86), 216 (16), 161 (47), 134 (67), 121 (100). HRMS (ESI): calcd for C₂₂H₂₆F₃NNaO⁺ [M+Na]⁺ 400.1859, found: 400.1856.

N-(2-cyclohexyl-1-(4-methoxyphenyl)ethyl)-4-(trifluoromethoxy)aniline (4av'''a)

Purification by flash column chromatography (petroleum ether/EtOAc = 50:1). Colorless oil (31.4 mg, 80%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.27 (d, *J* = 8.6 Hz, 2H), 6.97 (d, *J* = 8.6 Hz, 2H), 6.90 (d, *J* = 8.6 Hz, 2H), 6.49 (d, *J* = 8.9 Hz, 2H), 4.35 (t, *J* = 8.1 Hz, 1H), 3.83 (s, 3H), 1.83 – 1.66 (m, 6H), 1.64 – 1.57 (m, 1H), 1.40 – 1.33 (m, 1H), 1.27 – 1.16 (m, 3H), 1.07 – 0.91 (m, 2H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 158.6, 146.3, 140.1, 136.2, 127.3, 122.4,

120.7 (q, J = 256.5 Hz), 114.1, 113.4, 55.3, 55.0, 47.3, 34.4, 33.8, 33.1, 26.6, 26.3, 26.1. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -58.44. GC-MS (EI-70 eV): m/z (%) 393 (6), 296 (43), 216 (52), 177 (38), 134 (66), 121 (100). HRMS (ESI): calcd for C₂₂H₂₆F₃NNaO₂+ [M+Na]⁺ 416.1808, found: 416.1809.

4-((2-cyclohexyl-1-(4-methoxyphenyl)ethyl)amino)benzonitrile (4awa)

Purification by flash column chromatography (petroleum ether/EtOAc = 50:1). Colorless oil (27.7 mg, 83%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.36 (d, *J* = 8.7 Hz, 2H), 7.23 (d, *J* = 8.6 Hz, 2H), 6.89 (d, *J* = 8.6 Hz, 2H), 6.51 (d, *J* = 8.8 Hz, 2H), 4.61 (s, 1H), 4.43 (t, *J* = 7.2 Hz, 1H), 3.82 (s, 3H), 1.83 – 1.64 (m, 7H), 1.38 – 1.32 (m, 1H), 1.26 – 1.15 (m, 3H), 1.07 – 0.94 (m, 2H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 158.7, 150.6, 135.1, 133.7, 127.2, 120.7, 114.2,

112.9, 98.5, 55.3, 54.4, 46.9, 34.3, 33.7, 33.0, 26.5, 26.2, 26.1. GC-MS (EI-70 eV): m/z (%) 334 (3), 237 (29), 216 (59), 173 (26), 134 (79), 118 (100). HRMS (ESI): calcd for $C_{22}H_{26}NNaO^+$ [M+Na]⁺ 357.1937, found: 357.1934.

1-(4-((2-cyclohexyl-1-(4-methoxyphenyl)ethyl)amino)phenyl)ethan-1-one (4axa)

Purification by flash column chromatography (petroleum ether/EtOAc = 50:1). Colorless oil (21.4 mg, 61%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.77 (d, *J* = 8.8 Hz, 2H), 7.25 (d, *J* = 8.6 Hz, 2H), 6.89 (d, *J* = 8.6 Hz, 2H), 6.52 (d, *J* = 8.8 Hz, 2H), 4.63 (s, 1H), 4.49 (t, *J* = 7.1 Hz, 1H), 3.82 (s, 3H), 2.48 (s, 3H), 1.81 – 1.59 (m, 7H), 1.42 – 1.33 (m, 1H), 1.26 – 1.14 (m, 3H), 1.08 – 0.92 (m, 2H).

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 196.5, 158.6, 151.4, 135.6, 130.8, 127.2, 126.5, 114.2, 112.1, 55.3, 54.3,47.0, 34.4, 33.7, 33.0, 26.5, 26.2, 26.13, 26.10. GC-MS (EI-70 eV): m/z (%) 351 (5), 254 (39), 216 (61), 173 (28), 134 (77), 121 (100). HRMS (ESI): calcd for $C_{23}H_{29}NNaO_2^+$ [M+Na]⁺ 374.2091, found: 374.2096.

