Supporting Information

Cooperative Catalysis of Carbenes and Lewis Acids for the Highly Enantioselective Synthesis of Dihydroquinolones via In Situ Generation of Aza-Ortho-Quinone Methides and Enolates Intermediates

Zhiying Li, Zhenhong Wu, Huan Gong, Xinyi Xu, Jianfeng Xu* and Xingkuan Chen* Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, P. R. Key Laboratory of Surface \& Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
China
Email: jfxu@zstu.edu.cn; xkchen@jnu.edu.cn

Table of Contents

I	General information	S1
II	Preparation of substrates	S2
III	General procedure for the catalytic synthesis of products 3	S3
IV	Procedure for synthetic transformations of the product 3a	S3
V	Stereochemistry determination by X-ray crystallographic analysis	S4
VI	Characterizations of products	S5
VII	${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HPLC spectra	S 14

I. General information:

Commercially available materials purchased from regent company were used as received, except aldehydes that were purified via distillation or column chromatography prior to use. Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) spectra were recorded on a Bruker (300 MHz) spectrometer. Chemical shifts were recorded in parts per million (ppm, δ) relative to chloroform ($\delta=7.26$, singlet). ${ }^{1} \mathrm{H}$ NMR splitting patterns are designated as singlet (s), doublet (d), triplet (t), quartet (q), dd (doublet of doublets), m (multiplets), and etc. All first-order splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted are designated as multiplet ($\mathrm{m} \mathrm{)} \mathrm{or} \mathrm{broad} \mathrm{(br)}$. Carbon nuclear magnetic resonance (${ }^{13} \mathrm{C} \mathrm{NMR}$) spectra were recorded on a Bruker (300 MHz) (75 MHz) spectrometer. High resolution mass spectrometry (HRMS) analysis was performed
using electrospray ionization (ESI) with a quadrupole-time of flight (QTOF) mass analyzer. The determination of ee was performed via chiral HPLC analysis using Agilent G7129A HPLC workstation. X-ray crystallography analysis was performed on XtaLAB PRO X-ray diffraction meter. Optical rotations were measured using a 10 mL cell with a 10 cm path length on a Shanghai Shenguang WZZ-2A polarimeter and are reported as follows: $[\alpha]^{\mathrm{t}_{\mathrm{D}}}$ (c in g per 100 mL solvent). Analytical thin-layer chromatography (TLC) was carried out on GF254 pre-coated silica gel plate (0.2 mm thickness). Visualization was performed using a UV lamp.

II. Preparation of substrates

2-(Tosylmethyl)anilines $\mathbf{1}$ and α-Chloro aldehyde $\mathbf{2}$ were prepared according to the reported procedure. A typical procedure for the synthesis of starting material is shown below.

A typical method for synthesis of substrates 2-(Tosylmethyl)anilines $\mathbf{1}^{1}$:

(iii) Under N_{2} condition, a solution of Grignard reagent (2.5 equiv.) was slowly added to aldehyde $\mathbf{7}(9.0 \mathrm{mmol})$ in dry THF (10 mL). After being stirred at room temperature for 3 h , the reaction mixture was quenched by saturated $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and extracted with DCM. The combined extracts were washed with brine, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The resulting crude solid was used in next step without purification.
(iv) $\mathrm{TolSO}_{2} \mathrm{Na}$ (1.25 equiv.) and TsOH (1.75 equiv.) were placed in a dried Schlenk tube, and dry DCM (20 mL) was added. The resulting mixture was stirred at room temperature for 5 min . Then, the solution (15 mL) of the crude product diaryl methanols in DCM was added and stirred for 1.5 h . The reaction mixture was quenched and adjusted to $\mathrm{pH}=8$ by a saturated NaHCO_{3}. After extracted with DCM, the combined extracts were washed with 1 M HCl and brine, then dried over $\mathrm{Na}_{2} \mathrm{SO} 4$, filtered and concentrated. The resulting crude solid was purified on silica gel column chromatography (eluent: $3 / 1(\mathrm{v} / \mathrm{v})$ ethyl acetate/petroleum ether) to afford the desired product as a white or brown solid ($67 \%-84 \%$ yield).

Typical method for synthesis of α-Chloro aldehyde $\mathbf{2 a}^{2}$:

To a stirred solution of 3-Phenylpropionaldehyde ($1.34 \mathrm{~g}, 10 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was added DL-proline ($230 \mathrm{mg}, 2 \mathrm{mmol}$) and $\mathrm{NCS}(1.33 \mathrm{~g}, 10 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , and then allowed to reach rt and stirred for additional 1.5 h . The reaction mixture was quenched by addition of pentane (50 mL), filtered through a short plug of celite, the organic phase was concentrated under reduced pressure and the residue was subjected to column chromatography directly using hexane/ether (4:1) as eluent to afford the desired product 2a as a colorless oil ($1.09 \mathrm{~g}, 65 \%$ yield).

III. General procedure for the catalytic synthesis of products 3

To a dry schlenk reaction tube equipped with a magnetic stir bar, was added N -(6-((4-methoxyphenyl)(tosyl)methyl)benzo[d][1,3]dioxol-5-yl)-4-methylbenzenesulfonamide 1a ($56.5 \mathrm{mg}, 0.1 \mathrm{mmol}$), α-Chloro aldehyde $\mathbf{2 a}(33.6 \mathrm{mg}, 0.2 \mathrm{mmol})$, NHC Cat. A $(8.4 \mathrm{mg}, 0.02$ $\mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(97.5 \mathrm{mg}, 0.3 \mathrm{mmol})$ and $\operatorname{LiF}(1.3 \mathrm{mg}, 0.05 \mathrm{mmol})$. The schlenk tube was then evacuated and refilled with dry N_{2}. Anhydrous DCM (1 mL) was added. The mixture was stirred at rt for 24 h . Solvent was removed under reduced pressure, and the residue was purified via column chromatography on silica gel with hexane/EtOAc (typically 10:1) as eluent to afford the products $\mathbf{3 a}$ ($47 \mathrm{mg}, 84 \%$ yield).

IV: Procedure for the synthetic transformations of the product 3a

To a solution 3 ($108.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) in 2 mL of THF was added 0.4 mL $\mathrm{Na} /$ naphthalene THF solution (the Na /naphthalene solution was prepared with $5 \mathrm{mmol} \mathrm{Na}, 5$ mmol naphthalene in 3 mL THF), and the reaction was stirred at $-78^{\circ} \mathrm{C}$ for 10 minutes. Then $\mathrm{H}_{2} \mathrm{O}$ (2 mL) was added to quench the reaction and the resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 mL X 2 2). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to dryness under reduced pressure at $40^{\circ} \mathrm{C}$. The residue was purified through column chromatography on silica gel (petroleum ether/ethyl acetate $=8: 1$ to $3: 1$) to afford the desired product $\mathbf{4}$ as a white solid in 91% yield (70.4 mg).

