Supporting Information

Iron(III)/Quinoxaline-Derived N, N-Ligand Catalyzed Oxygen Transfer Reaction of N-Vinyl Nitrones through Selective 4π -

Electrocyclization and N-O Bond Cleavage

Yan-Jiao Lu,^a Feng-Lan Lu,^a Jin-Qi Zhang,^a Chun-Hua Chen,^{b,*} Cui Liang,^a Xiao-Pan Ma,^{c,*} and Dong-Liang Mo^{a,*}

^aState Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin, 541004, China.

^bKey Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530008, China.

^cGuangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, College of Pharmacy, Guilin Medical University, 1 Zhi Yuan Road, Guilin, 541199, China.

Contents

1.	General experimental information	S2
2.	Optimization conditions (Table S1)	S2
3.	Synthesis of ligands L5-L8	S3
4.	Synthesis of compound 2a	S5
5.	Synthesis of compounds 3	S6
6.	Synthesis of <i>N</i> -vinyl nitrones 1x and 1y	S19
7.	Description of Hammett study experiments	S20
8.	Mechanism studies by HRMS (ESI)	S22
9.	X-ray structure for compound 3p	S26
10.	References	S27
11.	NMR spectra for compounds L7, L8, 1x-1y, 2a and 3	S27

1. General experimental information

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded at ambient temperature using 400, 500 or 600 MHz spectrometers. The data are reported as follows: chemical shift in ppm from internal tetramethylsilane on the δ scale, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz), and integration. High resolution mass spectra were acquired on an LTQ FT spectrometer, and were obtained by peak matching. Melting points are reported uncorrected. Analytical thin layer chromatography was performed on 0.25 mm extra hard silica gel plates with UV254 fluorescent indicator. Chromatography was performed using with 300-400 mesh silica gel (SiO₂). Unless otherwise noted, all reagents and solvents were obtained from commercial sources and, where appropriate, purified prior to use. Ligands L1-L4 were purchased from Energy Chemical. *N*-Vinyl nitrones 1a-1w^[1,2], 1z, ^[3] 1aa, ^[4] 1ab^[5] were prepared according to literature methods and their spectral data matched literature values.

2. Optimization conditions (Table S1)

4	FeCl ₃	TBME/80 °C	29/21
5	FeCl ₃	Et ₂ O/40 °C	44/18
6	FeCl ₃ /L1	Et ₂ O/40 °C	70/-
7	FeCl ₃ /L2	Et ₂ O/40 °C	77/-
8	FeCl ₃ /L3	Et ₂ O/40 °C	60/<5
9	FeCl ₃ /L4	Et ₂ O/40 °C	38/6
10	FeCl ₃ /L5	Et ₂ O/40 °C	<5/48
11	FeCl ₃ /L6	Et ₂ O/40 °C	<5/52
12	FeCl ₃ /L7	Et ₂ O/40 °C	<5/65
13	FeCl ₃ /L8	Et ₂ O/40 °C	<5/58
14	FeCl ₂ /L7	Et ₂ O/40 °C	<5/38
15	FeBr ₃ /L7	Et ₂ O/40 °C	<5/59
16	Fe(OTf) ₃ /L7	Et ₂ O/40 °C	<5/62
17	FeF ₃ /L7	Et ₂ O/40 °C	-
18	CuSO ₄ /L7	Et ₂ O/40 °C	<5/<5
19	Pd(OAc) ₂ /L7	Et ₂ O/40 °C	<5/<5
20	FeCl ₃ /L7	Et ₂ O/40 °C	<5/60 ^c
21	-/L7	Et ₂ O/40 °C	-

^a Reaction conditions: **1a** (0.2 mmol), cat (20 mol%), ligand (24 mol%), solvent (2.0 mL), 16-48 h; ^b isolated yield. ^c 4A MS.

3. Synthesis of ligands L5-L8

Ligands L5-L6 were prepared according to literature method^[6], and their spectral data matched literature values.

General Procedure A: *N*-Iodosuccinimide (NIS) (0.22 g, 1 mmol) was added to a solution of 2-arylindoles S1 (0.193 g, 1 mmol) in DMSO (10 mL) under an air atmosphere. The mixture was stirred at room temperature for 2 hours (complete consumption of 2- arylindole indicated by TLC). Then, 1,2-aminobenzenes S2 (0.108

g, 1 mmol) was added into the solution, the reaction for another 4-6 hours at room temperature. The reaction mixture was poured into 30 mL saturated aqueous NaCl solutions, and extracted with ethyl acetate (2×15 mL). The combined organic phase was dried with anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the crude product was purified by flash column chromatography (1/10, ethyl acetate/petroleum ether) to afford ligand L5.

In a 25 mL reaction flask was charged with L5 (0.149 g, 0.5 mmol), NaH (0.1 g, 2.5 mmol, 5.0 equiv.) and DMF (5.0 mL) under N₂ atmosphere. The reaction mixture was stirred vigorously at room temperature for 0.5 h and CH₃I or BnBr (3.0 equiv.) was added. The reaction mixture was stirred vigorously at room temperature for 12 h until the substrate L5 disappeared (monitored by TLC). At this time, the reaction was quenched by H₂O (10 mL) and extracted with DCM (3×10 mL). Then, the combined organic layers were washed with brine (10 mL), dried over Na₂SO₄, and filtered. The solvent was removed under reduced pressure and the crude product was purified by flash column chromatography (1/20, ethyl acetate/petroleum ether) to afford ligands L7-L8.

N,N-dimethyl-2-(3-phenylquinoxalin-2-yl)aniline (L7): L5 (0.149 g, 0.5 mmol) ran for 12 h. Purification using medium pressure chromatography (eluents with a mixed ethyl acetate/petroleum ether = 1/20) afforded **L7**. A yellow solid (0.122 g, 75% yield); Mp: 51–52 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.12-8.10 (m, 2H), 7.69-7.67 (m, 2H), 7.62 (d, *J* = 6.8 Hz, 1H), 7.29-7.25 (m, 3H), 7.17-7.10 (m, 4H), 6.71-6.69 (d, *J* = 8.0 Hz, 1H), 1,97 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 154.9, 154.8, 151.5, 141.3, 141.0, 139.7, 133.1, 131.4, 130.1, 129.5, 129.3, 129.2, 128.9, 128.1, 128.0, 127.4, 122.7, 118.7, 43.0; HRMS (ESI) *m/z* calcd for C₂₂H₂₀N₃[M + H]⁺: 326.1652, found 326.1654.