N-(2-cyclopentyl-1-(4-methoxyphenyl)ethyl)benzamide (4aab)

Purification by flash column chromatography (petroleum ether/EtOAc = 15:1). Colorless oil (21.0 mg, 65%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.80 (d, *J* = 7.1 Hz, 2H), 7.51 (t, *J* = 7.3 Hz, 1H), 7.43 (t, *J* = 7.5 Hz, 2H), 7.34 (d, *J* = 8.6 Hz, 2H), 6.91 (d, *J* = 8.7 Hz, 2H), 6.51 (s, 1H), 5.19 (q, *J* = 7.7 Hz, 1H), 3.83 (s, 3H), 2.02 - 1.92 (m, 2H), 1.85 - 1.73 (m, 3H), 1.67 - 1.60 (m, 2H), 1.57 - 1.48 (m, 2H), 1.29 - 1.14 (m, 2H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 166.6, 158.8, 134.8, 134.7, 131.5, 128.6, 127.9, 127.0, 114.1, 55.4, 52.9, 42.7, 37.1, 33.0,

32.6, 25.3, 25.1. GC-MS (EI-70 eV): m/z (%) 323 (5), 240 (61), 202 (12), 134 (11), 121 (15), 105 (100). HRMS (ESI): calcd for $C_{21}H_{25}NNaO_2^+$ [M+Na]⁺ 346.1778, found: 346.1781.

N-(2-cyclooctyl-1-(4-methoxyphenyl)ethyl)benzamide (4aac)

Purification by flash column chromatography (petroleum ether/EtOAc = 15:1). Colorless oil (24.8 mg, 68%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.79 (d, *J* = 7.2 Hz, 2H), 7.51 (t, *J* = 7.3 Hz, 1H), 7.44 (t, *J* = 7.4 Hz, 2H), 7.33 (d, *J* = 8.6 Hz, 2H), 6.91 (d, *J* = 8.6 Hz, 2H), 6.40 (d, *J* = 8.0 Hz, 1H), 5.25 (q, *J* = 7.8 Hz, 1H), 3.83 (s, 3H), 1.92 - 1.60 (m, 7H), 1.59 - 1.51 (m, 3H), 1.47 - 1.35 (m, 6H), 1.34 - 1.27 (m, 1H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 166.6, 158.8,

134.9, 134.8, 131.5, 128.6, 127.9, 127.0, 114.1, 55.4, 51.4, 44.3, 34.0, 31.9, 31.8, 27.49, 27.46, 26.2, 25.3, 25.1. GC-MS (EI-70 eV): m/z (%) 365 (6), 240 (82), 134 (14), 121 (10), 105 (100), 77 (23). HRMS (ESI): calcd for $C_{24}H_{31}NNaO_2^+$ [M+Na]⁺ 388.2247, found: 388.2251.

N-(1-(4-methoxyphenyl)-3-phenylpropyl)benzamide (4aad)^[2]

Purification by flash column chromatography (petroleum ether/EtOAc = 15:1). White solid (24.6 mg, 71%). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.72 (d, *J* = 7.5 Hz, 2H), 7.49 (t, *J* = 7.3 Hz, 1H), 7.41 (t, *J* = 7.7 Hz, 2H), 7.32 (d, *J* = 8.5 Hz, 2H), 7.29 (t, *J* = 7.4 Hz, 2H), 7.21 (t, *J* = 8.8 Hz, 3H), 6.91 (d, *J* = 8.6 Hz, 2H), 6.43 (d, *J* = 7.9 Hz, 1H), 5.22 (q, *J* = 7.5 Hz, 1H), 3.82 (s, 3H), 2.75 - 2.63

(m, 2H), 2.37 - 2.31 (m, 1H), 2.25 - 2.19 (m, 1H). ${}^{13}C{}^{1}H$ NMR (151 MHz, Chloroform-*d*) δ 166.6, 159.0, 141.5, 134.6, 134.0, 131.4, 128.54, 128.52, 128.4, 127.9, 126.9, 126.0, 55.3, 53.3, 37.6, 32.7. GC-MS (EI-70 eV): m/z (%) 345 (5), 254 (10), 240 (35), 224 (11), 105 (100), 77 (28)

7. References

[1] S. N. Gockel, S. Lee, B. L. Gay, K. L. Hull, Oxidative Three-Component Carboamination of Vinylarenes with Alkylboronic Acids. *ACS Catal.*, 2021, **11**, 5166–5171.