To a stirred solution of $\mathbf{3 a}$ ($108.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{THF}(1.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, under N_{2} atmosphere, was dropwise added $\mathrm{LiAlH}_{4}(22.8 \mathrm{mg}, 0.6 \mathrm{mmol}, 3.0$ equiv) in dry THF (1 mL). The reaction was stirred at $0^{\circ} \mathrm{C}$ for 2 h . Then the solution was quenched with an 0.1 M HCl solution. The aqueous phase was extracted three times with EtOAc. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was
purified through column chromatography on silica gel (petroleum ether/ethyl acetate $=6: 1$) to afford 5 ($80.1 \mathrm{mg}, 76 \%$).

To a solution of $\mathbf{3 a}(54.1 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) in 1 mL of 1,4 -dioxane was added DDQ $\left(45.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 2.0\right.$ equiv), and the reaction mixture was stirred at $100^{\circ} \mathrm{C}$ for 12 h . Then $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ was added and the resulting mixture was extracted with ethyl acetate ($2 \mathrm{~mL} x 2$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to dryness under reduced pressure at $40^{\circ} \mathrm{C}$. The residue was purified through column chromatography on silica gel (petroleum ether/ethyl acetate $=10: 1$ to $5: 1$) to afford the desired product 6 as a white solid in 87% yield $(46.8 \mathrm{mg})$.

V: Stereochemistry determination via X-ray crystallographic analysis:

Good quality crystal of $\mathbf{3 a}$ (colorless needle crystal) was obtained by vaporization of a hexane/ethyl acetate solution of compound 3a. CCDC 2291789 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

References cited in the SI:

[1] X. Liu, K. Wang, W. Guo, Y. Liu and C. Li, An organic-base catalyzed asymmetric 1,4-addition of tritylthiol to in situ generated aza-o-quinone methides at the $\mathrm{H}_{2} \mathrm{O} / \mathrm{DCM}$ interface, Chem. Commun., 2019, 55, 2668-2671.
[2] (a) T. Borg, J. Danielsson, M. Mohiti, P. Restorp and P. Somfai, Diastereoselective Nucleophilic Addition to Aldehydes with Polar α - and α, β-Substituents, Adv. Synth. Catal., 2011, 353, 2022-2036; (b) Y. Jing, C. G. Daniliuc and A. Studer, Direct Conversion of Alcohols to α-Chloro Aldehydes and α-Chloro Ketones, Org. Lett., 2014, 16, 4932-4935.

VI. Characterization of Products:

(7R,8S)-7-benzyl-8-(4-methoxyphenyl)-5-tosyl-7,8-dihydro-[1,3]dioxolo[4,5-g]quinolin-6(5H)-one (3a): Yield: 46 mg (87%), white solid, mp: 114-116 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) $\delta 8.02$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.16(\mathrm{~m}, 2 \mathrm{H})$, $7.04(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 5.95(\mathrm{~d}, J=$ $4.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dd}, J=14.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.24-2.99(\mathrm{~m}, 1 \mathrm{H})$, $2.49(\mathrm{~s}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (75 MHz , Chloroform- d) δ 171.88, 158.72, 146.58, 145.49, 145.11, 138.80, $136.36,129.45,129.42,129.35,129.07$, 128.93, 128.63, 128.54, 127.36, 126.50, 114.15, 107.81, 105.05, 101.74, 55.20, 49.44, 44.34, 32.35, 21.77; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{NO}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 542.1632, found 542.1631; $[\alpha]^{25}{ }_{\mathrm{D}}=+117.7\left(c=1.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; HPLC analysis: 99% ee (Chiralcel IB $\mathrm{N}-5,20: 80{ }^{\mathrm{i}} \mathrm{PrOH} /$ Hexane, $\left.0.5 \mathrm{~mL} / \mathrm{min}\right), \mathrm{R}_{\mathrm{t}}($ minor $)=28.4 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ major $)=26.6 \mathrm{~min}$.

(7R,8S)-8-(4-methoxyphenyl)-7-(2-methylbenzyl)-5-tosyl-7,8-dihydro-[1,3]dioxolo[4,5-g]quinolin$\mathbf{6 (5 H})$-one (3b): Yield: $49 \mathrm{mg}(89 \%)$, white solid, $\mathrm{mp}: 124-126{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) $\delta 8.02(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.04(\mathrm{~m}, 3 \mathrm{H}), 6.89(\mathrm{dd}, J=16.6,7.6 \mathrm{~Hz}, 3 \mathrm{H})$, $6.69(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 5.95(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 4 \mathrm{H}), 3.33(\mathrm{dd}, J=14.9,4.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.13(\mathrm{dt}, J=10.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=15.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , Chloroform-d) δ 172.09, 158.68, 146.56, 145.52, 145.12, 136.81, 136.55, 136.32, $130.65,129.50$, $129.44,129.31,129.18,129.05,128.38$, 127.40, 126.58, 125.99, 114.24, 107.74, 105.14, 101.77, 55.22, 47.64, 44.36, 29.42, 21.79, 19.50; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{NO}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 556.1789$, found 556.1786; $[\alpha]^{25}{ }_{\mathrm{D}}=+225.3\left(c=0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; HPLC analysis: 99% ee (Chiralcel IB N-5, 20:80 ${ }^{\text {PrOH}} /$ Hexane, $\left.0.5 \mathrm{~mL} / \mathrm{min}\right), \mathrm{R}_{\mathrm{t}}($ minor $)=23.9 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ major $)=21.0 \mathrm{~min}$.

(7S,8S)-7-(2-bromobenzyl)-8-(4-methoxyphenyl)-5-tosyl-7,8-dihydro-[1,3]dioxolo[4,5-g]quinolin-6 $\mathbf{(5 H)}$-one (3c): Yield: $53 \mathrm{mg}(86 \%)$, white solid, mp: 117-119 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) $\delta 7.99(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.11(\mathrm{~m}, 1 \mathrm{H})$, $7.05(\mathrm{ddd}, J=10.2,8.2,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.98-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.75-6.61(\mathrm{~m}, 3 \mathrm{H}), 6.02-5.89(\mathrm{~m}, 2 \mathrm{H})$, $3.80(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{dd}, J=13.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{dt}, J=7.4,5.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.76(\mathrm{dd}, J=13.9,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , Chloroform- d) δ 171.64, 158.71,
$146.56,145.53,145.03,138.35,136.29,132.90,132.05,129.45,129.40,129.29,129.15,128.40$, 128.30, 127.32, 124.61, 114.24, 107.67, 105.24, 101.75, 55.21, 47.38, 45.46, 33.77, 21.76; HRMS (ESI, m / z): calcd. for $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{BrNO}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$642.0557, found 642.0542; $[\alpha]^{25} \mathrm{D}=+187.3\left(c=0.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; HPLC analysis: 99% ee (Chiralcel IB N-5, 20:80 ${ }^{\text {i PrOH}} /$ Hexane, $0.5 \mathrm{~mL} / \mathrm{min}$), R_{t} (minor) $=25.3 \mathrm{~min}$, $\mathrm{R}_{\mathrm{t}}($ major $)=23.1 \mathrm{~min}$.