N,N-dibenzyl-2-(3-phenylquinoxalin-2-yl)aniline (L8): L5 (0.149 g, 0.5 mmol) ran for 12 h. Purification using medium pressure chromatography (eluents with a mixed ethyl acetate/petroleum ether = 1/20) afforded L8. A yellow solid (0.138 g, 58% yield); Mp: 154–155 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.10 (d, *J* = 8.0 Hz ,1H), 8.02 (d, *J* = 8 Hz ,1H), 7.69-7.63 (m, 2H), 7.44 (d, *J* = 7.6 Hz ,2H), 7.36 (d, *J* = 7.2 Hz ,1H), 7.23-7.15 (m, 2H), 7.10-7.08 (m, 3H), 7.01-7.00 (m, 6H), 6.82 (d, *J* = 7.2 Hz, 1H), 6.72-6.71 (m, 4H), 3.71 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 154.4, 153.4, 149.8, 141.3, 140.9, 138.4, 137.2, 134.6, 131.8, 129.7, 129.6, 129.5, 129.4, 129.3, 129.0, 128.9, 128.8, 128.6, 127.9, 126.8, 123.3, 122.5, 56.2; HRMS (ESI) *m/z* calcd for C₃₄H₂₈N₃[M + H]⁺: 478.2278, found 478.2274.

4. Synthesis of compound 2a

A 10 mL reaction flask was charged with N-vinyl nitrones **1a** (0.20 mmol) and **Cat-1** (0.04 mmol, 20 mol%) under N₂ atmosphere. Et₂O (2 mL) was then added via syringe and the reaction vessel was sealed with a Teflon cap. The reaction mixture was stirred vigorously at 40 °C in an oil bath for 20 h until **1a** was consumed completely (monitored by TLC). At this time, the solvent was removed under reduced pressure and the crude product was purified by flash column chromatography (1/30, ethyl acetate/petroleum ether) to afford compound **2a**.

(E)-2,3-dimethyl-4-phenyl-6-styrylpyridine (2a)^[1]: 1a (0.061 g, 0.20 mmol) ran for 20 h. Purification using medium pressure chromatography (eluents with a mixed ethyl acetate/petroleum ether = 1/20) afforded 2a. A light yellow solid (0.043 g, 75% yield); Mp: 101–102 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.57-7.53(m, 3H), 7.48-7.41 (m, 3H), 7.37-7.26 (m, 5H), 7.20-7.17 (m, 2H), 2.63 (s, 3H), 2.20 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 157.6, 151.9, 150.0, 140.0, 136.9, 131.6, 128.7, 128.6, 128.3, 128.2, 128.0, 127.7, 127.6, 127.0, 120.4, 23.6, 16.2; HRMS (ESI) *m/z* calcd for C₂₁H₂₀N [M + H]⁺: 286.1590, found 286.1583.

5. Synthesis of compounds 3

General procedure B: A 10 mL reaction flask was charged with *N*-vinyl nitrones 1 (0.20 mmol), FeCl₃ (6.4 mg, 20 mol%) and L7 (15.6 mg, 24 mol%) under N₂ atmosphere. Et₂O (2 mL) was then added via syringe and the reaction vessel was sealed with a Teflon cap. The reaction mixture was stirred vigorously at 40 °C in an oil bath for 16-29 h until 1 was consumed completely (monitored by TLC). At this time, the solvent was removed under reduced pressure and the crude product was purified by flash column chromatography (1/20 to 1/10, ethyl acetate/petroleum ether) to afford compounds **3**.

4,5-dimethyl-2,2-di((E)-styryl)-2,5-dihydrooxazole (3a): **1a** (0.061 g, 0.20 mmol) ran for 20 h. Purification using medium pressure chromatography (eluents with a mixed ethyl acetate/petroleum ether = 1/20) afforded **3a**. A yellow solid (0.039 g, 65% yield); Mp: 79–80 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.42-7.40 (m, 4H), 7.36-7.27 (m, 4H), 7.25-7.21 (m, 2H), 6.81-6.75 (m, 2H), 6.47-6.38 (m, 2H), 4.86 (q, *J* = 6.4 Hz, 1H), 2.07 (s, 3H), 1.45 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 172.4, 137.1, 132.6, 131.4, 129.9, 129.6, 129.4, 129.1, 128.8, 128.7, 127.6, 127.5, 109.1, 83.5, 19.8, 15.9; HRMS (ESI) *m/z* calcd for C₂₁H₂₂NO [M + H]⁺: 304.1696, found 304.1695.

2,2-bis((E)-4-methoxystyryl)-4,5-dimethyl-2,5-dihydrooxazole (3b): **1b** (0.073 g, 0.20 mmol) ran for 20 h. Purification using medium pressure chromatography (eluents with a mixed ethyl acetate/petroleum ether = 1/10) afforded **3b**. A yellow solid (0.035 g, 48% yield); Mp: 58–59 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.35 (d, *J* = 7.2 Hz, 4H), 6.85 (d, *J* = 8.8 Hz, 4H), 6.74-6.67 (m, 2H), 6.32-6.23 (m, 2H), 4.84 (q, *J* = 6.4 Hz, 1H), 3.80 (s, 6H), 2.07 (s, 3H), 1.44 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 171.4, 159.3, 129.4, 129.3, 129.1, 128.9, 128.6, 128.0, 127.9, 127.6, 113.9, 113.8, 108.7, 83.0, 55.3, 19.1, 15.5; HRMS (ESI) *m/z* calcd for C₂₃H₂₆NO₃ [M + H]⁺: 364.1907, found 364.1909.