[2] J. J. Kennedy-Ellis, E. D. Boldt, S. R. Chemler, Synthesis of Benzylureas and Related Amine Derivatives via Copper-Catalyzed Three-Component Carboamination of Styrenes, *Org. Lett.*, 2020, **22**, 8365–8369.

8. NMR Spectrum Copies

¹H NMR (400 MHz) Spectrum of **4aaa** in CDCl₃

$^{13}\text{C}\{^1\text{H}\}$ NMR (101 MHz) Spectrum of 4aaa in CDCl_3

 ^1H NMR (400 MHz) Spectrum of **4baa** in CDCl_3

$^{13}\text{C}\{^1\text{H}\}$ NMR (101 MHz) Spectrum of **4baa** in CDCl_3

 ^1H NMR (400 MHz) Spectrum of **4caa** in CDCl_3

¹³C{¹H} NMR (101 MHz) Spectrum of **4caa** in CDCl₃

¹H NMR (400 MHz) Spectrum of **4daa** in CDCl₃

$^{13}\text{C}\{^{1}\text{H}\}$ NMR (101 MHz) Spectrum of **4daa** in CDCl_3

¹H NMR (400 MHz) Spectrum of **4eaa** in CDCl₃

$^{13}\text{C}\{^{1}\text{H}\}$ NMR (101 MHz) Spectrum of **4eaa** in CDCl_3

 ^1H NMR (400 MHz) Spectrum of **4aba** in CDCl_3

¹³C{¹H} NMR (101 MHz) Spectrum of **4aba** in CDCl₃

 ^1H NMR (400 MHz) Spectrum of **4aca** in CDCl_3

$^{13}\text{C}\{^{1}\text{H}\}$ NMR (101 MHz) Spectrum of **4aca** in CDCl_3

¹H NMR (400 MHz) Spectrum of **4ada** in CDCl₃

¹³C{¹H} NMR (101 MHz) Spectrum of **4ada** in CDCl₃

¹H NMR (400 MHz) Spectrum of **4aea** in CDCl₃

¹³C{¹H} NMR (101 MHz) Spectrum of **4aea** in CDCl₃

 ^1H NMR (400 MHz) Spectrum of **4afa** in CDCl_3

¹³C{¹H} NMR (101 MHz) Spectrum of **4afa** in CDCl₃

¹H NMR (400 MHz) Spectrum of **4aga** in CDCl₃

¹³C{¹H} NMR (101 MHz) Spectrum of **4aga** in CDCl₃

 ^{19}F NMR (376 MHz) Spectrum of 4aga in CDCl_3

^1H NMR (400 MHz) Spectrum of **4aha** in CDCl_3

 $^{13}\text{C}\{^1\text{H}\}$ NMR (101 MHz) Spectrum of 4aha in CDCl_3

^{19}F NMR (376 MHz) Spectrum of **4aha** in CDCl_3

$^{13}\text{C}\{^1\text{H}\}$ NMR (101 MHz) Spectrum of **4aia** in CDCl_3

 ^1H NMR (400 MHz) Spectrum of **4aja** in CDCl_3

¹³C{¹H} NMR (101 MHz) Spectrum of **4aja** in CDCl₃

¹H NMR (400 MHz) Spectrum of **4aka** in CDCl₃

$^{13}\text{C}\{^{1}\text{H}\}$ NMR (101 MHz) Spectrum of **4aka** in CDCl_3

 ^1H NMR (400 MHz) Spectrum of **4ala** in CDCl_3

¹³C{¹H} NMR (101 MHz) Spectrum of **4ala** in CDCl₃

¹H NMR (400 MHz) Spectrum of **4ama** in CDCl₃

¹³C{¹H} NMR (101 MHz) Spectrum of **4ama** in CDCl₃

¹H NMR (400 MHz) Spectrum of **4ana** in CDCl₃