(7S,8S)-8-(4-methoxyphenyl)-5-tosyl-7-(2-(trifluoromethyl)benzyl)-7,8-dihydro-[1,3]dioxolo[4,5-g] quinolin-6(5H)-one (3d): Yield: $55 \mathrm{mg}(91 \%)$, white solid, $\mathrm{mp}: 121-123{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) $\delta 7.96(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.21(\mathrm{~m}, 6 \mathrm{H}), 6.91(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 5.94(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.47$ $(\mathrm{dd}, J=14.8,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{q}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=14.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , Chloroform-d) $\delta 171.61,158.73,146.62,145.62,145.08,137.85,136.20,132.16$, $131.84,129.46,129.40,129.12,129.03,128.42,127.38,126.74,126.37,114.26,107.59,105.35$, 101.80, 55.19, 49.02, 45.58, 29.98, 21.74; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{35} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{NO}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$, found 556.1786; $[\alpha]^{25}{ }_{\mathrm{D}}=+211.5\left(c=0.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; HPLC analysis: 99% ee (Chiralcel IB N-5, 20:80 ${ }^{i} \mathrm{PrOH} /$ Hexane, $\left.0.5 \mathrm{~mL} / \mathrm{min}\right), \mathrm{R}_{\mathrm{t}}($ minor $)=20.5 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ (major $)=18.1 \mathrm{~min}$.

(7S,8S)-7-(3-chlorobenzyl)-8-(4-methoxyphenyl)-5-tosyl-7,8-dihydro-[1,3]dioxolo[4,5-g]quinolin-6 (5H)-one (3e): Yield: $50 \mathrm{mg}(88 \%)$, white solid, mp: 132-134 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) $\delta 8.02(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H})$, $6.96-6.85(\mathrm{~m}, 3 \mathrm{H}), 6.71(\mathrm{~d}, 2 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 5.93(\mathrm{~d}, J=5.9,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~d}, J=$ $5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=14.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.18-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , Chloroform-d) $\delta 171.53,158.84,146.67,145.58,145.23,141.04,136.28,134.31,129.91,129.47$, $129.42,129.29,129.01,128.91,128.46,127.24,127.09,126.76,114.26,107.84,105.06,101.83,55.22$, 49.28, 44.74, 32.38, 21.77; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{ClNO}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 598.1062$, found 598.1068; $[\alpha]^{25}{ }_{\mathrm{D}}=+174.5\left(c=0.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; HPLC analysis: 99\% ee (Chiralcel IB N-5, 20:80 $\left.{ }^{i} \operatorname{PrOH} / \mathrm{Hexane}, 0.5 \mathrm{~mL} / \mathrm{min}\right), \mathrm{R}_{\mathrm{t}}($ minor $)=29.7 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ major $)=26.4 \mathrm{~min}$.

(7R,8S)-7-(3-methoxybenzyl)-8-(4-methoxyphenyl)-5-tosyl-7,8-dihydro-[1,3]dioxolo[4,5-g]quinoli $\mathbf{n - 6 (5 H)}$-one (3f): Yield: 53 mg (93%), white solid, $\mathrm{mp}: 138-140{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) $\delta 8.01(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 6.76-6.63(\mathrm{~m}, 3 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 5.97(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 4 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.33-3.18$ $(\mathrm{m}, 2 \mathrm{H}), 2.73(\mathrm{dt}, J=12.1,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , Chloroform-d) $\delta 171.72$, $158.86,153.38,146.66,145.62,145.14,136.36,136.13,130.28,129.43,129.31,129.25,129.14$, $128.25,127.05,125.15,121.30,115.48,114.30,107.66,105.12,101.79,56.22,55.25,46.97,45.76$, 31.95, 21.75; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{NO}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$, found 556.1786; $[\alpha]^{25}{ }_{\mathrm{D}}=+154.5(c=$ $0.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); HPLC analysis: 99% ee (Chiralcel IB N-5, $20: 80{ }^{\text {i }} \mathrm{PrOH} /$ Hexane, $0.5 \mathrm{~mL} / \mathrm{min}$), R_{t} (minor) $=39.6 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ major $)=29.4 \mathrm{~min}$.

(7S,8S)-7-(4-fluorobenzyl)-8-(4-methoxyphenyl)-5-tosyl-7,8-dihydro-[1,3]dioxolo[4,5-g]quinolin-6 $\mathbf{(5 H)}$-one (3g): Yield: $49 \mathrm{mg}(88 \%)$, white solid, mp: 148-150 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) $\delta 8.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.00-6.90(\mathrm{~m}, 4 \mathrm{H}), 6.86(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}), 6.72-6.64(\mathrm{~m}, 2 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 6.00-5.91(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.28(\mathrm{dd}, J=14.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-3.01(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) $\delta 171.72,161.55(\mathrm{~d}, J=242.9 \mathrm{~Hz}), 158.76,146.62,145.54,145.16,136.30,134.35(\mathrm{~d}, J$ $=3.3 \mathrm{~Hz}), 130.34(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 129.43,129.25,129.07,128.96,128.47,127.19$, $115.41(\mathrm{~d}, J=21.0$ Hz), 114.20, 107.77, 105.06, 101.77, 55.21, 49.52, 44.52, 31.75, 21.77; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{FNO}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 582.1358$, found 582.1348; $[\alpha]^{25}{ }_{\mathrm{D}}=+203.1\left(c=0.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; HPLC analysis: 99% ee (Chiralcel IB N-5, $\left.20: 80{ }^{i} \mathrm{PrOH} / \mathrm{Hexane}, 0.5 \mathrm{~mL} / \mathrm{min}\right), \mathrm{R}_{\mathrm{t}}($ minor $)=32.9 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ major $)=26.5$ min.

(7S,8S)-7-(4-chlorobenzyl)-8-(4-methoxyphenyl)-5-tosyl-7,8-dihydro-[1,3]dioxolo[4,5-g]quinolin-6 (5H)-one (3h): Yield: $52 \mathrm{mg}(90 \%)$, white solid, mp: 143-145 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) $\delta 8.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.89-$ $6.81(\mathrm{~m}, 2 \mathrm{H}), 6.73-6.63(\mathrm{~m}, 2 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 5.96(\mathrm{dd}, J=6.2,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~d}, J$ $=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{dd}, J=14.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , Chloroform- d) $\delta 171.60,158.79,146.64,145.16,137.28,136.30,132.26,130.28,129.42,129.25$,
$128.88,128.72,128.45,127.11,114.21,107.77,105.05,101.78,55.21,49.34,44.57,31.96,21.77$; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{ClNO}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 598.1062$, found 598.1048; $[\alpha]^{25}{ }_{\mathrm{D}}=+190.6(c=$ $0.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); HPLC analysis: 99% ee (Chiralcel IB N-5, $20: 80{ }^{\text {i }} \mathrm{PrOH} / \mathrm{Hexane}, 0.5 \mathrm{~mL} / \mathrm{min}$), R_{t} (minor) $=41.8 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ major $)=33.7 \mathrm{~min}$.