4,5-dimethyl-2,2-bis((E)-4-methylstyryl)-2,5-dihydrooxazole (3c): **1c** (0.066 g, 0.20 mmol) ran for 22 h. Purification using medium pressure chromatography (eluents with a mixed ethyl acetate/petroleum ether = 1/10) afforded **3c**. A yellow solid (0.040 g, 61% yield); Mp: 63–64 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.31 (d, *J* = 6.4 Hz, 4H), 7.12 (d, *J* = 7.6 Hz, 4H), 6.77-6.70 (m, 2H), 6.41-6.32 (m, 2H), 4.85 (q, *J* = 6.4 Hz, 1H), 2.33 (s, 6H), 2.07 (s, 3H), 1.44 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 171.6, 137.6, 133.8, 133.7, 129.9, 129.6, 129.2, 129.1, 128.7, 126.7, 126.6, 108.7, 83.1, 21.2, 19.1, 15.5; HRMS (ESI) *m/z* calcd for C₂₃H₂₆NO [M + H]⁺: 332.2009, found 332.1999.

2,2-bis((E)-4-chlorostyryl)-4,5-dimethyl-2,5-dihydrooxazole (3d): 1d (0.074 g, 0.20 mmol) ran for 16 h. Purification using medium pressure chromatography (eluents with a mixed ethyl acetate/petroleum ether = 1/20) afforded **3d**. A yellow solid (0.050 g, 68% yield); Mp: 88–89 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.35-7.32 (m, 4H), 7.28 (d, *J* = 8.8 Hz, 4H), 6.75-6.68 (m, 2H), 6.43-6.33 (m, 2H), 4.86 (q, *J* = 6.8 Hz, 1H), 2.08 (s, 3H), 1.44 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 172.1, 135.0, 134.9, 133.5, 131.3, 130.1, 128.7, 128.6, 128.5, 128.2, 128.0, 108.4, 83.3, 29.7, 19.0, 15.5; HRMS (ESI) *m/z* calcd for C₂₁H₂₀Cl₂NO [M + H]⁺: 372.0916, found 372.0911.

2,2-bis((E)-4-chlorostyryl)-4,5-dimethyl-2,5-dihydrooxazole (3e): 1e (0.092 g, 0.20

mmol) ran for 20 h. Purification using medium pressure chromatography (eluents with a mixed ethyl acetate/petroleum ether = 1/10) afforded **3e**. A yellow solid (0.058 g, 63% yield); Mp: 97–98 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.44 (d, *J* = 8.4 Hz, 4H), 7.28-7.25 (m, 4H), 6.74-6.67 (m, 2H), 6.44-6.34 (m, 2H), 4.85 (q, *J* = 6.4 Hz, 1H), 2.07 (s, 3H), 1.44 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 172.1, 135.4, 135.3, 131.7, 131.6, 131.4, 130.2, 128.7, 128.3, 121.7, 108.4, 83.3, 19.0, 15.5; HRMS (ESI) *m/z* calcd for C₂₁H₂₀Br₂NO [M + H]⁺: 459.9906, found 459.9899.

2,2-bis((E)-4-fluorostyryl)-4,5-dimethyl-2,5-dihydrooxazole (3f): 1f (0.068 g, 0.20 mmol) ran for 16 h. Purification using medium pressure chromatography (eluents with a mixed ethyl acetate/petroleum ether = 1/10) afforded **3f**. A yellow solid (0.041 g, 61% yield); Mp: 74–75 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.39-7.35 (m, 4H), 7.02-6.97 (m, 4H), 6.76-6.70 (m, 2H), 6.37-6.28 (m, 2H), 4.86 (q, *J* = 6.8 Hz, 1H), 2.08 (s, 3H), 1.45 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 171.9, 163.7 (d, *J* = 245.8 Hz), 132.6 (d, *J* = 2.9 Hz), 132.5 (d, *J* = 2.9 Hz), 130.5, 129.3, 128.6, 128.3 (d, *J* = 1.5 Hz), 128.2 (d, *J* = 1.4 Hz), 128.1, 115.6 (d, *J* = 3.6 Hz), 115.4 (d, *J* = 2.9 Hz), 108.4, 83.2, 19.0, 15.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -114.0, -114.1; HRMS (ESI) *m/z* calcd for C₂₁H₂₀F₂NO [M + H]⁺: 340.1507, found 340.1519.

4,5-dimethyl-2,2-bis((E)-4-(trifluoromethyl)styryl)-2,5-dihydrooxazole (3g): 1g (0.088 g, 0.20 mmol) ran for 29 h. Purification using medium pressure chromatography (eluents with a mixed ethyl acetate/petroleum ether = 1/10) afforded **3g**. A yellow solid (0.060 g, 68% yield); Mp: 94–95 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.58 (d, J = 8.4

Hz, 4H), 7.51-7.49 (m, 4H), 6.84-6.78 (m, 2H), 6.55-6.45 (m, 2H), 4.88 (q, J = 6.4 Hz, 1H), 2.09 (s, 3H), 1.46 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 172.4, 139.9 (q, J = 6.6 Hz), 133.1, 131.9, 130.2 (q, J = 32 Hz), 128.6, 128.3, 126.9, 125.5 (q, J = 274.8 Hz), 108.2, 19.0, 15.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.5; HRMS (ESI) m/z calcd for C₂₃H₂₀F₆NO [M + H]⁺: 440.1444, found 440.1457.

2,2-bis((E)-3-methoxystyryl)-4,5-dimethyl-2,5-dihydrooxazole (3h): 1h (0.073 g, 0.20 mmol) ran for 16 h. Purification using medium pressure chromatography (eluents with a mixed ethyl acetate/petroleum ether = 1/10) afforded **3h**. A yellow solid (0.040 g, 56% yield); Mp: 71–72 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.25-7.21 (m, 2H), 7.04 (s, 4H), 6.82 (d, *J* = 8.4 Hz, 2H), 6.67-6.61 (m, 2H), 6.55-6.46 (m, 2H), 4.84 (q, *J* = 6.4 Hz, 1H), 3.76 (s, 6H), 2.01 (s, 3H), 1.34 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 172.4, 160.5, 160.4, 138.6, 138.5, 132.8, 131.7, 130.6, 129.4, 129.1, 120.1, 114.9, 114.8, 112.4, 112.3, 109.1, 83.5, 56.0, 19.8, 15.9; HRMS (ESI) *m/z* calcd for C₂₃H₂₆NO₃ [M + H]⁺: 364.1907, found 364.1909.