¹³C{¹H} NMR (101 MHz) Spectrum of **4ana** in CDCl₃

¹H NMR (400 MHz) Spectrum of **4aoa** in CDCl₃

¹³C{¹H} NMR (101 MHz) Spectrum of **4aoa** in CDCl₃

¹H NMR (400 MHz) Spectrum of **4apa** in CDCl₃

¹³C{¹H} NMR (101 MHz) Spectrum of **4apa** in CDCl₃

¹H NMR (400 MHz) Spectrum of **4aqa** in CDCl₃

$^{13}\text{C}\{^1\text{H}\}$ NMR (101 MHz) Spectrum of 4aqa in CDCl_3

 ^{19}F NMR (376 MHz) Spectrum of 4aqa in CDCl_3

^1H NMR (400 MHz) Spectrum of **4ara** in CDCl_3

 $^{13}\text{C}\{^1\text{H}\}$ NMR (101 MHz) Spectrum of 4ara in CDCl_3

^{19}F NMR (376 MHz) Spectrum of **4ara** in CDCl_3

$^{13}\text{C}\{^1\text{H}\}$ NMR (101 MHz) Spectrum of 4asa in CDCI_3

 ^{19}F NMR (376 MHz) Spectrum of 4asa in CDCl_3

^1H NMR (400 MHz) Spectrum of **4ata** in CDCl_3

 $^{13}\text{C}\{^1\text{H}\}$ NMR (101 MHz) Spectrum of **4ata** in CDCl_3

¹H NMR (400 MHz) Spectrum of **4aua** in CDCl₃

 $^{13}\text{C}\{^1\text{H}\}$ NMR (101 MHz) Spectrum of 4aua in CDCl_3

^1H NMR (400 MHz) Spectrum of 4ava in CDCl3

 $^{13}\text{C}\{^1\text{H}\}$ NMR (101 MHz) Spectrum of **4ava** in CDCl_3

^1H NMR (400 MHz) Spectrum of 4av'a in CDCl3

 $^{13}\text{C}\{^1\text{H}\}$ NMR (101 MHz) Spectrum of 4av'a in CDCl_3

^{19}F NMR (376 MHz) Spectrum of **4av'a** in CDCl_3

¹H NMR (400 MHz) Spectrum of **4av"a** in CDCl₃

$^{13}\text{C}\{^1\text{H}\}$ NMR (101 MHz) Spectrum of 4av''a in CDCl_3

 ^{19}F NMR (376 MHz) Spectrum of $4av^{\prime\prime}a$ in CDCl_3

^1H NMR (400 MHz) Spectrum of 4av'''a in CDCl3

 $^{13}\text{C}\{^1\text{H}\}$ NMR (101 MHz) Spectrum of 4av'''a in CDCl3

$^{19}\mathsf{F}\,\mathsf{NMR}$ (376 MHz) Spectrum of 4av'''a in CDCl_3

¹H NMR (400 MHz) Spectrum of **4awa** in CDCl₃

$^{13}\text{C}\{^1\text{H}\}$ NMR (101 MHz) Spectrum of 4awa in CDCl_3

 ^1H NMR (400 MHz) Spectrum of **4axa** in CDCl₃

¹³C{¹H} NMR (101 MHz) Spectrum of **4axa** in CDCl₃

¹H NMR (400 MHz) Spectrum of **4aab** in CDCl₃

$^{13}\text{C}\{^{1}\text{H}\}$ NMR (101 MHz) Spectrum of **4aab** in CDCl_3

 ^1H NMR (400 MHz) Spectrum of **4aac** in CDCl_3

¹³C{¹H} NMR (101 MHz) Spectrum of **4aac** in CDCl₃

¹H NMR (600 MHz) Spectrum of **4aad** in CDCl₃

 $^{13}\text{C}\{^1\text{H}\}$ NMR (151 MHz) Spectrum of 4aad in CDCl_3

S51