(7S,8S)-7-(4-bromobenzyl)-8-(4-methoxyphenyl)-5-tosyl-7,8-dihydro-[1,3]dioxolo[4,5-g]quinolin-6 (5H)-one (3i): Yield: $49 \mathrm{mg}(79 \%)$, white solid, mp: $152-154{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) δ $8.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.31(\mathrm{~m}, 5 \mathrm{H}), 6.94-6.81(\mathrm{~m}, 4 \mathrm{H}), 6.75-6.64(\mathrm{~m}, 2 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H})$, $6.00-5.91(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{dd}, J=14.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-3.02$ (m, 1H), 2.48 (s, 4H); ${ }^{13} \mathrm{C}$ NMR (75 MHz , Chloroform- d) $\delta 171.59$, 158.80, 146.65, 145.57, 145.20, 137.85 , 136.28, 131.68, 130.71, 129.45, 129.42, 129.27, 128.88, 128.46, 127.11, 120.31, 114.22, 107.80, 105.05, 101.80, 55.21, 49.27, 44.61, 32.08, 21.78; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{BrNO}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 642.0557$, found $642.0541 ;[\alpha]^{25}=+156.7\left(c=0.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; HPLC analysis: 99% ee (Chiralcel IB N-5, 20:80 $\left.{ }^{\text {i PrOH} / H e x a n e, ~} 0.5 \mathrm{~mL} / \mathrm{min}\right), \mathrm{R}_{\mathrm{t}}($ minor $)=45.8 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ major $)=34.2$ min.

(7R,8S)-8-(4-methoxyphenyl)-7-(4-methylbenzyl)-5-tosyl-7,8-dihydro-[1,3]dioxolo[4,5-g]quinolin$\mathbf{6 (5 H})$-one (3j): Yield: $46 \mathrm{mg}(85 \%)$, white solid, mp: 134-136 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) $\delta 8.02$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.42 (s, 1H), 7.37 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.97-6.83$ (m, 4H), $6.69(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 5.99-5.91(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 4 \mathrm{H}), 3.31(\mathrm{dd}, J=14.7$, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.17-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.39(\mathrm{~m}, 4 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , Chloroform- d) $\delta 171.95,158.70,146.55,145.47,145.08,136.40,136.02,135.61,129.44,129.40,129.37,129.31$, $129.12,128.79,128.57,127.44,114.12,107.82,105.04,101.73,55.20,49.51,44.22,31.85,21.76$, 21.05; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{NO}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 578.1608$, found 578.1594; $[\alpha]^{25}{ }_{\mathrm{D}}=+211.7$ ($c=0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); HPLC analysis: 99% ee (Chiralcel IB $\mathrm{N}-5,20: 80{ }^{\mathrm{i}} \mathrm{PrOH} / \mathrm{Hexane}, 0.5 \mathrm{~mL} / \mathrm{min}$), R_{t} $($ minor $)=26.8 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ major $)=25.1 \mathrm{~min}$.

(7S,8S)-7-(4-methoxybenzyl)-8-(4-methoxyphenyl)-5-tosyl-7,8-dihydro-[1,3]dioxolo[4,5-g]quinolin $\mathbf{- 6 (5 H})$-one (3k): Yield: $50 \mathrm{mg}(89 \%)$, white solid, mp: $165-167{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d)
$\delta 8.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.97-6.85(\mathrm{~m}, 4 \mathrm{H}), 6.80(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 6.68(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 5.95(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 6 \mathrm{H}), 3.73$ $(\mathrm{d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{dd}, J=14.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-3.01(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.47-2.35(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , Chloroform- d) $\delta 171.97$, 158.70, 158.20, 146.55, 145.48, 145.09, 136.38, $130.62,129.88,129.43,129.41,129.34,129.14,128.54,127.43,114.13,114.01,107.81,105.04$, $101.74,55.27,55.20,49.62,44.26,31.46,21.77$; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{37} \mathrm{H}_{29} \mathrm{NO}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$ 594.1557, found 594.1546; $[\alpha]^{25}{ }_{\mathrm{D}}=+126.3\left(c=0.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; HPLC analysis: 99% ee (Chiralcel IA, $30: 70 \mathrm{PrOH} /$ Hexane, $0.5 \mathrm{~mL} / \mathrm{min}), \mathrm{R}_{\mathrm{t}}($ minor $)=55.4 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ major $)=31.7 \mathrm{~min}$.

(7S,8S)-8-(4-methoxyphenyl)-7-(naphthalen-1-ylmethyl)-5-tosyl-7,8-dihydro-[1,3]dioxolo[4,5-g]qu inolin-6(5H)-one (31): Yield: 54 mg (92\%), white solid, mp: 108-110 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform-d) $\delta 8.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-$ $7.30(\mathrm{~m}, 7 \mathrm{H}), 6.93(\mathrm{dd}, J=15.5,8.0 \mathrm{~Hz}, 3 \mathrm{H}), 6.71(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 5.90(\mathrm{~s}, 2 \mathrm{H}), 3.89$ $(\mathrm{dd}, J=14.7,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.28-3.16(\mathrm{~m}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=$ $14.8,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (75 MHz , Chloroform-d) $\delta 171.83,158.77,146.54,145.48$, $145.24,136.21,134.07,132.66,131.14,131.07$, 129.58, 129.47, 129.22, 129.17, 128.14, 127.26, $127.02,126.83,125.59,125.44,123.88,114.37,107.68,105.05,101.74,55.25,48.06,44.67,29.34$, 21.81; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{35} \mathrm{H}_{29} \mathrm{NO}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 592.1789$, found 592.1799; $[\alpha]^{25} \mathrm{D}=+142.8(c$ $=0.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); HPLC analysis: 99% ee (Chiralcel IB N-5, 20:80 ${ }^{\mathrm{i} P \mathrm{PrOH} / H e x a n e, ~} 0.5 \mathrm{~mL} / \mathrm{min}$), R_{t} $($ minor $)=35.2 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ major $)=29.5 \mathrm{~min}$.

(7S,8S)-7-(furan-2-ylmethyl)-8-(4-methoxyphenyl)-5-tosyl-7,8-dihydro-[1,3]dioxolo[4,5-g]quinolin -6(5H)-one (3m): Yield: 38 mg (71%), white solid, mp: 237-239 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) $\delta 8.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.00-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.75-6.66(\mathrm{~m}, 2 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 6.29(\mathrm{dd}, J=3.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.05-5.92$ $(\mathrm{m}, 3 \mathrm{H}), 3.87(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.30-3.14(\mathrm{~m}, 2 \mathrm{H}), 2.64-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (75 MHz , Chloroform-d) $\delta 171.14,158.83,152.71,146.70,145.57,145.11,141.52,136.45$, $129.61,129.42,129.31,128.85,128.56,127.07,114.08,110.33,107.98,107.07,105.01,101.77,55.18$, 47.45, 44.62, 25.15, 21.73; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{NO}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 554.1244$, found 554.1249; $[\alpha]^{25}{ }_{\mathrm{D}}=+214.2\left(c=0.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); HPLC analysis: 99\% ee (Chiralcel IB N-5, 20:80 $\left.{ }^{i} \mathrm{PrOH} / \mathrm{Hexane}, 0.5 \mathrm{~mL} / \mathrm{min}\right), \mathrm{R}_{\mathrm{t}}($ minor $)=27.2 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ major $)=24.3 \mathrm{~min}$.