2,2-bis((E)-3-bromostyryl)-4,5-dimethyl-2,5-dihydrooxazole (3i): 1i (0.092 g, 0.20 mmol) ran for 16 h. Purification using medium pressure chromatography (eluents with a mixed ethyl acetate/petroleum ether = 1/20) afforded **3i**. A yellow solid (0.032 g, 60% yield); Mp: 75–76 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.56 (s, 2H), 7.37-7.30 (m, 4H), 7.19-7.15 (m, 2H), 6.73-6.66 (m, 2H), 6.45-6.35 (m, 2H) 4.85 (q, J = 6.4 Hz, 1H), 2.07 (s, 3H), 1.44 (d, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 172.1, 138.6, 138.6, 132.1, 130.1, 130.0, 129.9, 128.5, 128.1, 125.4, 122.7, 108.3, 83.4, 19.0, 15.4; HRMS

(ESI) m/z calcd for C₂₁H₁₉Br₂NO [M + H]⁺: 459.9906, found 459.9900.

4,5-dimethyl-2,2-bis((E)-2-methylstyryl)-2,5-dihydrooxazole (3j): 1j (0.066 g, 0.20 mmol) ran for 16 h. Purification using medium pressure chromatography (eluents with a mixed ethyl acetate/petroleum ether = 1/20) afforded **3j**. A yellow solid (0.039 g, 60% yield); Mp: 111–112 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.48 (d, *J* = 4.0 Hz, 2H), 7.17 (d, *J* = 9.2 Hz, 6H), 7.06 (m, 2H), 6.37-6.27 (m, 2H), 4.88 (q, *J* = 6.4 Hz, 1H), 2.36 (s, 6H), 2.08 (s, 3H), 1.47 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 171.5, 135.9, 135.8, 135.7, 135.6, 132.4, 131.1, 130.2, 130.1, 127.7, 127.6, 127.3, 126.0, 125.9, 125.8, 109.0, 83.2, 19.9, 19.8, 19.1, 15.4; HRMS (ESI) *m/z* calcd for C₂₃H₂₆NO [M + H]⁺: 332.2009, found 332.2002.

2,2-bis((E)-2-bromostyryl)-4,5-dimethyl-2,5-dihydrooxazole (3k): 1k (0.092 g, 0.20 mmol) ran for 16 h. Purification using medium pressure chromatography (eluents with a mixed ethyl acetate/petroleum ether = 1/20) afforded 3k. A yellow solid (0.056 g, 62% yield); Mp: 96–97 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.55-7.53 (m, 4H), 7.28-7.24 (m, 2H), 7.21 (s, 1H), 7.17 (d, *J* = 5.2 Hz, 1H), 7.12-7.08 (m, 2H), 6.44-6.33 (m, 2H), 4.92 (q, *J* = 6.8 Hz, 1H), 2.09 (s, 3H), 1.49 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 172.0, 136.6, 136.5, 133.5, 132.9, 132.8, 132.3, 129.0, 128.6, 127.4, 127.3, 127.2, 124.1, 124.0, 108.5, 83.6, 19.1, 15.4; HRMS (ESI) *m/z* calcd for C₂₁H₂₀Br₂NO [M + H]⁺: 459.9906, found 459.9907.

2,2-bis((E)-2-(furan-2-yl)vinyl)-4,5-dimethyl-2,5-dihydrooxazole (3l): 11 (0.057 g, 0.20 mmol) ran for 22 h. Purification using medium pressure chromatography (eluents with a mixed ethyl acetate/petroleum ether = 1/20) afforded **3l**. A yellow solid (0.028 g, 48% yield); Mp: 80–81 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.63 (s, 2H), 6.53-6.47 (m, 6H), 6.26-6.16 (m, 2H), 4.81 (q, *J* = 6.4 Hz, 1H), 1.99 (s, 3H), 1.31 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 172.8, 152.5, 144.0, 130.4, 129.2, 118.3, 118.1, 112.7, 110.5, 110.4, 108.5, 83.6, 19.8, 15.8; HRMS (ESI) *m/z* calcd for C₁₇H₁₈NO₃ [M + H]⁺: 284.1281, found 284.1286.

2,2-bis((E)-3,5-dimethylstyryl)-4,5-dimethyl-2,5-dihydrooxazole (3m): 1m (0.072 g, 0.20 mmol) ran for 16 h. Purification using medium pressure chromatography (eluents with a mixed ethyl acetate/petroleum ether = 1/20) afforded **3m**. A yellow solid (0.043 g, 60% yield); Mp: 92–93 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.04 (s, 4H), 6.88 (s, 2H), 6.74-6.67 (m, 2H), 6.43-6.33 (m, 2H), 4.83 (q, *J* = 6.4 Hz, 1H), 2.29 (s, 12H), 2.06 (s, 3H), 1.43 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 171.5, 137.9, 137.8, 136.5, 136.4, 130.6, 129.9, 129.4, 129.3, 124.7, 124.6, 108.7, 83.0, 21.2, 19.1, 15.4; HRMS (ESI) *m/z* calcd for C₂₅H₃₀NO [M + H]⁺: 360.2322, found 360.2316.

4,5-diethyl-2,2-di((E)-styryl)-2,5-dihydrooxazole (3n): 1n (0.066 g, 0.20 mmol) ran

for 17 h. Purification using medium pressure chromatography (eluents with a mixed ethyl acetate/petroleum ether = 1/20) afforded **3n**. A yellow solid (0.044 g, 66% yield); Mp: 85–86 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.43 (d, *J* = 7.2 Hz, 5H), 7.33-7.29 (m, 4H), 7.26-7.21 (m, 1H), 6.81-6.74 (m, 2H), 6.48-6.41 (m, 2H), 4.78-4.75 (m, 1H), 2.38-2.29 (m, 2H), 1.92-1.89 (m, 1H), 1.87-1.84 (m, 2H), 1.04 (t, *J* = 7.2 Hz, 3H), 0.88-0.86 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 175.2, 143.3, 136.7, 136.6, 134.8, 130.7, 130.0, 129.8, 129.2, 129.0, 128.5, 128.4, 127.7, 126.8, 125.4, 108.5, 87.4, 25.6, 22.9, 10.1, 9.6; HRMS (ESI) *m/z* calcd for C₂₃H₂₆NO [M + H]⁺: 332.2009, found 332.2002.