(7S,8S)-7-hexyl-8-(4-methoxyphenyl)-5-tosyl-7,8-dihydro-[1,3]dioxolo[4,5-g]quinolin-6(5H)-one (3n): Yield: $34 \mathrm{mg}(63 \%)$, white solid, $\mathrm{mp}: 159-161{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) $\delta 7.96$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.97-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 6.69-6.60$ $(\mathrm{m}, 2 \mathrm{H}), 6.04-5.83(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.77-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H})$, $1.89-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.30(\mathrm{~m}, 3 \mathrm{H}), 1.24(\mathrm{~m}, 6 \mathrm{H}), 0.89-0.79(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , Chloroform- d) $\delta 172.22,158.66,146.55,145.50,144.88,136.52,129.32,129.29,129.08,128.89$, $127.42,114.00,107.73,105.21,101.74,55.17,48.42,45.21,31.59,29.18,27.41,26.67,22.57,21.71$, 14.04; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{NO}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$, found 578.1594; $[\alpha]^{25} \mathrm{D}=+189.5$ ($c=0.2$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); HPLC analysis: 99% ee (Chiralcel IB N-5, 20:80 $\left.{ }^{\mathrm{i}} \mathrm{PrOH} / \mathrm{Hexane}, 0.5 \mathrm{~mL} / \mathrm{min}\right), \mathrm{R}_{\mathrm{t}}($ minor $)=$ $26.0 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ major $)=18.0 \mathrm{~min}$.

(7S,8S)-7-decyl-8-(4-methoxyphenyl)-5-tosyl-7,8-dihydro-[1,3]dioxolo[4,5-g]quinolin-6(5H)-one (30): Yield: $40 \mathrm{mg}(68 \%)$, colorless oil; ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform-d) $\delta 7.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.43(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.95-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.74-6.60(\mathrm{~m}, 3 \mathrm{H}), 6.02-5.93(\mathrm{~m}, 2 \mathrm{H})$, $3.93(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.69(\mathrm{q}, J=6.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.86-1.74(\mathrm{~m}, 1 \mathrm{H})$, $1.31-1.18(\mathrm{~m}, 17 \mathrm{H}), 0.88(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (75 MHz , Chloroform- d) $\delta 172.22,158.65$, $146.55,145.50,144.87,136.52,129.32,129.28,129.07,128.88,127.42,114.00,107.73,105.22$, $101.73,55.16,48.42,45.18,31.90,29.56,29.50,29.39,29.31,27.43,26.64,22.68,21.71,14.12$; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{34} \mathrm{H}_{41} \mathrm{NO}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 614.2547$, found 614.2533; $[\alpha]^{25} \mathrm{D}=+199.3(c=0.3$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); HPLC analysis: 99% ee (Chiralcel IB N-5, 20:80 ${ }^{\mathrm{i} P \mathrm{PrOH} / H e x a n e, ~} 0.5 \mathrm{~mL} / \mathrm{min}$), $\mathrm{R}_{\mathrm{t}}($ minor $)=$ $23.7 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ major $)=16.1 \mathrm{~min}$.

(7S,8S)-7-benzyl-8-phenyl-5-tosyl-7,8-dihydro-[1,3]dioxolo[4,5-g]quinolin-6(5H)-one (3p): Yield: $43 \mathrm{mg}(85 \%)$, white solid, mp: 137-139 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform-d) $\delta 8.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.11(\mathrm{~m}, 5 \mathrm{H}), 7.05-6.98$ $(\mathrm{m}, 2 \mathrm{H}), 6.98-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 6.00-5.91(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{dd}, J=$ 14.7, $4.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.20-3.11$ (m, 1H), 2.49 ($\mathrm{s}, 4 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (75 MHz , Chloroform-d) $\delta 171.75$, $146.66,145.49,145.14,138.75,137.12,136.28$, $129.52,129.39,129.07,128.92,128.79,128.64$, $128.23,127.33,126.94,126.52,107.88,105.05,101.76,49.25,45.05,32.35,21.77$; HRMS (ESI, m/z):
calcd. for $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$534.1346, found 534.1334; $[\alpha]^{25}{ }_{\mathrm{D}}=+242.3\left(c=0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; HPLC analysis: 99% ee (Chiralcel IB N-5, 20:80 ${ }^{i}$ PrOH/Hexane, $0.5 \mathrm{~mL} / \mathrm{min}$), $\mathrm{R}_{\mathrm{t}}($ minor $)=24.0 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}$ $($ major $)=22.2 \mathrm{~min}$.

(7S,8S)-7-benzyl-8-(m-tolyl)-5-tosyl-7,8-dihydro-[1,3]dioxolo[4,5-g]quinolin-6(5H)-one (3q): Yield: $39 \mathrm{mg}(76 \%)$, white solid, mp: 121-123 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform-d) $\delta 8.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, 2H), $7.28(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.00(\mathrm{~m}, 4 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.76-6.69(\mathrm{~m}$, $1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 6.00-5.91(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{dd}, J=14.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.20-$ $3.07(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=14.7,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (75 MHz , Chloroform- d) δ $171.91,146.62,145.46,145.05,138.87$, 138.59, 136.93, 136.62, 129.47, 129.27, 129.18, 128.95 , 128.61, 128.18, 127.19, 126.49, 125.10, 107.91, 104.94, 101.74, 49.41, 44.97, 32.40, 21.76, 21.41; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 548.1503$, found 548.1493; $[\alpha]^{25}{ }_{\mathrm{D}}=+200.3(c=0.3$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); HPLC analysis: 99% ee (Chiralcel IB N-5, 20:80 ${ }^{\mathrm{i}} \mathrm{PrOH} / \mathrm{Hexane}, 0.5 \mathrm{~mL} / \mathrm{min}$), R_{t} (minor) $=$ $17.2 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ major $)=14.8 \mathrm{~min}$.

(7S,8S)-7-benzyl-8-(p-tolyl)-5-tosyl-7,8-dihydro-[1,3]dioxolo[4,5-g]quinolin-6(5H)-one (3r): Yield: $41 \mathrm{mg}(78 \%)$, white solid, mp: 122-124 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform-d) $\delta 8.01$ (d, $J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.07-6.99(\mathrm{~m}$, $2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 6.02-5.80(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~d}, J=$ $5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dd}, J=14.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.20-3.07(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.40(\mathrm{~m}, 4 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , Chloroform- d) $\delta 171.84,146.58$, 145.47, 145.05, 138.86, 136.94, 136.37, 134.00, 129.46, 129.38, 128.94, 128.61, 128.09, 127.25, 126.48, 107.83, 105.04, 101.72, 49.37, 44.71, 32.35, 21.75, 21.04; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 548.1503$, found 548.1494; $[\alpha]^{25}{ }_{\mathrm{D}}=$ $+197.3\left(c=0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; HPLC analysis: 99% ee (Chiralcel IB N-5, 20:80 ${ }^{\text {i }} \mathrm{PrOH} / \mathrm{Hexane}, 0.5$ $\mathrm{mL} / \mathrm{min}), \mathrm{R}_{\mathrm{t}}($ minor $)=22.5 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ major $)=20.7 \mathrm{~min}$.

(7S,8S)-7-benzyl-8-(4-methoxy-2-methylphenyl)-5-tosyl-7,8-dihydro-[1,3]dioxolo[4,5-g]quinolin-6 $\mathbf{(5 H})$-one (3s): Yield: 29 mg (52\%), white solid, mp: 113-115 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.08(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 6.90-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J$
$=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 6.41(\mathrm{dd}, J=8.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{dd}, J=13.3$, $1.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{dd}, J=14.4,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.21-3.14(\mathrm{~m}, 1 \mathrm{H})$, $2.51(\mathrm{~s}, 3 \mathrm{H}), 2.43-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , Chloroform- d) $\delta 172.51,158.18$, $146.36,145.39,145.20,138.49,137.78,136.34,129.54,129.46,128.79,128.58,128.24,127.95$, 126.92, 126.49, 116.89, 111.71, 107.70, 105.08, 101.70, 55.08, 49.21, 39.10, 32.46, 21.78, 20.68; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{NO}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 578.1608$, found 578.1600; $[\alpha]^{25}=+262.5(c=0.2$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); HPLC analysis: 99% ee (Chiralcel IB N-5, 20:80 $\left.{ }^{\mathrm{i}} \mathrm{PrOH} / \mathrm{Hexane}, 0.5 \mathrm{~mL} / \mathrm{min}\right), \mathrm{R}_{\mathrm{t}}($ minor $)=$ $24.8 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ major $)=22.8 \mathrm{~min}$.

(7S,8S)-7-benzyl-8-(naphthalen-2-yl)-5-tosyl-7,8-dihydro-[1,3]dioxolo[4,5-g]quinolin-6(5H)-one (3t): Yield: $48 \mathrm{mg}(86 \%)$, white solid, $\mathrm{mp}: 123-125{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) $\delta 7.94$ (d, J $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.83-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.65(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.56-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.28(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H})$, $5.97(\mathrm{dd}, J=8.0,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=14.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.31-3.14(\mathrm{~m}$, $1 \mathrm{H}), 2.65(\mathrm{dd}, J=14.7,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , Chloroform-d) $\delta 171.92$, $146.74,145.55,145.00,138.82,136.45,134.55,133.33,132.48,129.40,129.17,128.93,128.67$, $128.50,128.23,127.44,127.09,126.93,126.57,126.38,126.12,126.08,107.94,105.24,101.79,49.50$, 44.92, 32.62, 21.74; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{34} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 584.1503$, found 584.1496; $[\alpha]^{25}{ }_{\mathrm{D}}=+215.8\left(c=0.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; HPLC analysis: 99% ee (Chiralcel IB N-5, 20:80 ${ }^{\mathrm{i} P r O H} / \mathrm{Hexane}, 0.5$ $\mathrm{mL} / \mathrm{min}), \mathrm{R}_{\mathrm{t}}($ minor $)=26.5 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ major $)=22.5 \mathrm{~min}$.

(3S,4S)-3-benzyl-6,7-dimethoxy-4-(4-methoxyphenyl)-1-tosyl-3,4-dihydroquinolin-2(1H)-one (3u): Yield: $48 \mathrm{mg}(83 \%)$, white solid, $\mathrm{mp}: 108-110{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.01(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.05$ (d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}$, $3 \mathrm{H}), 3.77-3.73(\mathrm{~m}, 4 \mathrm{H}), 3.33(\mathrm{dd}, J=14.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.23-3.14(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 2.45-2.37$ (m, 1H); ${ }^{13} \mathrm{C}$ NMR (75 MHz , Chloroform- d) $\delta 171.78,158.66,147.54,146.98,145.07,138.89,136.29$, 129.57, 129.42, 129.36, 129.31, 129.01, 128.62, 128.14, 126.45, 125.65, 114.07, 110.69, 107.76, 56.35, 56.05, 55.17, 49.57, 44.32, 32.31, 21.76; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{NO}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 580.1756$, found 580.1765; $[\alpha]^{25}{ }_{\mathrm{D}}=+163.5\left(c=0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; HPLC analysis: 99% ee (Chiralcel IH, 20:80 $\left.{ }^{i} \mathrm{PrOH} / \mathrm{Hexane}, 0.5 \mathrm{~mL} / \mathrm{min}\right), \mathrm{R}_{\mathrm{t}}($ minor $)=31.9 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ major $)=42.1 \mathrm{~min}$.

(7S,8S)-7-benzyl-8-(4-methoxyphenyl)-7,8-dihydro-[1,3]dioxolo[4,5-g]quinolin-6(5H)-one (4): Yield: $49 \mathrm{mg}(91 \%)$, white solid, mp: $116-118{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform-d) $\delta 8.48(\mathrm{~s}, 1 \mathrm{H})$, $7.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.05-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.85-6.71$ $(\mathrm{m}, 2 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 5.85(\mathrm{dd}, J=14.9,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 4 \mathrm{H}), 3.47(\mathrm{dd}, J=14.5,4.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.29$ (ddd, $J=10.6,6.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.44 (dd, $J=14.6,10.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , Chloroform- d) $\delta 172.06,158.76,147.07,143.50,139.74,132.02,130.16,129.06,128.46,126.25$, 121.22, 114.21, 108.42, 101.22, 97.80, 55.20, 46.14, 44.73, 31.75; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 388.1544$, found 388.1558; $[\alpha]^{25}{ }_{\mathrm{D}}=+226.4\left(c=0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; HPLC analysis: 99% ee (Chiralcel IB N-5, 20:80 $\left.{ }^{\mathrm{I} P r O H} / \mathrm{Hexane}, 0.5 \mathrm{~mL} / \mathrm{min}\right), \mathrm{R}_{\mathrm{t}}($ minor $)=23.9 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ major $)=18.0 \mathrm{~min}$.

(7S,8S)-7-benzyl-8-(4-methoxyphenyl)-5-tosyl-5,6,7,8-tetrahydro-[1,3]dioxolo[4,5-g]quinoline (5): Yield: $41 \mathrm{mg}(76 \%)$, white solid, mp: 115-117 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) $\delta 7.78$ (d, $J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.22-7.12(\mathrm{~m}, 3 \mathrm{H}), 6.83$ ($\mathrm{s}, 1 \mathrm{H}$), $6.71(\mathrm{q}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 5.85(\mathrm{dd}, J=10.3,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.05(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H})$, 3.77 (s, 3H), $3.49(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , Chloroform- d) $\delta 158.03,146.64,145.93$, 143.51, 140.77, 137.97, 134.46, 133.12, 129.93, 129.39, 128.95, 128.50, 127.47, 127.43, 126.07, 113.94, 107.71, 101.42, 60.23, 55.23, 46.03, 45.27, 34.77, 21.63; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$528.1840, found 528.1824; $[\alpha]^{25} \mathrm{D}=+175.7\left(c=0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; HPLC analysis: 99% ee (Chiralcel IB N-5, 20:80 ${ }^{\text {i PrOH}} /$ Hexane, 0.5 $\mathrm{mL} / \mathrm{min}), \mathrm{R}_{\mathrm{t}}($ minor $)=26.4 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ major $)=24.2 \mathrm{~min}$.