5-ethyl-4-phenyl-2,2-di((E)-styryl)-2,5-dihydrooxazole (30): 10 (0.076 g, 0.20 mmol) ran for 16 h. Purification using medium pressure chromatography (eluents with a mixed ethyl acetate/petroleum ether = 1/20) afforded **30**. A yellow oli (0.052 g, 68% yield); ¹H NMR (400 MHz, CDCl₃): δ 7.81 (d, *J* = 6.8 Hz, 2H), 7.48-7.45 (m, 5H), 7.42-7.38 (m, 2H), 7.35-7.29 (m, 3H), 7.27-7.19 (m, 3H) 6.92-6.82 (m, 2H), 6.59-6.49 (m, 2H), 5.46-5.44 (m, 1H), 2.01-1.95 (m, 1H), 1.78-1.71 (m, 1H), 1.02 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 170.5, 136.3, 136.2, 130.4, 130.1, 129.7, 128.9, 128.6, 128.5, 128.0, 127.9, 126.8, 126.7, 110.8, 80.3, 73.6, 68.3, 32.2; HRMS (ESI) *m/z* calcd for C₂₇H₂₆NO [M + H]⁺: 380.2009, found 380.1993.

4-phenyl-2,2-di((E)-styryl)-2,5-dihydrooxazole (3p): 1p (0.070 g, 0.20 mmol) ran for 16 h. Purification using medium pressure chromatography (eluents with a mixed ethyl acetate/petroleum ether = 1/20) afforded **3p**. A yellow solid (0.041 g, 58% yield); Mp: 140–141 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.84 (d, J = 7.2 Hz, 2H), 7.53-7.43 (m,

7H), 7.33-7.29 (m, 4H), 7.25-7.22 (m, 2H), 6.88 (d, J = 16.4 Hz, 2H), 6.54 (d, J = 16.0 Hz, 2H), 5.17 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 167.2, 136.4, 131.7, 130.9, 130.1, 129.3, 128.8, 128.5, 127.9, 127.8, 126.8, 111.3, 73.8; HRMS (ESI) *m/z* calcd for C₂₅H₂₂NO [M + H]⁺: 352.1696, found 352.1684.

2,2-di((E)-styryl)-2,4,5,6,7,7a-hexahydrobenzo[d]oxazole (3q): 1q (0.066 g, 0.20 mmol) ran for 20 h. Purification using medium pressure chromatography (eluents with a mixed ethyl acetate/petroleum ether = 1/20) afforded **3q**. A yellow solid (0.041 g, 62% yield); Mp: 139–140 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.46-7.39 (m, 4H), 7.34-7.29 (m, 4H), 7.28-7.21 (m, 2H), 6.84-6.73 (m, 2H), 6.51-6.39 (m, 2H), 4.65 (t, *J* = 6.8 Hz, 1H), 2.82-2.78 (m, 1H), 2.47-2.43 (m, 1H), 2.33-2.25 (m, 1H), 2.04-2.01 (m, 1H), 1.89 -1.87(m, 1H), 1.60-1.59 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 173.8, 136.6, 130.8, 129.9, 129.5, 129.2, 128.5, 128.4, 127.8, 126.8, 126.7, 109.3, 83.9, 35.1, 30.2, 26.4, 22.7; HRMS (ESI) *m/z* calcd for C₂₃H₂₄NO [M + H]⁺: 330.1852, found 330.1850.

2,2-di((E)-styryl)-4,5,6,7,8,8a-hexahydro-2H-cyclohepta[d]oxazole (3r): 1r (0.069 g, 0.20 mmol) ran for 21 h. Purification using medium pressure chromatography (eluents with a mixed ethyl acetate/petroleum ether = 1/10) afforded 3r. A yellow solid (0.041 g, 60% yield); Mp: 72–73 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.42 (d, *J* = 4.8 Hz, 4H), 7.32-7.29 (m, 4H), 7.25-7.21 (m, 2H), 6.82–6.75 (m, 2H), 6.47-6.39 (m, 2H), 4.90-4.87 (m, 1H), 2.64 (d, *J* = 5.2 Hz, 2H), 2.10-2.06 (m, 1H), 1.84-1.61 (m, 5H), 1.57-1.46 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 176.2, 136.6, 136.5, 130.6, 129.8, 129.5, 129.2, 128.5, 128.4, 127.7, 126.8, 126.7, 108.6, 87.6, 33.5, 30.6, 30.2, 26.0, 25.3;

HRMS (ESI) *m/z* calcd for C₂₄H₂₆NO [M + H]⁺: 344.2009, found 344.2011.

2,2-di((E)-styryl)-3a,4,6,7-tetrahydro-2H-pyrano[4,3-d]oxazole (3s): 1s (0.066 g, 0.20 mmol) ran for 16 h. Purification using medium pressure chromatography (eluents with a mixed ethyl acetate/petroleum ether = 1/10) afforded **3s**. A yellow solid (0.033 g, 50% yield); Mp: 92–93 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.44-7.41 (m, 3H), 7.33-7.31 (m, 3H), 7.27-7.24 (m, 4H), 6.82-6.73 (m, 2H), 6.47-6.39 (m, 2H), 4.73-4.70 (m, 1H), 4.48-4.46 (m, 1H), 4.30-4.26 (m, 1H), 3.44-3.40 (m, 1H), 3.25 (t, *J* = 6.8 Hz, 1H), 2.78–2.70 (m, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 170.5, 136.3, 136.2, 130.4, 130.1, 129.7, 128.9, 128.6, 128.5, 128.0, 127.9, 126.8, 126.7, 110.8, 80.3, 73.6, 68.3, 32.2; HRMS (ESI) *m/z* calcd for C₂₂H₂₂NO₂ [M + H]⁺: 332.1645 found 332.1645.

2,2-di((E)-styryl)-4,5,7,7a-tetrahydro-2H-spiro[benzo[d]oxazole-6,2'-

[1,3]dioxolane] (3t): 1t (0.077 g, 0.20 mmol) ran for 16 h. Purification using medium pressure chromatography (eluents with a mixed ethyl acetate/petroleum ether = 1/20) afforded 3t. A yellow solid (0.044 g, 56% yield); Mp: 51–52 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.43-7.40 (m, 4H), 7.36-7.29 (m, 4H), 7.24-7.22 (m, 2H), 6.84-6.73 (m, 2H), 6.50-6.37 (m, 2H) 4.90-4.86 (m, 1H), 4.07-3.97 (m, 4H), 2.78-2.73 (m, 1H), 2.64-2.56 (m, 1H), 2.53-2.48 (m, 1H), 2.04-1.99 (m, 1H), 1.86-1.78 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 172.3, 136.4, 136.3, 130.4, 130.2, 129.4, 129.0, 128.6, 128.5, 127.9, 127.8, 126.8, 126.7, 110.5, 108.1, 82.0, 64.8, 64.6, 42.6, 34.3, 25.5; HRMS (ESI) *m/z* calcd

for C₂₅H₂₆NO₃ [M + H]⁺: 388.1907 found 388.1900.

(E)-4,5-dimethyl-2-phenyl-2-styryl-2,5-dihydrooxazole (3u, dr = 4:1): 1u (0.055 g, 0.20 mmol) ran for 16 h. Purification using medium pressure chromatography (eluents with a mixed ethyl acetate/petroleum ether = 1/20) afforded 3u. A yellow solid (0.036 g, 66% yield); Mp: 61–62 °C; *Major isomer*: ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 7.6 Hz, 2H), 7.39-7.33 (m, 4H), 7.29-7.26 (m, 3H), 7.24-7.19 (m, 1H), 6.74 (d, *J* = 16.0 Hz, 1H), 6.58 (d, *J* = 16.0 Hz, 1H), 4.83 (q, *J* = 6.8 Hz, 1H), 2.06 (s, 3H), 1.47 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 142.8, 136.5, 132.7, 131.2, 129.0, 128.4, 128.2, 127.6, 126.8, 125.8, 109.8, 83.3, 19.0, 15.3; *Minor isomer:* ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 7.6 Hz, 2H), 7.39-7.33 (m, 4H), 7.29-7.26 (m, 3H), 7.24-7.19 (m, 1H), 6.74 (d, *J* = 16.0 Hz, 1H), 6.52 (d, *J* = 16.0 Hz, 1H), 4.90 (q, *J* = 6.4 Hz, 1H), 2.06 (s, 3H), 1.40 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 143.2, 136.4, 132.7, 131.2, 129.2, 128.6, 128.2, 127.7, 126.8, 125.8, 109.6, 83.3, 18.7, 15.3; HRMS (ESI) *m/z* calcd for C₁₉H₂₀NO [M + H]⁺: 278.1539 found 278.1542.

3v, dr = 1:1

2-((E)-4-methoxystyryl)-4,5-dimethyl-2-((E)-styryl)-2,5-dihydrooxazole (3v): 1v (0.067 g, 0.20 mmol) ran for 16 h. Purification using medium pressure chromatography (eluents with a mixed ethyl acetate/petroleum ether = 1/20) afforded **3v**. A yellow solid (0.034 g, 51% yield); Mp: 83–84 °C; *One isomer*: ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 7.2 Hz, 2H), 7.36-7.29 (m, 4H), 7.25-7.21 (m, 1H), 6.86 (d, *J* = 8.4 Hz, 2H), 6.81-6.69 (m, 2H), 6.48-6.38 (m, 1H), 6.33-6.24 (m, 1H), 4.86 (q, *J* = 6.4 Hz, 1H), 3.80 (s, 3H), 2.07 (s, 3H), 1.45 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.6,

159.3, 136.6, 131.1, 129.8, 129.6, 129.3, 129.2, 129.1, 128.8, 128.7, 128.5, 128.0, 127.7, 127.5, 126.7, 113.9, 108.7, 83.1, 55.2, 19.1, 15.4; *Another isomer:* ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, J = 7.2 Hz, 2H), 7.36-7.29 (m, 4H), 7.25-7.21 (m, 1H), 6.86 (d, J = 8.4 Hz, 2H), 6.81-6.69 (m, 2H), 6.48-6.38 (m, 1H), 6.33-6.24 (m, 1H), 4.86 (q, J = 6.4 Hz, 1H), 3.80 (s, 3H), 2.07 (s, 3H), 1.45 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 159.3, 136.5, 131.1, 129.8, 129.6, 129.3, 129.2, 129.1, 128.8, 128.7, 128.5, 128.0, 127.7, 127.5, 126.7, 113.9, 108.7, 83.0, 55.2, 19.1, 15.4; HRMS (ESI) *m/z* calcd for C₂₂H₂₄NO₂ [M + H]⁺: 334.1802 found 334.1795.

3w, *dr* = 1:1

4,5-dimethyl-2-((E)-styryl)-2-((E)-4-(trifluoromethyl)styryl)-2,5-dihydrooxazole (3w): 1w (0.074 g, 0.20 mmol) ran for 16 h. Purification using medium pressure chromatography (eluents with a mixed ethyl acetate/petroleum ether = 1/20) afforded **3w**. A yellow solid (0.045 g, 61% yield); Mp: 74–75 °C; One isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 8.4 Hz, 2H), 7.51-7.49 (m, 2H), 7.42 (d, J = 8.4 Hz, 2H), 7.33-7.30 (m, 2H), 7.26-7.23 (m, 1H), 6.84-6.75 (m, 2H), 6.56-6.37 (m, 2H), 4.87 (q, J) = 6.4 Hz, 1H), 2.09 (s, 3H), 1.46 (d, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.1, 140.1, 136.4, 133.5, 130.4, 129.6 (q, *J* = 5.1 Hz), 129.4 (q, *J* = 32.1 Hz), 129.1, 128.6 (q, J = 2.7 Hz), 128.4, 128.0, 127.8, 126.9, 125.5 (q, J = 269.1 Hz), 108.5, 83.4, 19.1, 15.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.5; Another isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 8.4 Hz, 2H), 7.51-7.49 (m, 2H), 7.42 (d, J = 8.4 Hz, 2H), 7.33-7.30 (m, 2H), 7.26-7.23 (m, 1H), 6.84-6.75 (m, 2H), 6.56-6.37 (m, 2H), 4.87 (q, J = 6.4Hz, 1H), 2.09 (s, 3H), 1.46 (d, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.1, 140.0, 136.3, 132.4, 130.0, 129.6 (q, J = 5.1 Hz), 129.3 (q, J = 32.1 Hz), 129.1, 128.6 (q, J = 2.7 Hz), 128.4, 127.9, 127.8, 126.8, 125.4 (q, J = 269.1 Hz), 108.3, 83.3, 19.0, 15.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.5;HRMS (ESI) m/z calcd for C₂₂H₂₁F₃NO [M + H]⁺: 372.1570 found 372.1563.

5-butyl-4-(4-methoxyphenyl)-2,2-di((E)-styryl)-2,5-dihydrooxazole (3x). A colorless oli, 0.040 g, 46% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.77 (d, J = 8.5 Hz, 2H), 7.45 (d, J = 7.5 Hz, 2H), 7.42 (d, J = 7.5 Hz, 2H), 7.35-7.27 (m, 5H), 7.25-7.20 (m, 1H), 6.97 (d, J = 8.5 Hz, 2H), 6.88-6.80 (m, 2H), 6.58-6.47 (m, 2H), 5.43 (t, J = 6.0 Hz, 1H), 3.86 (s, 3H), 1.92-1.86 (m, 1H), 1.71-1.64 (m, 1H), 1.55-1.47 (m, 2H), 1.43-1.33 (m, 2H), 0.89 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 169.2, 161.9, 136.7, 136.6, 131.0, 130.4, 129.9, 129.8, 129.6, 128.5, 128.4, 127.7, 127.6, 126.8, 126.7, 124.0, 114.0, 109.1, 85.2, 55.4, 33.9, 28.0, 22.5, 14.0; HRMS (ESI) *m/z* calcd for C₃₀H₃₂NO₂ [M + H]⁺: 438.2428, found 438.2404.

5-butyl-2,2-di((E)-styryl)-4-(4-(trifluoromethyl)phenyl)-2,5-dihydrooxazole (**3y**). A colorless oli, 0.059 g, 62% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.93 (d, J = 8.0 Hz, 2H), 7.73 (d, J = 8.0 Hz, 2H), 7.46 (d, J = 7.5 Hz, 2H), 7.42 (d, J = 7.5 Hz, 2H), 7.36-7.26 (m, 5H), 7.25-7.22 (m, 1H), 6.90-6.81 (m, 2H), 6.57-6.47 (m, 2H), 5.48-5.46 (m, 1H), 1.91-1.84 (m, 1H), 1.71-1.64 (m, 1H), 1.52-1.44 (m, 1H), 1.43-1.28 (m, 3H), 0.90 (t, J = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 168.8, 136.5, 136.3, 134.8, 132.9 (d, J = 32.0 Hz), 130.3, 130.2, 129.9, 129.7, 128.6, 128.5, 128.4, 127.9 (q, J = 5.6 Hz), 126.8, 125.7 (q, J = 3.1 Hz), 124.8 (q, J = 270.4 Hz), 109.6, 85.3, 33.5, 27.9, 22.4, 13.9; ¹⁹F NMR (470 MHz, CDCl₃) δ -62.9; HRMS (ESI) *m/z* calcd for C₃₀H₂₉F₃NO [M + H]⁺: 476.2196, found 476.2176.

dimethyl 4,5-dimethyloxazole-2,2(5H)-dicarboxylate (3z). A colorless oli, 0.009 g, 22% yield; ¹H NMR (600 MHz, CDCl₃) δ 3.84 (s , 3H), 3.81 (s, 3H), 3.21 (q, *J* = 7.2 Hz, 1H), 1.53 (s, 3H), 1.10 (d, *J* = 7.8 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 171.1, 169.7, 169.2, 106.7, 53.5, 53.4, 51.1, 22.5, 10.3; HRMS (ESI) *m/z* calcd for C₉H₁₄NO₅ [M + H]⁺: 216.0866, found 216.0860.

6. Synthesis of *N*-vinyl nitrones 1x and 1y

General procedure B: A scintillation vial was charged with oxime (1.0 mmol, 1.0 equiv), alkenyl boronic acid (3.0 mmol, 3.0 equiv), Cu(OAc)₂ (2.0 equiv), and anhydrous Na₂SO₄ (8.0 equiv). These solids were diluted with DCE to form a 0.1 M solution of oxime. Pyridine (10.0 equiv) was added to the resulting slurry via syringe. The scintillation vial was then capped with a septum pierced with a ventilation needle and the reaction mixture was stirred at 25 °C for 12 h. DCE and pyridine were removed under reduced pressure and the crude reaction mixture was purified by medium pressure chromatography (1/6 to 1/1, ethyl acetate/petroleum ether) to give nitrones **1x** and **1y**.

(1E,4E)-N-((E)-1-(4-methoxyphenyl)hex-1-en-1-yl)-1,5-diphenylpenta-1,4-dien-3imine oxide (1x). A yellow oli, 0.184 g, 42% yield;¹H NMR (500 MHz, CDCl₃) δ 7.62-

7.58 (m , 4H), 7.46 (d, J = 8.5 Hz, 2H), 7.42-7.39 (m, 3H), 7.37-7.36 (m, 3H), 7.34-7.31 (m, 2H), 7.11 (d, J = 16.0 Hz, 1H), 6.97-6.92 (m, 3H), 5.95 (t, J = 7.5 Hz, 1H), 3.79 (s, 3H), 2.38-2.33 (m, 2H), 1.47-1.42 (m, 2H), 1.36-1.30 (m, 2H), 0.84 (t, J = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 159.7, 146.2, 143.8, 139.8, 136.3, 136.0, 134.8, 130.0, 129.7, 129.1, 128.9, 128.8, 128.7, 127.4, 126.7, 125.3, 120.3, 118.7, 113.9, 55.1, 31.4, 27.7, 22.3, 13.7; HRMS (ESI) *m*/*z* calcd for C₃₀H₃₂NO₂ [M + H]⁺: 438.2428, found 438.2411.

1y

(1E,4E)-1,5-diphenyl-N-((E)-1-(4-(trifluoromethyl)phenyl)hex-1-en-1-yl)penta-1,4-dien-3-imine oxide (1y). A yellow oli, 0.399 g, 84% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.69-7.64 (m , 5H), 7.61 (d, *J* = 7.0 Hz, 2H), 7.57 (d, *J* = 16.5 Hz, 1H), 7.42-7.37 (m, 6H), 7.35-7.33 (m, 2H), 7.09 (d, *J* = 16.0 Hz, 1H), 6.99 (d, *J* = 16.5 Hz, 1H), 6.12 (t, *J* = 7.5 Hz, 1H), 2.39-2.34 (m, 2H), 1.51-1.46 (m, 2H), 1.37-1.31 (m, 2H), 0.86 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 146.1, 142.9, 139.9, 136.6, 136.3, 135.9, 134.9, 132.4, 131.0 (q, *J* = 32.6 Hz), 129.2, 129.0, 128.9, 128.8, 128.7, 127.4, 127.0 (q, *J* = 270.9 Hz), 126.7, 125.5 (q, *J* = 3.6 Hz), 120.0, 118.6, 31.3, 27.7, 22.3, 13.7; ¹⁹F NMR (470 MHz, CDCl₃) δ -62.7; HRMS (ESI) *m/z* calcd for C₃₀H₂₉F₃NO [M + H]⁺: 476.2196, found 476.2179.

7. Description of Hammett study experiments

Competition experiments were set up using general procedure B but substituting 1

equiv. of **1** for a 1:1 mixture of 0.5 equiv. of **1a** and 0.5 equiv. of **1b**, **1c**, **1d**, **1f**, or **1g**. Then conversion reaction was carried out for 1h. At this time, the ratio of the 2,5dihydrooxazole resonances was recorded as in indication of the relative initial rates of the two substrates. The results were then plotted against Hammett parameters as illustrated in **Table S2**^[7]

σ_p	σ _m	K_X/K_H	$\log(K_X/K_H)$
-0.27	0.12	0.70	-0.15
-0.17	-0.07	0.79	-0.10
0	0	0	0
0.06	0.34	1.05	0.02
0.23	0.37	1.08	0.03
0.54	0.43	1.29	0.11

Table S2. Hammett parameters of substituents

8. Studies of mechanism by HRMS (ESI)

8.1 Synthesis of Cat-1. and Cat-2.

A solution of bipyridine L1 (156 mg, 1.0 mmol) in DCM (20 mL) was added to a solution of FeCl₃ (161 mg, 1.0 mmol) in DCM (20 mL) at rt for 1 h. After stirring for 1 h, the resulting mixture was filtered off, washed with hexane (3×3 mL), and dried in vacuo to afford FeCl₃·L1 as a yellow solid 294.7 mg (93%) yield.

A solution of L7 (325 mg, 1.0 mmol) in DCM (20 mL) was added to a solution of FeCl₃ (161 mg, 1.0 mmol) in DCM (20 mL) at rt for 1 h. After stirring for 1 h, the resulting mixture was filtered off, washed with hexane (3×3 mL), and dried in vacuo to afford FeCl₃·L7 as a black solid 437.4 mg (90%) yield.

8.2 Intermediates detected by HRMS(ESI)

Nitrone **1a** was carried out under the standard conditions for 30 min, then, the reaction mixture was directly detected by HRMS (ESI). The details of intermediates peaks are as follows:

9. X-ray structure for compound 3p

Figure S1: ORTEP diagram of 3p at 50% ellipsoid probability

The preparation of crystal of **3p**: compound **3p** (15 mg) was dissolved in DCM (2 mL) at room temperature. n-Hexane (1.0 mL) was dropped carefully to the mixture. Then, the flask was capped with thin film. Finally, a needle crystal was obtained for 2 days.

Empirical formula	C ₂₅ H ₂₁ NO
Formula weight (M)	351.43
Crystal system	triclinic
Space group	(2)
a/Å	10.0700(5)
b/Å	10.0719(4)
c/Å	10.4742(5)
$\alpha/^{\circ}$	83.935(4)
β/°	79.110(4)
$\gamma/^{\circ}$	66.858(4)
V/ Å3	958.68(8)
Ζ	2
$Dc (Mg cm^{-3})$	1.217
F (000)	372
2θ range for data collection (°)	8.60 to 151.41
Reflections collected	12109
Independent reflections	3755 [R(int) = 0.0504, R(sigma) =

Table S3. Crystal data and structure refinement details for compound 3p

	0.0487]
Goodness-of-fit on F ²	1.087
Final R indices [I>2sigma(I)]	$R_1 = 0.0630, \omega R_2 = 0.1787$
R indices (all data)	$R_1 = 0.0742, \ \omega R_2 = 0.1873$

10. References

[1] Chen, C.-H.; Wu, Q.-Y.; Wei, C.; Liang, C.; Su, G.-F.; Mo, D.-L. Green Chem.
2018, 20, 2722.

[2] Zou, N.; Lan, J.-X.; Yan, G.-G.; Liang, C.; Su, G.-F.; Mo, D.-L. Org. Lett. 2020, 22, 8446.

[3] Reidl, T.-W.; Son, J.; Wink, D.-J.; Anderson, L.-L. Angew. Chem. Int. Ed. 2017, 56, 11579.

[4] Michael, R. E.; Chando, K. M.; Sammakia, T. J. Org. Chem. 2015, 80, 6930

[5] Wei, C.; Zhang, J.-Q.; Zhang, J.-J.; Liang, C.; Mo, D.-L. Org. Chem. Front. 2020, 7, 1520.

[6] Chen, H.; Wei, C.; Pang, G.-L.; Liang, C.; Mo, D.-L.; Ma, X.-P. Org. Lett. 2022, 24, 6013.

[7] Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165.

11. NMR spectra for compounds L7, L8, 1x-1y, 2a, and 3

2a

2.627

2.198

3a

3c

400 MHz, CDCl₃

2.076

1.444 1.428

3e

3g

2.094

1.460 1.443

3i

400 MHz, CDCI₃

2.073

1.441 1.424

3k

2.085

1.492 1.476

1.988

31

100 MHz, DMSO-d6

3n

30

26.813

30

3p

3r

400 MHz, CDCI₃

3u dr = 4:1

Me Me NO F₃C

3w dr = 1:1

400 MHz, $CDCI_3$

2.086

1.456 1.440

S92