7-benzyl-8-(4-methoxyphenyl)-5-tosyl-[1,3]dioxolo[4,5-g]quinolin-6(5H)-one (6): Yield: 47 mg (87%), white solid, mp: $118-120{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform- d) $\delta 7.88$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.09(\mathrm{~m}, 4 \mathrm{H}), 7.07-7.01(\mathrm{~m}, 2 \mathrm{H}), 7.00-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.90(\mathrm{dd}, J=$ $7.4,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 6.02(\mathrm{~s}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , Chloroform-d) $\delta 159.52,154.16,150.72,150.46,147.73$, 144.80, 142.57, 139.71, 134.81, 130.43, $129.29,129.07,128.44,128.15,125.90,124.41,121.52,114.06,105.01,102.28,101.81,55.36,33.34$, 21.73; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{NO}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 540.1476$, found 540.1491;

VII: ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and HPLC spectra:

50	190	180	170	160	150	140	130	120	${ }_{110}$	$\stackrel{1}{100}$	${ }_{90}$	$\stackrel{1}{80}$	${ }_{70}$	$\stackrel{1}{60}$	$\stackrel{1}{50}$	$\stackrel{1}{40}$	30	${ }^{1} 0$	10	0

3c

$\stackrel{\text { ¢ }}{\stackrel{0}{0}}$		 	$\begin{aligned} & \text { OMO } \\ & 0000 \\ & 000 \\ & \text { No } \\ & \text { No } \\ & \text { Nion } \end{aligned}$		

[^0]

[^1]

\footnotetext{

స

울్N우 がダす	$\stackrel{\circ}{0}$

3h 응

¢	O	
$\stackrel{\sim}{\sim}$	0	
「		－5\％

10	180	170	160	${ }_{150}^{1}$	140	130	120	110	100	$\stackrel{1}{90}$	$\stackrel{1}{80}$	70	${ }_{6} 1$	50	10	$\stackrel{1}{30}$	$\stackrel{1}{20}$	${ }_{10}^{10}$

® $\stackrel{\text { ® }}{+}$ $\stackrel{+}{+}$		 		セ゚カ゚がす	

50	190	180	170	160	150	${ }_{140}^{14}$	130	$\stackrel{1}{120}$	110	${ }_{100}^{1}$	$\stackrel{1}{90}$	80	10	1	50	$\stackrel{1}{40}$	30	${ }_{20}^{1}$	10	0

$3 n$

¢ ${ }_{\text {¢ }}^{6}$	$\stackrel{\infty}{\bullet}$
へ人゚	¢

[^2]

3p

気笑
$\stackrel{\infty}{\underset{\sim}{\sim}} \stackrel{\circ}{\sim}$

$3 q$

		$\stackrel{\text { ¢ }}{\text { ¢ }}$

$77.466 \mathrm{CDCI3}$
${ }_{7}^{7.619 \mathrm{CDCl}}$

으ㅇㅡㅡ응
0
0
0

은 $\frac{m}{\mathrm{O}}$
OU
No
Nペ

[^3]
-2.440

HPLC spectra of products.

VWD1B, Wavelength $=254 \mathrm{~nm}$

Ret.Time	Area	Height	Area\%
22.457	239.91	8.46	6.17
26.525	1937.15	51.32	49.86
27.922	1708.21	44.67	43.97
Total	3885.27	104.45	100.00

VWD1B, Wavelength $=254 \mathrm{~nm}$

Ret.Time	Area	Height	Area\%
26.634	1111.79	31.15	99.70
28.490	3.32	0.08	0.30
Total	1115.11	31.23	100.00

VWD1B,Wavelength $=254 \mathrm{~nm}$

Ret.Time	Area	Height	Area \%
21.089	1187.07	46.60	99.87
23.948	1.49	0.05	0.13
Total	1188.56	46.66	100.00

3c

VWD1B,Wavelength $=254 \mathrm{~nm}$

Ret.Time	Area	Height	Area\%
22.070	111.21	4.15	7.45
23.153	641.45	22.62	42.97
25.734	633.62	19.01	42.44
28.238	106.61	2.78	7.14
Total	1492.88	48.56	100.00

VWD1B,Wavelength $=254 \mathrm{~nm}$

Ret.Time	Area	Height	Area\%
23.119	1636.29	58.91	99.94
25.351	1.06	0.02	0.06
Total	1637.35	58.93	100.00

VWD1B, Wavelength $=254 \mathrm{~nm}$

Ret.Time	Area	Height	Area\%
17.348	253.61	12.27	10.32
18.136	988.45	46.90	40.24
20.189	966.80	39.61	39.36
24.076	247.42	7.60	10.07
Total	2456.28	106.39	100.00

VWD1B, Wavelength=254 nm

VWD1B, Wavelength $=254 \mathrm{~nm}$

Ret.Time	Area	Height	Area\%
18.155	1851.27	89.24	99.58
20.561	7.74	0.13	0.42
Total	1859.01	89.37	100.00

VWD1B, Wavelength=254 nm

Ret.Time	Area	Height	Area\%
22.152	733.70	26.85	10.94
26.341	2636.78	81.24	39.32
28.438	719.08	20.17	10.72
29.752	2616.77	69.32	39.02
Total	6706.32	197.59	100.00

VWD1B, Wavelength=254nm

VWD1B,Wavelength $=254 \mathrm{~nm}$

Ret.Time	Area	Height	Area\%
26.438	1521.57	47.20	99.60
29.717	6.04	0.08	0.40
Total	1527.61	47.28	100.00

VIWD1B, Wavelength $=254 \mathrm{~nm}$

VWD1B,Wavelength $=254 \mathrm{~nm}$

VWD1B,Wavelength $=254 \mathrm{~nm}$

Ret.Time	Area	Height	Area\%
29.406	2826.86	66.46	99.70
39.624	8.64	0.22	0.30
Total	2835.50	66.68	100.00

$3 g$

VWD1B, Wavelength $=254 \mathrm{~nm}$

Ret.Time	Area	Height	Area\%
22.970	3852.78	128.96	24.59
26.801	7786.16	139.19	49.70
32.431	4027.86	92.34	25.71
Total	15666.81	360.48	100.00

VWD1B, Wavelength $=254 \mathrm{~nm}$

Ret.Time	Area	Height	Area\%
26.597	1517.25	42.61	99.98
32.967	0.25	0.01	0.02
Total	1517.50	42.62	100.00

3h

VWD1B, Wavelength $=254 \mathrm{~nm}$

Ret.Time	Area	Height	Area\%
28.458	3763.78	87.51	23.57
33.445	8020.53	156.20	50.24
41.933	4181.08	60.92	26.19
Total	15965.39	304.64	100.00

VWD1B, Wavelength $=254 \mathrm{~nm}$

Ret.Time	Area	Height	Area\%
33.737	2542.97	49.56	99.91
41.884	2.19	0.02	0.09
Total	2545.16	49.57	100.00

$3 i$

VWD1B, Wavelength $=254 \mathrm{~nm}$

Ret.Time	Area	Height	Area\%
29.498	852.45	19.25	23.87
34.418	1790.43	23.93	50.14
45.509	928.31	13.19	25.99
Total	3571.19	56.37	100.00

VWD1B,Wavelength $=254 \mathrm{~nm}$

Ret.Time	Area	Height	Area\%
34.210	6363.78	123.44	99.91
45.865	5.46	0.09	0.09
Total	6369.25	123.52	100.00

3j

VWD1B,Wavelength $=254 \mathrm{~nm}$

Ret.Time	Area	Height	Area\%
20.013	1166.14	40.62	17.83
24.198	147.65	4.78	2.26
25.227	3131.64	84.25	47.89
26.818	2093.31	53.37	32.01
Total	6538.74	183.03	100.00

VWD1B, Wavelength $=254 \mathrm{~nm}$

Ret.Time	Area	Height	Area\%
25.173	6840.25	197.49	99.78
26.869	14.94	0.26	0.22
Total	6855.19	197.75	100.00

3k

VWD1B,Wavelength $=254 \mathrm{~nm}$

Ret.Time	Area	Height	Area\%
31.698	2249.86	50.93	39.89
33.246	580.05	12.59	10.28
42.213	563.48	9.54	9.99
55.555	2247.01	27.83	39.84
Total	5640.40	100.89	100.00

VWD1B, Wavelength=254 nm

VWD1B,Wavelength $=254 \mathrm{~nm}$

Ret.Time	Area	Height	Area\%
31.780	1260.75	28.53	99.93
55.437	0.90	0.01	0.07
Total	1261.65	28.54	100.00

VWD1B, Wavelength $=254 \mathrm{~nm}$

Ret.Time	Area	Height	Area\%
23.778	482.75	16.12	10.05
29.499	1963.05	46.63	40.88
32.843	459.69	10.38	9.57
35.052	1896.14	34.13	39.49
Total	4801.62	107.25	100.00

VWD1B, Wavelength $=254 \mathrm{~nm}$

Ret.Time	Area	Height	Area\%
29.502	1684.30	40.48	99.90
35.293	1.64	0.02	0.10
Total	1685.94	40.51	100.00

VWD1B, Wavelength=254 nm

VWD1B, Wavelength $=254 \mathrm{~nm}$

Ret.Time	Area	Height	Area\%
22.761	243.19	8.71	10.92
24.299	866.75	30.28	38.93
26.322	232.95	7.40	10.46
27.148	883.46	25.18	39.68
Total	2226.35	71.57	100.00

VWD1B, Wavelength $=254 \mathrm{~nm}$

Ret.Time	Area	Height	Area\%
24.300	1741.05	60.37	99.96
27.272	0.76	0.03	0.04
Total	1741.81	60.40	100.00

VWD1B, Wavelength $=254 \mathrm{~nm}$

Ret.Time	Area	Height	Area\%
14.696	593.02	34.50	19.25
18.125	1516.61	44.05	49.23
25.905	971.00	27.37	31.52
Total	3080.63	105.91	100.00

VWD1B, Wavelength $=254 \mathrm{~nm}$

Ret.Time	Area	Height	Area\%
18.059	1957.27	90.97	99.99
26.051	0.12	0.01	0.01
Total	1957.39	90.99	100.00

VWD1B,Wavelength $=254 \mathrm{~nm}$

Ret.Time	Area	Height	Area\%
13.191	127.49	7.65	12.97
16.138	487.69	18.29	49.62
23.692	367.60	11.31	37.40
Total	982.78	37.24	100.00

VWD1B, Wavelength $=254 \mathrm{~nm}$

Ret.Time	Area	Height	Area\%
16.126	1792.50	89.54	99.94
23.717	1.11	0.03	0.06
Total	1793.61	89.57	100.00

VWD1B, Wavelength $=254 \mathrm{~nm}$

Ret.Time	Area	Height	Area\%
18.453	1171.16	51.67	16.03
22.353	3653.48	122.04	49.99
24.172	2483.09	77.58	33.98
Total	7307.73	251.29	100.00

VWD1B, Wavelength $=254 \mathrm{~nm}$

Ret.Time	Area	Height	Area\%
22.254	16361.27	507.48	99.85
24.091	24.79	0.30	0.15
Total	16386.07	507.78	100.00

3q
VWD1B, Wavelength=254 nm

VWD1B, Wavelength $=254 \mathrm{~nm}$

Ret.Time	Area	Height	Area\%
15.545	681.94	33.98	11.36
17.532	2960.98	118.43	49.34
20.562	2358.03	92.38	39.29
Total	6000.96	244.79	100.00

VWD1B, Wavelength $=254 \mathrm{~nm}$

Ret.Time	Area	Height	Area\%
17.509	2426.51	114.87	99.99
20.316	0.26	0.01	0.01
Total	2426.77	114.89	100.00

VWD1B, Wavelength $=254 \mathrm{~nm}$

Ret.Time	Area	Height	Area\%
17.595	331.13	13.77	14.34
20.609	1148.57	42.59	49.73
22.038	829.82	28.57	35.93
Total	2309.52	84.93	100.00

VWD1B, Wavelength $=254 \mathrm{~nm}$

Ret.Time	Area	Height	Area\%
20.773	1118.45	40.59	99.62
22.514	4.32	0.07	0.38
Total	1122.77	40.66	100.00

$3 s$

VWDIB, Wavelength $=254 \mathrm{~nm}$

Ret.Time	Area	Height	Area\%
20.449	442.31	18.34	30.43
22.898	267.79	8.67	18.42
23.767	482.47	16.16	33.19
24.509	260.90	8.57	17.95
Total	1453.46	51.74	100.00

VWD1B,Wavelength $=254 \mathrm{~nm}$

Ret.Time	Area	Height	Area\%
22.832	1170.68	40.29	99.76
24.824	2.86	0.05	0.24
Total	1173.54	40.35	100.00

VWD1B, Wavelength $=254 \mathrm{~nm}$

VWD1B, Wavelength $=254 \mathrm{~nm}$

VWD1B,Wavelength $=254 \mathrm{~nm}$

Ret.Time	Area	Height	Area\%
28.482	256.27	3.69	11.40
31.829	873.20	11.10	38.85
34.285	73.83	0.86	3.28
42.202	1044.57	7.85	46.47
Total	2247.88	23.50	100.00

VIWD1B, Wavelength $=254 \mathrm{~nm}$

VWD1B, Wavelength $=254 \mathrm{~nm}$

Ret.Time	Area	Height	Area\%
31.962	2.26	0.03	0.23
42.174	962.76	7.12	99.77
Total	965.03	7.16	100.00

VWD1B, Wavelength $=254 \mathrm{~nm}$

Ret.Time	Area	Height	Area\%
16.898	326.16	11.16	18.41
18.109	656.76	26.54	37.08
20.004	215.46	9.13	12.17
24.308	572.79	18.42	32.34
Total	1771.16	65.24	100.00

VWD1B, Wavelength=254

VWD1B, Wavelength $=254 \mathrm{~nm}$

Ret.Time	Area	Height	Area\%
18.074	1904.69	92.69	99.99
23.977	0.11	0.00	0.01
Total	1904.80	92.70	100.00

VWD1B, Wavelength $=254 \mathrm{~nm}$

Ret.Time	Area	Height	Area\%
16.708	344.58	13.00	18.28
19.208	331.82	12.10	17.61
24.313	621.51	18.03	32.98
26.419	586.68	13.96	31.13
Total	1884.59	57.08	100.00

VWD1B, Wavelength $=254 \mathrm{~nm}$

Ret.Time	Area	Height	Area\%
24.285	1743.29	51.17	99.98
26.432	0.43	0.02	0.02
Total	1743.72	51.19	100.00

[^0]:

[^1]:

[^2]:

[^3]:

