Supporting Information

Rhodium-Catalyzed C–C Bond Alkenylation and Arylation of *α*-Branched *N*-Sulfonyl Amines

Lun Xu,^a Yucheng Liu,^a Hang Shi,^{*a b} and Lun Li^{*a}

^aL. Xu, Y. Liu, Prof. Dr. H. Shi, Dr. L. Li

Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, School of Science and Research Center for Industries of the Future, Westlake University 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China. E-mail: shihang@westlake.edu.cn, lilun@westlake.edu.cn.

^bProf. Dr. H. Shi Institute of Natural Sciences, Westlake Institute for Advanced Study 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.

Table of Contents

1. General Information	3
2. Experimental Procedures	4
2.1 Preparation of α -Branched Amines	4
2.2 Preparation of Rh(III) Catalysts	8
2.3 Condition Optimization	10
2.4 Alkenylation of α -Branched Amine	11
2.5 Arylation of <i>α</i> -Branched Amine	18
2.6 One-Pot Protocol for Divergent Synthesis	19
2.7 Mechanism Study	19
3. X-Ray Crystallographic Data	21
4. NMR Spectra	23
5. Reference	73

1. General Information

Solvents

Anhydrous tetrahydrofuran, 1,4-dioxane and toluene were freshly distilled from sodium-benzophenone. Anhydrous 1,2-dimethoxyethane (DME) and 1,2-dichlorethane (DCE) were purchased from Energy Chemical (water \leq 50 ppm by K.F.) and stored in glove box with 4 Å molecular sieves. Chloroform-*d*₁ and DMSO-*d*₆ were purchased from J&K Scientific Co., Ltd.

Chromatography

Thin layer chromatography (TLC) (250 µm thickness, F-254 indicator) and visualized by UV irradiation and staining with phosphomolybdic acid or iodine developing agents. Flash column chromatography was performed on 0.25 mm silica gel 60-F254, which was purchased from Yantai Jiangyou Co., China.

Spectroscopy and Instruments

Proton nuclear magnetic resonance (¹H NMR) and carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on Bruker AVANCE NEO instrument (500 MHz and 600 MHz). Chemical shifts are reported in parts per million (ppm) referenced to the center peak of the residual solvent signal (¹H NMR: CDCl₃ = 7.26 ppm, DMSO- d_6 = 2.50 ppm; ¹³C NMR: CDCl₃ = 77.00 ppm, DMSO- d_6 = 39.5 ppm). Peak multiplicities are reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, td = triplet of doublets, m = multiplet, coupling constants, *J*, were reported in Hertz unit (Hz). High-resolution mass spectra (HRMS) were recorded on a Waters Mass spectrometer using ESI-TOF (electrospray ionization-time of flight). X-ray crystallographic analyses were performed on Bruker D8 Venture.

Starting Materials

Dichloro(pentamethylcyclopentadienyl)rhodium(III) dimer and RhCl₃·H₂O was purchased from Sinocompound Technology Co., Ltd. Silver carbonate and silver phosphate was purchased from J&K Scientific Co., Ltd. Other commercially available reagents were purchased from Energy Chemical and J&K Scientific Co., Ltd. All imines were synthesized following literature procedures^[1] and diethoxydiarylsilanes were synthesized following literature procedures.^[2] The [Cp*Rh(CH₃CN)₃](SbF₆)₂, [Cp*Rh(CH₃CN)₃](PF₆)₂ and [Cp*Rh(CH₃CN)₃](BF₄)₂ were synthesized following literature procedures.^[3]

2. Experimental Procedures

2.1 Preparation of *α*-Branched Amines

General procedure: The α -branched primary amines **1a–1t** and **S1–S4** were synthesized following this procedure. A 50 mL flame-dried flask was charged with stir bar, bromide^[4] (3 mmol, 1.0 equiv.), and anhydrous THF (30 mL). *n*-BuLi solution (2.2 mL, 1.2 equiv., 1.6 M in hexane) was added dropwise to the reaction mixture at -78 °C. The mixture was stirred at -78 °C for 30 min, and then a solution of imine (3.6 mmol, 1.2 equiv.) in THF (10 mL) was added. The resulting reaction mixture was stirred -78 °C for 30 min, and then at room temperature for additional 2 hours. A saturated aqueous NH₄Cl solution (20 mL) was added at 0 °C. The mixture was extracted with ethyl acetate (30 mL), dried over Na₂SO₄, and then concentrated *in vacuo*. The residue was further purified by silica gel chromatography eluting with PE/EtOAc/CH₂Cl₂ (5:1:1, v/v/v) to afford the corresponding Ts-amine.

N-((3-methyl-2-(pyridin-2-yl)phenyl)(phenyl)methyl)benzenesulfonamide (S1)

White solid. ¹H NMR (600 MHz, DMSO- d_6 , 60 °C) δ 8.63 (s, 1H), 8.47 (s, 1H), 7.70 (s, 1H), 7.60 (d, J = 6.9 Hz, 2H), 7.49 (t, J = 7.4 Hz, 1H), 7.38 (t, J = 7.7 Hz, 3H), 7.35-7.29 (m, 1H), 7.21 (t, J = 7.7 Hz, 1H), 7.14 (d, J = 7.5 Hz, 1H), 7.10-7.03 (m, 3H), 6.82 (s, 3H), 5.38 (s, 1H), 1.90 (s, 3H). ¹³C NMR (151 MHz, DMSO- d_6 , 60 °C) δ 157.4, 149.0, 141.2, 141.1, 139.0, 138.9, 135.9, 135.0, 131.6, 128.4, 128.3, 127.5, 127.5, 126.8, 126.4, 126.2, 124.7, 121.9, 57.2, 19.6. HRMS (ESI) m/z calcd. for C₂₅H₂₃N₂O₂S [M+H]⁺: 415.1475, found 415.1479.

4-methoxy-N-((3-methyl-2-(pyridin-2-yl)phenyl)(phenyl)methyl)benzenesulfonamide (S2)

Me

White solid. ¹H NMR (600 MHz, DMSO- d_6 , 60 °C) δ 8.63 (s, 1H), 8.35-8.20 (m, 1H), 7.70 (s, 1H), 7.53 (d, J = 7.9 Hz, 2H), 7.38 (d, J = 6.9 Hz, 1H), 7.35-7.29 (m, 1H), 7.21 (t, J = 7.7 Hz, 1H), 7.14 (d, J = 7.6 Hz, 1H), 7.11-7.05 (m, 3H), 6.92-6.88 (m, 2H), 6.83 (s, 2H), 5.33 (s, 1H), 3.79 (s, 3H), 1.91 (s, 3H). ¹³C NMR (151 MHz, DMSO- d_6 , 60 °C) δ 161.7, 157.4, 149.0, 141.3, 139.1, 138.9, 135.8, 135.0, 133.0, 128.4, 128.3, 127.5, 126.9, 126.3, 124.8, 121.9, 113.6, 57.1, 55.4, 19.7. HRMS (ESI) m/z calcd. for C₂₆H₂₅N₂O₃S [M+H]*: 445.1580, found 445.1585.

4-fluoro-N-((3-methyl-2-(pyridin-2-yl)phenyl)(phenyl)methyl)benzenesulfonamide (S3)

White solid. ¹H NMR (600 MHz, DMSO- d_6 , 60 °C) δ 8.65 (s, 1H), 8.51 (d, J = 8.6 Hz, 1H), 7.73 (s, 1H), 7.64 (s, 2H), 7.37-7.29 (m, 2H), 7.22-7.15 (m, 3H), 7.14 (d, J = 7.6 Hz, 1H), 7.12-7.07 (m, 3H), 6.83 (s, 2H), 5.37 (s, 1H), 1.91 (s, 3H). ¹³C NMR (151 MHz, DMSO- d_6 , 60 °C) δ 163.6 (d, J = 250.6 Hz), 157.3, 149.0, 140.9, 138.9, 138.7, 137.6 (d, J = 3.2 Hz), 135.9, 135.1, 129.2 (d, J = 9.3 Hz), 128.4, 127.6, 127.5, 126.9, 126.5, 124.7, 121.9, 115.3 (d, J = 22.3 Hz), 57.3, 19.6. HRMS (ESI) m/z calcd. for C₂₅H₂₂FN₂O₂S [M+H]⁺: 433.1381, found 433.1384.

N-((3-methyl-2-(pyridin-2-yl)phenyl)(phenyl)methyl)methanesulfonamide (S4)

чN ň

White solid. ¹H NMR (600 MHz, DMSO- d_6 , 60 °C) δ 8.68 (s, 1H), 8.03 (d, J = 9.0 Hz, 1H), 7.79 (s, 1H), 7.50 (d, J = 7.8 Hz, 1H), 7.42-7.31 (m, 2H), 7.25-7.20 (m, 3H), 7.19-7.13 (m, 1H), 7.07 (s, 2H), 5.42 (d, J = 9.0 Hz, 1H), 2.65 (s, 3H), 1.97 (s, 3H). ¹³C NMR (151 MHz, DMSO- d_6 , 60 °C) δ 157.5, 149.1, 141.9, 139.7, 139.2, 136.1, 135.3, 128.7, 128.0, 127.7, 126.7, 126.5, 124.9, 122.1, 56.8, 41.2, 19.8. HRMS (ESI) m/z calcd. for C₂₀H₂₁N₂O₂S [M+H]*: 353.1318, found 353.1319.

4-methyl-N-((3-methyl-2-(pyridin-2-yl)phenyl)(phenyl)methyl)benzenesulfonamide (1a)

White solid. ¹H NMR (600 MHz, DMSO- d_6 , 60 °C) δ 8.62 (s, 1H), 8.36 (s, 1H), 7.69 (s, 1H), 7.47 (d, J = 7.5 Hz, 2H), 7.37 (d, J = 6.8 Hz, 1H), 7.35-7.29 (m, 1H), 7.23-7.17 (m, 3H), 7.14 (d, J = 7.5 Hz, 1H), 7.10-7.05 (m, 3H), 6.82 (s, 2H), 5.35 (s, 1H), 2.32 (s, 3H), 1.91 (s, 3H). ¹³C NMR (151 MHz, DMSO- d_6 , 60 °C) δ 157.4, 149.0, 141.9, 141.3, 139.2, 138.9, 138.4, 135.8, 135.0, 128.8, 128.3, 127.5, 127.5, 126.8, 126.3, 126.2, 124.7, 121.9, 57.1, 20.6, 19.7. HRMS (ESI) m/z calcd. for C₂₆H₂₅N₂O₂S [M+H]⁺: 429.1631, found 429.1637.

N-((2-fluorophenyl)(3-methyl-2-(pyridin-2-yl)phenyl)methyl)-4-methylbenzenesulfonamide (1b)

White solid. ¹H NMR (600 MHz, DMSO- d_6 , 60 °C) δ 8.56 (s, 1H), 8.29 (d, J = 8.4 Hz, 1H), 7.67 (s, 1H), 7.46 (d, J = 8.0 Hz, 2H), 7.43 (d, J = 7.8 Hz, 1H), 7.31-7.28 (m, 1H), 7.22 (t, J = 7.7 Hz, 1H), 7.18-7.15 (m, 3H), 7.15-7.09 (m, 1H), 6.93-6.88 (m, 2H), 6.80-6.74 (m, 1H), 5.72 (d, J = 8.0 Hz, 1H), 2.31 (s, 3H), 1.88 (s, 3H). ¹³C NMR (151 MHz, DMSO- d_6 , 60 °C) δ 158.7 (d, J = 247.3 Hz), 157.1 , 149.0, 141.8, 139.0, 138.3, 137.8, 135.8, 135.2, 129.4 (d, J = 3.3 Hz), 128.6, 128.6 (d, J = 29.7 Hz), 128.5, 127.7 (d, J = 14.1 Hz), 127.2, 126.2, 124.7, 124.3, 123.4 (d, J = 3.4 Hz), 121.7, 114.5 (d, J = 21.8 Hz), 50.8, 20.6, 19.5. HRMS (ESI) m/z calcd. for C₂₆H₂₄FN₂O₂S [M+H]⁺: 447.1537, found 447.1539.

N-((2-methoxyphenyl)(3-methyl-2-(pyridin-2-yl)phenyl)methyl)-4-methylbenzenesulfonamide (1c)

White solid. ¹H NMR (600 MHz, DMSO- d_6 , 60 °C) δ 8.55 (s, 1H), 7.93 (s, 1H), 7.76-7.53 (m, 1H), 7.51 (d, J = 7.9 Hz, 1H), 7.48 (d, J = 8.0 Hz, 2H), 7.31-7.21 (m, 2H), 7.17 (d, J = 8.0 Hz, 2H), 7.14 (d, J = 7.5 Hz, 1H), 7.03 (td, J = 7.8, 1.7 Hz, 1H), 6.83 (d, J = 7.6 Hz, 1H), 6.64 (t, J = 7.5 Hz, 1H), 6.56 (d, J = 8.2 Hz, 1H), 5.81 (d, J = 7.8 Hz, 1H), 3.17 (s, 3H), 2.32 (s, 3H), 1.87 (s, 3H).¹³C NMR (151 MHz, DMSO- d_6 , 60 °C) δ 157.5, 155.4, 148.8, 141.5, 139.6, 139.1, 138.7, 135.4, 135.0, 128.7, 128.6, 128.4, 128.0, 127.8, 126.9, 126.3, 124.9, 124.4, 121.3, 119.3, 109.9, 54.4, 51.0, 20.6, 19.5. HRMS (ESI) *m/z* calcd. for C₂₇H₂₇N₂O₃S [M+H]⁺: 459.1737, found 459.1736.

4-methyl-N-((3-methyl-2-(pyridin-2-yl)phenyl)(m-tolyl)methyl)benzenesulfonamide (1d)

White solid. ¹H NMR (500 MHz, DMSO- d_6 , 60 °C) δ 8.63 (d, J = 4.8 Hz, 1H), 8.29 (d, J = 7.4 Hz, 1H), 7.69 (s, 1H), 7.46 (d, J = 7.9 Hz, 2H), 7.42-7.29 (m, 2H), 7.24-7.12 (m, 4H), 6.94 (t, J = 7.6 Hz, 1H), 6.86 (d, J = 7.5 Hz, 1H), 6.68-6.39 (m, 2H), 5.32 (s, 1H), 2.31 (s, 3H), 2.07 (s, 3H), 1.90 (s, 3H). ¹³C NMR (126 MHz, DMSO- d_6 , 60 °C) δ 157.5, 149.0, 141.9, 141.0, 139.4, 138.9, 138.5, 136.5, 135.9, 135.1, 128.8, 128.4, 127.6, 127.5, 127.5, 127.0, 126.3, 124.9, 124.1, 121.9, 57.3, 20.7, 19.7. HRMS (ESI) *m*/*z* calcd. for C₂₇H₂₇N₂O₂S [M+H]⁺: 443.1788, found 443.1790.

N-((3-bromophenyl)(3-methyl-2-(pyridin-2-yl)phenyl)methyl)-4-methylbenzenesulfonamide (1e)

White solid. ¹H NMR (500 MHz, DMSO- d_6 , 60 °C) δ 8.62 (d, J = 4.9 Hz, 1H), 8.44 (s, 1H), 7.71 (s, 1H), 7.44 (d, J = 7.9 Hz, 2H), 7.39-7.30 (m, 2H), 7.28-7.14 (m, 5H), 7.03 (t, J = 7.8 Hz, 1H), 6.93-6.75 (m, 2H), 5.33 (s, 1H), 2.32 (s, 3H), 1.91 (s, 3H). ¹³C NMR (126 MHz, DMSO- d_6 , 60 °C) δ 157.2, 149.1, 143.8, 142.2, 138.9, 138.6, 138.1, 136.1, 135.3, 129.7, 129.5, 129.3, 129.0, 128.8, 127.8, 126.2, 125.9, 124.9, 124.7, 122.1, 121.0, 56.8, 20.7, 19.7. HRMS (ESI) m/z calcd. for C₂₆H₂₄BrN₂O₂S [M+H]⁺: 507.0736, found 507.0742.

N-((4-chlorophenyl)(3-methyl-2-(pyridin-2-yl)phenyl)methyl)-4-methylbenzenesulfonamide (1f)

White solid. ¹H NMR (600 MHz, DMSO- d_6 , 60 °C) δ 8.17 (s, 1H), 7.97 (d, J = 8.4 Hz, 1H), 7.26 (s, 1H), 7.01 (d, J = 7.8 Hz, 2H), 6.91 (d, J = 7.9 Hz, 1H), 6.89-6.85 (m, 1H), 6.78 (t, J = 7.7 Hz, 1H), 6.76-6.66 (m, 5H), 6.52-6.33 (m, 2H), 4.89 (s, 1H), 1.87 (s, 3H), 1.46 (s, 3H). ¹³C NMR (151 + 1.27) (s, 3H), 1.46 (s, 3H). ¹³C NMR (151 + 1.27) (s, 3H), 1.46 (s, 3H). ¹³C NMR (151 + 1.27) (s, 3H), 1.46 (s, 3H). ¹³C NMR (151 + 1.27) (s, 3H), 1.46 (s, 3H). ¹³C NMR (151 + 1.27) (s, 3H), 1.46 (s, 3H). ¹³C NMR (151 + 1.27) (s, 3H), 1.46 (s, 3H). ¹³C NMR (151 + 1.27) (s, 3H), 1.46 (s, 3H). ¹³C NMR (151 + 1.27) (s, 3H), 1.46 (s, 3H). ¹³C NMR (151 + 1.27) (s, 3H), 1.46 (s, 3H). ¹³C NMR (151 + 1.27) (s, 3H), 1.46 (s, 3H). ¹³C NMR (151 + 1.27) (s, 3H), 1.46 (s, 3H). ¹³C NMR (151 + 1.27) (s, 3H

MHz, DMSO- d_6 , 60 °C) δ 157.2, 149.0, 142.0, 140.3, 138.9, 138.7, 138.2, 135.9, 135.1, 131.2, 128.8, 128.6, 128.5, 127.7, 127.4, 126.2, 124.8, 121.9, 56.6, 20.6, 19.7. HRMS (ESI) m/z calcd. for C₂₆H₂₄ClN₂O₂S [M+H]⁺: 463.1242, found 463.1245.

N-((4-methoxyphenyl)(3-methyl-2-(pyridin-2-yl)phenyl)methyl)-4-methylbenzenesulfonamide (1g)

White solid. ¹H NMR (600 MHz, DMSO- d_6 , 60 °C) δ 8.62 (s, 1H), 8.27 (s, 1H), 7.77-7.68 (m, 1H), 7.47 (d, J = 7.8 Hz, 2H), 7.42-7.34 (m, 1H), 7.34-7.29 (m, 1H), 7.24-7.15 (m, 3H), 7.13 (d, J = 7.5 Hz, 1H), 6.82-6.56 (m, 4H), 5.27 (s, 1H), 3.65 (s, 3H), 2.32 (s, 3H), 1.90 (s, 3H). ¹³C NMR (151 MHz, DMSO- d_6 , 60 °C) δ 157.8, 157.5, 149.0, 141.8, 138.8, 138.4, 135.8, 134.9, 133.3, 129.0, 128.7, 128.1, 128.1, 127.5, 126.2, 125.4, 124.7, 121.8, 113.0, 56.6, 54.8, 20.6, 19.6. HRMS (ESI) *m/z* calcd. for C₂₇H₂₇N₂O₃S [M+H]⁺: 459.1737, found 459.1734.

N-(furan-2-yl(3-methyl-2-(pyridin-2-yl)phenyl)methyl)-4-methylbenzenesulfonamide (1h)

White solid. ¹H NMR (600 MHz, DMSO- d_6 , 60 °C) δ 8.63 (m, 1H), 8.42 (d, J = 7.2 Hz, 1H), 7.77 (t, J = 7.3 Hz, 1H), 7.48 (d, J = 8.0 Hz, 2H), 7.39 (d, J = 7.6 Hz, 1H), 7.36-7.31 (m, 2H), 7.23-7.15 (m, 4H), 7.03 (s, 1H), 6.19-6.12 (m, 1H), 5.61 (d, J = 3.2 Hz, 1H), 5.32 (s, 1H), 2.32 (s, 3H), 1.93 (s, 3H). ¹³C NMR (151 MHz, DMSO- d_6 , 60 °C) δ 157.1, 153.1, 149.0, 141.9, 141.8, 138.9, 138.3, 136.8, 135.8, 135.0, 128.7, 128.7, 127.5, 126.2, 124.8, 124.5, 121.9, 109.9, 107.3, 51.6, 20.6, 19.6. HRMS (ESI) *m*/z calcd. for C₂₆H₂₅N₂O₂S [M+H]⁺: 429.1631, found 429.1637.

4-methyl-N-((3-methyl-2-(pyridin-2-yl)phenyl)(thiophen-2-yl)methyl)benzenesulfonamide (1i)

White solid. ¹H NMR (600 MHz, DMSO- d_6 , 60 °C) δ 8.63 (s, 1H), 8.57 (d, J = 5.5 Hz, 1H), 7.75 (t, J = 7.7 Hz, 1H), 7.50 (d, J = 7.9 Hz, 2H), 7.43 (d, J = 7.7 Hz, 1H), 7.36-7.31 (m, 1H), 7.25 (dd, J = 5.2, 1.2 Hz, 1H), 7.23-7.14 (m, 4H), 6.98 (s, 1H), 6.75 (dd, J = 5.1, 3.6 Hz, 1H), 6.37 (s, 1H), 5.48 (s, 1H), 2.32 (s, 3H), 1.94 (s, 3H). ¹³C NMR (151 MHz, DMSO- d_6 , 60 °C) δ 157.1, 149.0, 145.5, 141.9, 138.9, 138.6, 138.2, 135.8, 134.9, 128.8, 128.6, 127.6, 126.3, 126.0, 125.3, 125.1, 124.6, 124.5, 121.9, 53.2, 20.6, 19.7. HRMS (ESI) *m*/*z* calcd. for C₂₄H₂₃N₂O₂S₂ [M+H]⁺: 435.1195, found 435.1206.

4-methyl-N-((3-methyl-2-(pyridin-2-yl)phenyl)(1-tosyl-1H-indol-3-yl)methyl)benzenesulfonamide (1j)

White solid. ¹H NMR (600 MHz, DMSO- d_6 , 60 °C) δ 8.54 (s, 1H), 8.37 (d, J = 7.3 Hz, 1H), 7.74 (d, J = 8.4 Hz, 1H), 7.70 (d, J = 8.4 Hz, 2H), 7.64-7.44 (m, 3H), 7.41-7.33 (m, 3H), 7.28-7.17 (m, 4H), 7.13 (d, J = 8.0 Hz, 2H), 7.08-7.00 (m, 2H), 6.90 (s, 1H), 5.55 (d, J = 5.1 Hz, 1H), 2.34 (s, 3H), 2.30 (s, 3H), 1.94 (s, 3H). ¹³C NMR (151 MHz, DMSO- d_6 , 60 °C) δ 157.1, 149.0, 145.2, 142.0, 138.9, 138.2, 137.6, 135.8, 135.1, 134.1, 134.1, 129.9, 128.8, 128.7, 128.3, 127.6, 126.3, 126.2, 124.8, 124.6, 124.4, 123.3, 122.7, 121.9, 119.9, 112.6, 50.1, 20.7, 20.6, 19.6. HRMS (ESI) *m/z* calcd. for C₃₅H₃₂N₃O₄S₂ [M+H]⁺: 622.1829, found 622.1857.

4-methyl-N-(1-(3-methyl-2-(pyridin-2-yl)phenyl)butyl)benzenesulfonamide (1k)

White solid. ¹H NMR (500 MHz, CDCl₃) δ 8.69 (d, J = 5.0 Hz, 1H), 7.75 (m, 1H), 7.52 (m, 2H), 7.35-7.26 (m, 1H), 7.21 (m, 1H), 7.06 (m, 4H), 7.00 (m, 1H), 6.28 (s, 1H), 4.04 (q, J = 7.5 Hz, 1H), 2.34 (s, 3H), 1.98 (s, 3H), 1.32-1.14 (m, 2H), 1.11-1.04 (m, 1H), 0.90 (m, 1H), 0.54 (t, J = 7.3 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 158.8, 149.3, 142.5, 139.4, 138.4, 138.0, 136.3, 136.0, 129.0, 128.9, 128.0, 127.0, 125.5, 122.1, 56.8, 38.7, 21.4, 20.3, 19.0, 13.1. HRMS (ESI) m/z calcd. for C₂₃H₂₇N₂O₂S [M+H]⁺: 395.1793, found 395.1796.

4-methyl-N-(1-(3-methyl-2-(pyridin-2-yl)phenyl)octyl)benzenesulfonamide (11)

NHTs ₩₆Me Me

White solid. ¹H NMR (500 MHz, CDCl₃) δ 8.69 (d, *J* = 4.9 Hz, 1H), 7.79-7.73 (m, 1H), 7.56-7.50 (m, 2H), 7.33-7.22 (m, 2H), 7.12-6.85 (m, 5H), 6.20 (s, 1H), 4.02 (q, *J* = 7.5 Hz, 1H), 2.34 (s, 3H), 1.99 (s, 3H), 1.33-1.12 (m, 4H), 1.10-0.96 (m, 5H), 0.88-0.85 (m, 3H), 0.83 (t, *J* = 7.3 Hz, 1H), 2.34 (s, 3H), 1.99 (s, 3H), 1.33-1.12 (m, 4H), 1.10-0.96 (m, 5H), 0.88-0.85 (m, 3H), 0.83 (t, *J* = 7.3 Hz, 1H), 2.34 (s, 3H), 1.99 (s, 3H), 1.33-1.12 (m, 4H), 1.10-0.96 (m, 5H), 0.88-0.85 (m, 3H), 0.83 (t, *J* = 7.3 Hz, 1H), 2.34 (s, 3H), 1.99 (s, 3H), 1.33-1.12 (m, 4H), 1.10-0.96 (m, 5H), 0.88-0.85 (m, 3H), 0.83 (t, *J* = 7.3 Hz, 1H), 1.33-1.12 (m, 4H), 1.10-0.96 (m, 5H), 0.88-0.85 (m, 3H), 0.83 (t, J = 7.3 Hz, 1H), 1.33-1.12 (m, 4H), 1.10-0.96 (m, 5H), 0.88-0.85 (m, 3H), 0.83 (t, J = 7.3 Hz, 1H), 1.33-1.12 (m, 4H), 1.10-0.96 (m, 5H), 0.88-0.85 (m, 3H), 0.83 (t, J = 7.3 Hz, 1H), 1.33-1.12 (m, 4H), 1.10-0.96 (m, 5H), 0.88-0.85 (m, 3H), 0.83 (t, J = 7.3 Hz, 1H), 1.33-1.12 (m, 4H), 1.10-0.96 (m, 5H), 0.88-0.85 (m, 3H), 0.83 (t, J = 7.3 Hz, 1H), 1.33-1.12 (m, 4H), 1.10-0.96 (m, 5H), 0.88-0.85 (m, 3H), 0.83 (t, J = 7.3 Hz, 1H), 1.33-1.12 (m, 4H), 1.33-1.12 (m, 4H), 1.33-1.12 (m, 4H), 1.33-1.12 (m, 5H), 0.88-0.85 (m, 5H), 0.88-0.85 (m, 5H), 0.83 (t, J = 7.3 Hz, 1H), 1.33-1.12 (m, 5H), 1.33-1

3H). ¹³C NMR (126 MHz, CDCl₃) δ 158.9, 149.3, 142.5, 139.5, 138.4, 138.0, 136.3, 136.1, 129.0, 129.0, 128.0, 127.0, 125.6, 122.1, 57.1, 36.6, 31.6, 28.9, 28.7, 25.9, 22.5, 21.4, 20.4, 14.0. HRMS (ESI) *m/z* calcd. for C₂₇H₃₅N₂O₂S [M+H]⁺: 451.2419, found 451.2423.

N-((3-fluoro-2-(pyridin-2-yl)phenyl)(phenyl)methyl)-4-methylbenzenesulfonamide (1m)

White solid. ¹H NMR (500 MHz, CDCl₃) δ 8.60 (d, *J* = 5.0 Hz, 1H), 8.24 (d, *J* = 9.4 Hz, 1H), 7.64 (d, *J* = 8.3 Hz, 2H), 7.40-7.32 (m, 1H), 7.12-7.07 (m, 3H), 7.07-7.03 (m, 1H), 7.02-6.96 (m, 1H), 6.94-6.90 (m, 3H), 6.88-6.83 (m, 3H), 6.82-6.78 (m, 1H), 5.67 (d, *J* = 9.4 Hz, 1H), 2.35 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 160.4 (d, *J* = 246.4 Hz), 153.0, 148.3, 142.5, 142.4, 140.1, 138.5, 136.1, 129.4 (d, *J* = 8.9 Hz), 129.1, 127.5, 127.1 (d, *J* = 15.3 Hz), 126.9, 126.7 (d, *J* = 3.7 Hz), 126.4, 126.2 (d, *J* = 3.2 Hz), 125.7, 122.5, 115.2 (d, *J* = 23.7 Hz), 60.8, 21.4. HRMS (ESI) *m/z* calcd. for C₂₅H₂₂FN₂O₂S [M+H]⁺: 433.1381, found 433.1384.

N-((4-fluoro-2-(pyridin-2-yl)phenyl)(phenyl)methyl)-4-methylbenzenesulfonamide (10)

White solid. ¹H NMR (500 MHz, CDCl₃) δ 8.83 (s, 1H), 8.59-8.52 (m, 1H), 7.64 (d, J = 8.2 Hz, 2H), 7.47 (td, J = 7.8, 1.8 Hz, 1H), 7.23-7.17 (m, 1H), 7.15-7.10 (m, 1H), 7.04 (d, J = 8.0 Hz, 2H), 7.02-6.91 (m, 6H), 6.88 (d, J = 7.9 Hz, 1H), 6.85-6.79 (m, 1H), 6.26 (d, J = 10.1 Hz, 1H), 2.32 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 160.1 (d, J = 246.1 Hz), 158.6 (d, J = 2.3 Hz), 147.6, 142.3, 141.6 (d, J = 3.0 Hz), 140.1, 138.2, 137.1, 128.9, 128.0 (d, J = 14.2 Hz), 127.4, 127.0 (d, J = 3.2 Hz), 126.9, 126.2, 125.8, 124.6, 122.3, 115.3 (d, J = 24.8 Hz), 51.5, 21.4. HRMS (ESI) *m/z* calcd. for C₂₅H₂₂FN₂O₂S [M+H]⁺: 433.1381, found 433.1384.

4-methyl-N-(phenyl(2-(pyridin-2-yl)-4-(trifluoromethyl)phenyl)methyl)benzenesulfonamide (1p)

White solid. ¹H NMR (600 MHz, CDCl₃) δ 8.72 (d, *J* = 9.8 Hz, 1H), 8.56-8.55 (m, 1H), 7.57 (d, *J* = 8.3 Hz, 2H), 7.50 (td, *J* = 7.7, 1.8 Hz, 1H), 7.44 (s, 1H), 7.29-7.26 (m, 1H), 7.16-7.12 (m, 2H), 7.02 (d, *J* = 8.1 Hz, 2H), 6.95-6.90 (m, 6H), 5.78 (d, *J* = 9.6 Hz, 1H), 2.32 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 158.4, 147.8, 143.4, 142.7, 139.9, 139.5, 138.4, 137.3, 131.5, 129.9 (q, *J* = 33.0 Hz), 129.1, 128.1 (q, *J* = 3.6 Hz), 127.6, 126.9, 126.6, 125.8, 124.7 (q, *J* = 3.8 Hz), 123.7 (q, *J* = 270.5 Hz), 124.5, 122.6, 61.0, 21.2. HRMS (ESI) *m*/*z* calcd. for C₂₆H₂₂F₃N₂O₂S [M+H]⁺: 483.1349, found 483.1362.

4-methyl-N-(1-(3-methyl-2-(pyridin-2-yl)phenyl)pentyl)benzenesulfonamide (1x)

White solid. ¹H NMR (500 MHz, CDCl₃) δ 8.69 (d, J = 5.0 Hz, 1H), 7.76 (m, 1H), 7.53 (m, 2H), 7.31-7.29 (m, 1H), 7.23 (m, 1H), 7.07 (m, 4H), 7.00 (m, 1H), 6.29 (s, 1H), 4.05 (q, J = 7.5 Hz, 1H), 2.34 (s, 3H), 1.99 (s, 3H), 1.29-1.24 (m, 2H), 1.08-1.01 (m, 1H), 0.94-0.85 (m, 3H), 0.65 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 158.9, 149.3, 142.5, 139.4, 138.4, 138.0, 136.3, 136.1, 129.0, 128.0, 127.0, 125.6, 125.6, 122.2, 57.3, 36.2, 28.0, 21.8, 21.4, 20.4, 13.7. HRMS (ESI) m/z calcd. for C₂₄H₂₉N₂O₂S [M+H]⁺: 409.1950, found 409.1957.

N-(2-(1H-pyrazol-1-yl)benzyl)-4-methylbenzenesulfonamide (1u)

A 100 mL flame-dried flask was charged with stir bar, 2-(1*H*-pyrazol-1-yl)benzaldehyde^[5] (1.7 g, 10.0 mmol, 1.0 equiv.), *p*-toluenesulfonamide (1.7 g, 10.0 mmol, 1.0 equiv.), PTSA·H₂O (190 mg, 1.0 mmol, 0.1 equiv.) and toluene (50 mL). The mixture was heated at reflux for 12 hours. After cooling to room temperature, toluene was removed *in vacuo* and methanol (20 mL) was added. The mixture reaction was added sodium borohydride (756 mg, 20.0 mmol, 2.0 equiv.) at 0 °C, and then at room temperature for 2 hours, 10 mL of water was added at 0 °C. The mixture was extracted with ethyl acetate (90 mL), dried over MgSO₄, and then concentrated *in vacuo*. The residue was further purified by silica gel chromatography eluting with PE/EtOAc (8:1, v/v) to afford **1u**, a white solid.

¹H NMR (600 MHz, CDCl₃) δ 7.69-7.65 (m, 2H), 7.62 (dd, J = 9.7, 2.2 Hz, 2H), 7.35-7.29 (m, 2H), 7.25-7.18 (m, 4H), 6.59 (t, J = 6.8 Hz, 1H), 6.42 (t, J = 2.2 Hz, 1H), 3.97 (d, J = 6.5 Hz, 2H), 2.37 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 142.9, 140.9, 139.5, 137.6, 132.4, 131.2, 130.3, 129.4, 128.9, 128.2, 127.0, 124.3, 107.2, 45.0, 21.5. HRMS (ESI) m/z calcd. for C₁₇H₁₈N₃O₂S [M+H]⁺: 328.1114, found 328.1122.

A 100 mL flame-dried flask was charged with stir bar, pyrazole (4.5 g, 6.6 mmol, 1.25 equiv.) and anhydrous DMF (20 mL). NaH (1.58 g, 6.6 mmol, 1.25 equiv.) was added to the reaction mixture at 0 °C. The mixture was stirred at 0 °C for 15 min, and then a solution of 1-bromo-2-fluoro-3-methylbenzene (10 g, 5.3 mmol, 1.0 equiv.) in anhydrous DMF (10 mL) was added. The resulting mixture was heated at 140 °C for 12 hours. After cooling to room temperature, 200 mL of water was added. The mixture was extracted with ethyl acetate (100 mL), dried over MgSO₄, and then concentrated *in vacuo*. The residue was further purified by silica gel chromatography eluting with PE/EtOAc (10:1, v/v) to afford bromide **S5**. Then, compounds **1v** and **1w** were synthesized from bromide **S5** following the above general procedure.

4-methyl-N-((3-methyl-2-(1H-pyrazol-1-yl)phenyl)(phenyl)methyl)benzenesulfonamide (1v)

White solid. ¹H NMR (600 MHz, DMSO- d_6 , 60 °C) δ 8.47 (d, J = 8.7 Hz, 1H), 7.73 (d, J = 1.8 Hz, 1H), 7.52 (d, J = 7.9 Hz, 2H), 7.46 (d, J = 7.8 Hz, 1H), 7.31 (t, J = 7.7 Hz, 2H), 7.25-7.23 (m, 1H), 7.21 (d, J = 8.1 Hz, 2H), 7.17-7.12 (m, 3H), 6.91 (s, 2H), 6.41 (s, 1H), 5.24 (s, 1H), 2.34 (s, 3H), 1.86 (s, 3H). ¹³C NMR (151 MHz, DMSO- d_6 , 60 °C) δ 142.0, 140.7, 139.7, 138.9, 138.1, 137.2, 135.4, 131.8, 129.0, 128.8, 128.6, 127.6, 126.8, 126.7, 126.3, 125.6, 105.6, 55.4, 20.6, 16.5. HRMS (ESI) *m/z* calcd. for C₂₄H₂₄N₃O₂S [M+H]⁺: 418.1584, found 418.1588.

4-methyl-N-(1-(3-methyl-2-(1 H-pyrazol-1-yl)phenyl)pentyl)benzenesulfonamide (1w)

White solid. ¹H NMR (500 MHz, CDCl₃) δ 7.75 (d, *J* = 2.1 Hz, 1H), 7.55 (d, *J* = 8.0 Hz, 2H), 7.47 (s, 1H), 7.14-7.03 (m, 4H), 6.90 (s, 1H), 6.48 (t, *J* = 2.2 Hz, 1H), 6.08 (s, 1H), 3.95 (q, *J* = 7.8 Hz, 1H), 2.34 (s, 3H), 1.93 (s, 3H), 1.33-1.14 (m, 2H), 1.13-0.96 (m, 3H), 0.90-0.80 (m, 1H), 0.69 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 142.6, 140.4, 139.1, 137.8, 137.3, 136.3, 132.3, 129.6, 129.1, 129.0, 127.0, 126.7, 106.4, 56.0, 35.7, 28.3, 21.8, 21.4, 17.3, 13.7. HRMS (ESI) *m/z* calcd. for C₂₂H₂₈N₃O₂S [M+H]⁺: 398.1902, found 398.1899.

2.2 Preparation of Rh(III) Catalysts

 $[Cp^{*R}RhCl_2]_2 \qquad \xrightarrow{AgX (4.0 \text{ equiv.})} [Cp^{*R}Rh(CH_3CN)_3]X_2$ $X = SbF_6, OTf, PF_6, BF_4$

General procedure: To a suspension of $[Cp^{R}RhCl_2]_2$ (0.5 mmol, 1.0 equiv.), which was synthesized accroding to the reference,^[6] in dry CH₃CN (2 mL), a solution of Ag salt (2.0 mmol, 4.0 equiv.) in dry CH₃CN (3 mL) was added. The reaction mixture was stirred at room temperature for 3 hours. Then the precipitate was removed by filtration on celite, and the residue was washed with dry CH₃CN (15 mL). The filtrate was concentrated to 0.5 mL *in vacuo*. Et₂O (10 mL) was added to the solution, and a pale yellow solid precipitated out. The solid was collected by filtration, washed with Et₂O (15 mL), dried *in vacuo* to afford $[Cp^{R}Rh(CH_3CN)_3]X_2$ in a quantitative yield.

[Cp^{*}Rh(CH₃CN)₃](OTf)₂

Pale yellow solid. ¹H NMR (600 MHz, DMSO-*d*₆) δ 2.07 (s, 9H), 1.54 (s, 15H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 120.7 (q, *J* = 320 Hz), 118.1, 93.2, 8.3, 1.1. HRMS (ESI) *m*/z calcd. for C₁₂H₁₆NRh [M-2OTf-2CH₃CN]²⁺: 139.5242, found 139.5245.

[Cp*HRh(CH3CN)3](SbF6)2

Pale yellow solid. ¹H NMR (600 MHz, DMSO-*d*₆) δ 5.84 (s, 1H), 2.06 (s, 9H), 1.61 (s, 6H), 1.53 (s, 6H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 118.1, 98.0, 97.9, 9.9, 8.1, 1.1. HRMS (ESI) *m/z* calcd. for C₁₁H₁₆NRh [M-2SbF₆-2CH₃CN]²⁺: 132.5163, found 132.5159.

[Cp*/PrRh(CH3CN)3](SbF6)2

Pale yellow solid. ¹H NMR (600 MHz, DMSO- d_6) δ 2.67-2.62 (m, 1H), 2.07 (s, 9H), 1.61 (s, 6H), 1.54 (s, 6H), 1.30 (s, 3H), 1.29 (s, 3H). ¹³C NMR (151 MHz, DMSO- d_6) δ 118.1, 96.7, 93.7, 92.6, 24.1, 19.6, 9.0, 8.3, 1.1. HRMS (ESI) m/z calcd. for C₁₄H₂₂NRh [M-2SbF₆-2CH₃CN]²⁺: 153.5398, found 153.5399.

[Cp^{*Cy}Rh(CH₃CN)₃](SbF₆)₂

Pale yellow solid. ¹H NMR (600 MHz, DMSO-*d*₆) δ 2.27-2.19 (m, 1H), 2.07 (s, 9H), 1.87 (d, *J* = 12.2 Hz, 2H), 1.78 (d, *J* = 13.0 Hz, 2H), 1.70 (d, *J* = 13.0 Hz, 1H), 1.62 (s, 6H), 1.55-1.50 (m, 8H), 1.43-1.32 (m, 2H), 1.29-1.20 (m, 1H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 118.1, 96.9, 92.7, 92.2, 34.6, 29.4, 25.95, 25.2, 9.3, 8.4, 1.1. HRMS (ESI) *m/z* calcd. for C₁₇H₂₆NRh [M-2SbF₆-2CH₃CN]²⁺: 173.5555, found 173.5558.

[Cp^{*CyP}Rh(CH₃CN)₃](SbF₆)₂

Pale yellow solid. ¹H NMR (500 MHz, DMSO-*d*₆) δ 2.78-2.72 (m, 1H), 2.10-2.03 (m, 10H), 1.82-1.64 (m, 6H), 1.61 (s, 6H), 1.54 (s, 6H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 118.1, 96.2, 93.0, 92.4, 34.1, 30.5, 26.4, 9.1, 8.3, 1.1. HRMS (ESI) *m/z* calcd. for C₁₆H₂₄NRh [M-2SbF₆-2CH₃CN]²⁺: 166.5476, found 166.5477.

[Cp*PhRh(CH₃CN)₃](SbF₆)₂

Pale yellow solid. ¹H NMR (600 MHz, DMSO-*d*₆) δ 7.69 (d, *J* = 7.7 Hz, 2H), 7.63-7.55 (m, 3H), 2.07 (s, 9H), 1.65 (s, 6H), 1.59 (s, 6H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 129.9, 129.6, 129.1, 127.3, 118.1, 98.4, 92.3, 87.6, 9.4, 8.4, 1.1. HRMS (ESI) *m/z* calcd. for C₁₇H₂₀NRh [M-2SbF₆-2CH₃CN]²⁺: 170.5320, found 173.5326.

2.3 Condition Optimization

Table S1^a

		F NHTs	Rh-catalyst styrene (3 equiv.)		N		
	Me	Ph s	silver salt	Me	Ph		
	1a (1 equ	iiv.)	solvent, I, 24 n, N ₂		2a		
entry	Rh-catalyst		silver salt		solvent	т	yield
1	2.5 mol% [Cp*RhCl ₂] ₂		no		DCE	130 °C	0%
2	2.5 mol% [Cp*RhCl ₂] ₂	Ag	g ₂ CO ₃ (2.2 equiv.)		DCE	130 °C	4%
3	2.5 mol% [CpRhCl ₂] ₂	A	g ₂ CO ₃ (2.2 equiv.)		DCE	130 °C	trace
4	5 mol% [Cp [*] Rh(CH ₃ CN) ₃](SbF ₆) ₂	Ą	g ₂ CO ₃ (2.2 equiv.)		DCE	130 °C	12%
5	5 mol% [Cp [*] Rh(CH ₃ CN) ₃](SbF ₆) ₂	A	g ₂ CO ₃ (2.2 equiv.)		MeCN	130 °C	0%
6	5 mol% [Cp [*] Rh(CH ₃ CN) ₃](SbF ₆) ₂	Ą	g ₂ CO ₃ (2.2 equiv.)		toluene	130 °C	30%
7	5 mol% [Cp [*] Rh(CH ₃ CN) ₃](SbF ₆) ₂	A	g ₂ CO ₃ (2.2 equiv.)		DME	130 °C	29%
8	5 mol% [Cp [*] Rh(CH ₃ CN) ₃](SbF ₆) ₂	A	g ₂ CO ₃ (2.2 equiv.)	to	oluene/DME (1:1)	130 °C	37%
9	5 mol% [Cp [*] Rh(CH ₃ CN) ₃](SbF ₆) ₂	A	g ₂ CO ₃ (2.2 equiv.)	to	oluene/DME (4:1)	130 °C	52%
10	5 mol% [Cp [*] Rh(CH ₃ CN) ₃](BF ₄) ₂	A	g ₂ CO ₃ (2.2 equiv.)	to	oluene/DME (4:1)	130 °C	36%
11	5 mol% [Cp [*] Rh(CH ₃ CN) ₃](OTf) ₂	A	g ₂ CO ₃ (2.2 equiv.)	to	oluene/DME (4:1)	130 °C	46%
12	5 mol% [Cp*Rh(CH ₃ CN) ₃](PF ₆) ₂	A	g ₂ CO ₃ (2.2 equiv.)	to	oluene/DME (4:1)	130 °C	41%
13	5 mol%[Cp ^{*H} Rh(CH ₃ CN) ₃](SbF ₆) ₂	A	g ₂ CO ₃ (2.2 equiv.)	to	oluene/DME (4:1)	130 °C	40%
14	5 mol% [Cp ^{*/Pr} Rh(CH ₃ CN) ₃](SbF ₆) ₂	A	g ₂ CO ₃ (2.2 equiv.)	to	oluene/DME (4:1)	130 °C	47%
15	5 mol% [Cp ^{*Cy} Rh(CH ₃ CN) ₃](SbF ₆) ₂	A	g ₂ CO ₃ (2.2 equiv.)	to	oluene/DME (4:1)	130 °C	65%
16	5 mol% [Cp ^{*CyP} Rh(CH ₃ CN) ₃](SbF ₆) ₂	A	g ₂ CO ₃ (2.2 equiv.)	to	oluene/DME (4:1)	130 °C	41%
17	5 mol% [Cp ^{*Ph} Rh(CH ₃ CN) ₃](SbF ₆) ₂	A	g ₂ CO ₃ (2.2 equiv.)	to	oluene/DME (4:1)	130 °C	50%
18	5 mol% [Cp ^{*Cy} Rh(CH ₃ CN) ₃](SbF ₆) ₂	Ag ₂ CO ₃ (1.2	2 equiv.)/Ag ₃ PO ₄ (2.0 equiv	v.) to	oluene/DME (4:1)	130 °C	68%
19 ^b	5 mol% [Cp ^{*Cy} Rh(CH ₃ CN) ₃](SbF ₆) ₂	Ag ₂ CO ₃ (1.2	2 equiv.)/Ag ₃ PO ₄ (2.0 equiv	v.) to	oluene/DME (4:1)	130 °C	86%
20 ^b	5 mol% [Cp ^{*Cy} Rh(CH ₃ CN) ₃](SbF ₆) ₂	Ag ₂ CO ₃ (1.2	2 equiv.)/Ag ₃ PO ₄ (2.0 equiv	v.) to	oluene/DME (4:1)	150 °C	95%
21 ^b	5 mol% [Cp ^{*Cy} Rh(CH ₃ CN) ₃](SbF ₆) ₂	A	g ₂ CO ₃ (1.2 equiv.)	to	oluene/DME (4:1)	150 °C	82%
22 ^b	5 mol% [Cp ^{*Cy} Rh(CH ₃ CN) ₃](SbF ₆) ₂	A	g ₃ PO ₄ (2.0 equiv.)	to	oluene/DME (4:1)	150 °C	50%
23 ^c	5 mol% [Cp ^{*Cy} Rh(CH ₃ CN) ₃](SbF ₆) ₂	Ag ₂ CO ₃ (1.2	2 equiv.)/Ag ₃ PO ₄ (2.0 equiv	v.) to	oluene/DME (4:1)	150 °C	96%
24 ^c	2.5 mol% [Cp ^{*Cy} Rh(CH ₃ CN) ₃](SbF ₆) ₂	Ag ₂ CO ₃ (1.2	2 equiv.)/Ag ₃ PO ₄ (2.0 equiv	v.) to	bluene/DME (4:1)	150 °C	46%
<u> </u>		ⁱ Pr				Ľ	Ph
-	Cp* Cp*H	Cp ^{*/Pr}	Cp ^{*CyP}		Cp ^{*Cy}	(Cp ^{*Ph}

[a] 0.05 mmol **1a**, concentration was 0.05 M, the yields were detected by ¹H NMR using 1,1,2,2-tetrachloroethane as internal standard. [b] Concentration was 0.025 M. [c] 0.1 mmol **1a**, concentration was 0.025 M.

[a] 0.1 mmol 1, concentration was 0.025 M, the yields were isolated yields.

2.4 Alkenylation of *a*-Branched Amine

General procedure A: In an nitrogen-filled glove-box, an oven-dried 15 mL sealed tube was charged with a stir bar, α -branched primary amine (0.1 mmol, 1.0 equiv.), [Cp^{*Cy}Rh(CH₃CN)₃](SbF₆)₂ (4.4 mg, 5 mol %), Ag₂CO₃ (33 mg, 1.2 equiv.), and Ag₃PO₄ (83 mg, 2.0 equiv.). Then, toluene (3.2 mL), DME (0.8 mL), and olefin (0.3 mmol, 3.0 equiv.) were added. The reaction mixture was stirred at 150 °C for 24 hours. After cooling to room temperature, the mixture was filtered through a pad of celite and eluted with CH₂Cl₂ (10 mL). The filtrate was concentrated *in vacuo* and the residue was purified by silica gel chromatography eluting with petroleum ether/acetone (15:1 to 10:1, v/v) to afford corresponding alkenylation product.

General procedure B: In an nitrogen-filled glove-box, an oven-dried 15 mL sealed tube was charged with a stir bar, α -branched primary amine **1x** (0.1 mmol, 1.0 equiv.) (or **1k**, **1l**, and **1v**), [Cp^{*,Pr}Rh(CH₃CN)₃](SbF₆)₂ (4.2 mg, 5 mol %), Ag₂CO₃ (41.4 mg, 1.5 equiv.). Then, toluene (2 mL), dioxane (2 mL), and olefin (0.3 mmol, 3.0 equiv.) were added. The reaction mixture was stirred at 150 °C for 24 hours. After cooling to room temperature, the mixture was filtered through a pad of celite and eluted with CH₂Cl₂ (10 mL). The filtrate was concentrated *in vacuo* and the residue was purified by silica gel chromatography eluting with petroleum ether/acetone (15:1 to 10:1, v/v) to afford corresponding alkenylation product.

(E)-2-(2-methyl-6-styrylphenyl)pyridine (2a)[7]

Table S3

Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 8.80-8.71 (m, 1H), 7.75 (td, *J* = 7.7, 1.8 Hz, 1H), 7.60 (d, *J* = 7.8 Hz, 1H), 7.33-7.17 (m, 9H), 6.94 (d, *J* = 16.2 Hz, 1H), 6.70 (d, *J* = 16.2 Hz, 1H), 2.09 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.1, 149.6, 139.6, 137.5, 136.1, 136.0, 129.7, 129.4, 128.5, 128.1, 127.4, 127.3, 126.4, 125.4, 123.0, 121.9, 20.3. HRMS (ESI) *m/z* calcd. for C₂₀H₁₈N [M+H]⁺: 272.1434, found 272.1432.

(E)-2-(2-fluoro-6-styrylphenyl)pyridine (S6)

Pale yellow oil. (**Procedure A**, 21.2 mg, 77%). ¹H NMR (500 MHz, CDCl₃) δ 8.79-8.77 (m, 1H), 7.78 (td, J = 7.7, 1.8 Hz, 1H), 7.57 (d, J = 7.9 Hz, 1H), 7.44-7.19 (m, 8H), 7.10-7.05 (m, 1H), 7.03 (d, J = 16.2 Hz, 1H), 6.93 (d, J = 16.2 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 160.3 (d, J = 246.2 Hz), 153.5, 149.6, 138.6 (d, J = 3.1 Hz), 137.1, 136.1, 131.1, 129.6 (d, J = 9.5 Hz), 128.6, 127.8, 127.5 (d, J = 15.6 Hz), 126.6, 126.3 (d, J = 1.7 Hz), 125.9 (d, J = 3.8 Hz), 122.5, 121.4 (d, J = 3.2 Hz), 114.5 (d, J = 22.9 Hz). HRMS (ESI) *m/z* calcd. for C₁₉H₁₅FN [M+H]⁺: *m/z* 276.1183, found 276.1196.

(E)-2-(2-methoxy-6-styrylphenyl)pyridine (S7)[7]

Pale yellow oil. (**Procedure A**, 24.1 mg, 84%). ¹H NMR (500 MHz, CDCl₃) δ 8.78-8.72 (m, 1H), 7.74 (td, *J* = 7.7, 1.9 Hz, 1H), 7.42-7.32 (m, 3H), 7.30-7.22 (m, 5H), 7.21-7.16 (m, 1H), 6.98 (d, *J* = 16.3 Hz, 1H), 6.93-6.89 (m, 1H), 6.76 (d, *J* = 16.3 Hz, 1H), 3.74 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 157.2, 156.3, 149.4, 137.5, 137.4, 135.8, 130.1, 129.2, 128.5, 127.4, 126.8, 126.5, 126.3, 121.8, 117.9, 110.0, 55.9. HRMS (ESI) *m/z* calcd. for C₂₀H₁₈ON [M+H]*: 288.1383, found 288.1378.

2-(3-fluoro-2,6-di((E)-styryl)phenyl)pyridine (S8)

Pale yellow oil. (**Procedure A**, 25.3 mg, 75%). ¹H NMR (500 MHz, CDCl₃) δ 8.82-8.81 (m, 1H), 7.79 (td, J = 7.7, 1.8 Hz, 1H), 7.64 (dd, J = 8.7, 5.1 Hz, 1H), 7.37-7.19 (m, 13H), 7.01 (d, J = 16.6 Hz, 1H), 6.92 (d, J = 16.2 Hz, 1H), 6.68 (d, J = 16.2 Hz, 1H), 6.58 (d, J = 16.6 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 160.4 (d, J = 251.7 Hz), 157.6 (d, J = 3.1 Hz), 149.7, 140.5 (d, J = 3.3 Hz), 137.6, 137.3, 136.3, 135.0, 134.9, 132.8 (d, J = 4.2 Hz), 129.9, 128.5, 128.5, 127.7, 127.5, 126.4, 126.4, 126.2, 125.5 (d, J = 8.8 Hz), 124.3 (d, J = 12.0 Hz), 122.4, 121.0, 116.2 (d, J = 23.5 Hz). HRMS (ESI) *m*/z calcd. for C₂₇H₂₁FN [M+H]⁺: 378.1653, found 378.1661.

(E)-2-(2-styryl-5-(trifluoromethyl)phenyl)pyridine (S9)[7]

E₂C

Pale yellow oil. (**Procedure A**, 26.6 mg, 82%). ¹H NMR (500 MHz, CDCl₃) δ 8.81-8.76 (m, 1H), 7.89-7.82 (m, 2H), 7.78 (td, *J* = 7.7, 1.8 Hz, 1H), 7.66 (dd, *J* = 8.2, 1.9 Hz, 1H), 7.50-7.46 (m, 1H), 7.42-7.38 (m, 2H), 7.36-7.30 (m, 3H), 7.29-7.21 (m, 2H), 7.13 (d, *J* = 16.2 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 157.5, 149.8, 139.8, 139.2, 136.9, 136.3, 132.2, 129.5 (q, *J* = 32.6 Hz), 128.7, 128.1, 127.3 (q, *J* = 3.3 Hz), 126.8, 126.7, 126.1, 125.2 (q, *J* = 3.3Hz), 125.0, 123.8 (q, *J* = 279.5), 122.5. HRMS (ESI) *m/z* calcd. for C₂₀H₁₅F₃N [M+H]⁺: 326.1151, found 326.1147.

(E)-2-(5-methyl-2-styrylphenyl)pyridine (S10)^[7]

Me

Pale yellow oil. (**Procedure A**, 1.2 equiv. styrene was used, 20.2 mg, 75%). ¹H NMR (500 MHz, CDCl₃) δ 8.77-8.70 (m, 1H), 7.72 (td, J = 7.7, 1.9 Hz, 1H), 7.66 (d, J = 8.0 Hz, 1H), 7.46-7.43 (m, 1H), 7.40-7.35 (m, 3H), 7.33-7.16 (m, 6H), 7.02 (d, J = 16.2 Hz, 1H), 2.41 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 158.9, 149.5, 139.5, 137.7, 137.6, 135.9, 132.8, 130.7, 129.5, 129.2, 128.6, 127.4, 127.3, 126.5, 126.2, 125.1, 121.8, 21.1. HRMS (ESI) *m/z* calcd. for C₂₀H₁₈N [M+H]⁺: 272.1434, found 272.1432.

(E)-2-(4-styryl-[1,1'-biphenyl]-3-yl)pyridine (S11)^[5]

White solid. (**Procedure A**, 1.2 equiv. styrene was used, 27 mg, 81%). ¹H NMR (500 MHz, CDCl₃) δ 8.79-8.76 (m, 1H), 7.85 (d, *J* = 8.2 Hz, 1H), 7.79 (d, *J* = 2.0 Hz, 1H), 7.75 (td, *J* = 7.7, 1.8 Hz, 1H), 7.69-7.65 (m, 3H), 7.51-7.38 (m, 5H), 7.36-7.20 (m, 6H), 7.11 (d, *J* = 16.2 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 158.9, 149.6, 140.4, 140.0, 137.5, 136.0, 134.7, 130.0, 128.9, 128.7, 128.6, 127.5, 127.4, 127.2, 127.0, 127.0, 126.7, 126.6, 125.1, 122.0.

(E)-2-(4-isopropyl-2-styrylphenyl)pyridine (S12)^[5]

Pale yellow oil. (**Procedure A**, 29.8 mg, 74%).¹H NMR (500 MHz, CDCl₃) δ 8.82-8.77 (m, 1H), 7.75 (td, *J* = 7.7, 1.8 Hz, 1H), 7.56 (s, 2H), 7.33-7.24 (m, 10H), 7.21-7.17 (m, 2H), 6.98 (d, *J* = 16.2 Hz, 2H), 6.78 (d, *J* = 16.2 Hz, 2H), 3.09-3.00 (m, 1H), 1.38 (d, *J* = 7.0 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 158.4, 149.5, 149.0, 137.5, 136.6, 136.4, 135.9, 129.8, 128.5, 127.5, 127.4, 126.5, 123.1, 121.9, 34.3, 24.0. HRMS (ESI) *m/z* calcd. for C₃₀H₂₈N [M+H]⁺: 402.2216, found 402.2234.

2-(2,6-di((E)-styryl)phenyl)pyridine (S13)^[5]

White solid. (**Procedure A**, 19.3 mg, 54%). ¹H NMR (500 MHz, CDCl₃) δ 8.83-8.77 (m, 1H), 7.77 (td, *J* = 7.7, 1.8 Hz, 1H), 7.70 (d, *J* = 7.8 Hz, 2H), 7.44 (t, *J* = 7.8 Hz, 1H), 7.37-7.28 (m, 2H), 7.29-7.23 (m, 8H), 7.24-7.14 (m, 2H), 6.98 (d, *J* = 16.2 Hz, 2H), 6.76 (d, *J* = 16.2 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 158.3, 149.6, 138.7, 137.5, 136.6, 136.1, 130.2, 128.6, 128.6, 127.6, 127.1, 126.6, 126.4, 124.9, 122.2.

(E)-1-(2-styrylphenyl)-1H-pyrazole (S14)^[8]

White solid. (**Procedure A**, 10.8 mg, 31%). ¹H NMR (500 MHz, CDCl₃) δ 7.87-7.86 (m, 1H), 7.71 (d, *J* = 7.8 Hz, 2H), 7.56-7.55 (m, 1H), 7.49 (t, *J* = 7.8 Hz, 1H), 7.34-7.28 (m, 8H), 7.25-7.21 (m, 2H), 7.02 (d, *J* = 16.3 Hz, 2H), 6.54 (t, *J* = 2.1 Hz, 1H), 6.50 (d, *J* = 16.3 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 140.7, 137.0, 136.6, 136.2, 132.9, 131.6, 129.4, 128.6, 128.0, 126.7, 124.8, 123.1, 106.5. HRMS (ESI) calcd. for [C₂₅H₂₁N₂]⁺ (M+H)⁺: *m/z* 349.1699, found 349.1709.

(E)-1-(2-methyl-6-styrylphenyl)-1H-pyrazole (S15)^[9]

Colorless oil. (**Procedure A**, 15.5 mg, 60%; **Procedure B**, 10.4 mg, 40%). ¹H NMR (500 MHz, CDCl₃) δ 7.80 (d, J = 1.8 Hz, 1H), 7.62 (dd, J = 7.9, 1.3 Hz, 1H), 7.50 (d, J = 2.3 Hz, 1H), 7.36 (t, J = 7.7 Hz, 1H), 7.33-7.24 (m, 4H), 7.25-7.18 (m, 2H), 6.97 (d, J = 16.3 Hz, 1H), 6.49 (t, J = 2.1 Hz, 1H), 6.43 (d, J = 16.3 Hz, 1H), 2.06 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 140.4, 138.1, 137.1, 136.7, 135.8, 131.9, 131.2, 129.7, 129.2, 128.6, 127.9, 126.7, 123.4, 123.4, 106.1, 17.4. HRMS (ESI) *m/z* calcd. for C₁₈H₁₇N₂ [M+H]⁺: 261.1386, found 261.1385.

(E)-2-(2-methyl-6-(2-methylstyryl)phenyl)pyridine (2b)[10]

Pale yellow oil. (**Procedure A**, 23.9 mg, 84%; **Procedure B**, 18.3 mg, 64%). ¹H NMR (500 MHz, CDCl₃) δ 8.77-8.75 (m, 1H), 7.76 (td, J = 7.7, 1.9 Hz, 1H), 7.61 (d, J = 7.7 Hz, 1H), 7.34 (t, J = 7.7 Hz, 1H), 7.31-7.25 (m, 2H), 7.25-7.19 (m, 2H), 7.16-7.05 (m, 4H), 6.61 (d, J = 16.0 Hz, 1H), 2.35 (s, 3H), 2.11 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.1, 149.6, 139.6, 136.6, 136.4, 136.3, 136.2, 135.7, 130.2, 129.3, 128.6, 128.2, 127.8, 127.3, 126.0, 125.4, 125.3, 123.3, 121.8, 20.2, 19.9. HRMS (ESI) *m/z* calcd. for C₂₁H₂₀N [M+H]⁺: 286.1590, found 286.1594.

(E)-2-(2-(2-methoxystyryl)-6-methylphenyl)pyridine (2c)

Yellow oil. (**Procedure A**, 20.2 mg, 67%; **Procedure B**, 19.1 mg, 63%). ¹H NMR (500 MHz, CDCl₃) δ8.76-8.75 (m, 1H), 7.75 (td, *J* = 7.7, 1.8 Hz, 1H), 7.66 (d, *J* = 7.8 Hz, 1H), 7.34-7.24 (m, 4H), 7.21-7.14 (m, 3H), 6.87-6.80 (m, 2H), 6.71 (d, *J* = 16.3 Hz, 1H), 3.79 (s, 3H), 2.08 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 159.3, 156.8, 149.5, 139.5, 136.5, 136.2, 136.0, 129.1, 128.4, 128.1, 127.7, 126.7, 126.5, 125.5, 124.5, 123.0, 121.7, 120.5, 110.8, 55.4, 20.3. HRMS (ESI) *m*/z calcd. for C₂₁H₂₀NO [M+H]⁺: 302.1539, found 302.1540.

(E)-2-(2-methyl-6-(3-methylstyryl)phenyl)pyridine (2d)

Yellow oil. (**Procedure A**, 23.8 mg, 84%; **Procedure B**, 22.6 mg, 79%). ¹H NMR (500 MHz, CDCl₃) δ 8.77-8.75 (m, 1H), 7.75 (td, *J* = 7.7, 1.9 Hz, 1H), 7.59 (d, *J* = 7.7 Hz, 1H), 7.32-7.24 (m, 3H), 7.20 (d, *J* = 7.5 Hz, 1H), 7.16-7.11 (m, 1H), 7.07-7.03 (m, 2H), 6.99 (d, *J* = 7.5 Hz, 1H), 6.90 (d, *J* = 16.2 Hz, 1H), 6.68 (d, *J* = 16.2 Hz, 1H), 2.29 (s, 3H), 2.09 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.1, 149.6, 139.5, 138.0, 137.5, 136.4, 136.1, 136.1 129.9, 129.3, 128.4, 128.2, 128.1, 127.4, 127.1, 125.4, 123.4, 123.0, 121.8, 21.3, 20.3. HRMS (ESI) *m/z* calcd. for C₂₁H₂₀N [M+H]*: 286.1590, found 286.1595.

(E)-2-(2-(3-methoxystyryl)-6-methylphenyl)pyridine (2e)

Pale yellow oil. (**Procedure A**, 17.8 mg, 59%). ¹H NMR (500 MHz, CDCl₃) δ 8.76-8.75 (m, 1H), 7.76 (td, *J* = 7.7, 1.8 Hz, 1H), 7.59 (d, *J* = 7.8 Hz, 1H), 7.33-7.25 (m, 3H), 7.22-7.15 (m, 2H), 6.93-6.82 (m, 2H), 6.80-6.65 (m, 3H), 3.76 (s, 3H), 2.09 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.7, 159.0, 149.6, 139.6, 139.0, 136.4, 136.1, 135.9, 129.6, 129.5, 129.4, 128.2, 127.7, 125.4, 123.0, 121.9, 119.1, 112.8, 112.0, 55.1, 20.3. HRMS (ESI) *m/z* calcd. for C₂₁H₂₀NO [M+H]*: 302.1539, found 302.1538.

(E)-2-(2-(2-([1,1'-biphenyl]-3-yl)vinyl)-6-methylphenyl)pyridine (2f)

Yellow oil. (**Procedure A**, 28.9 mg, 83%). ¹H NMR (500 MHz, CDCl₃) δ 8.76-8.75 (m, 1H), 7.75 (td, J = 7.7, 1.8 Hz, 1H), 7.61 (d, J = 7.8 Hz, 1H), 7.55-7.50 (m, 2H), 7.47-7.38 (m, 4H), 7.36-7.19 (m, 7H), 6.99 (d, J = 16.1 Hz, 1H), 6.76 (d, J = 16.1 Hz, 1H), 2.10 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.0, 149.6, 141.5, 141.0, 139.6, 138.0, 136.4, 136.1, 136.0, 129.7, 129.5, 128.9, 128.7, 128.2, 127.8, 127.3, 127.1, 126.3, 125.7, 125.4, 125.0, 123.1, 121.9, 20.3. HRMS (ESI) *m/z* calcd. for C₂₆H₂₂N [M+H]⁺: 348.1747, found 348,1748.

methyl (E)-3-(3-methyl-2-(pyridin-2-yl)styryl)benzoate (2g)

Me CO₂Me

Yellow oil. (**Procedure A**, 25.9 mg, 79%; **Procedure B**, 22.2 mg, 67%).¹H NMR (500 MHz, CDCl₃) δ 8.78-8.76 (m, 1H), 7.92 (t, *J* = 1.8 Hz, 1H), 7.86-7.82 (m, 1H), 7.78 (td, *J* = 7.7, 1.9 Hz, 1H), 7.60 (d, *J* = 7.8 Hz, 1H), 7.41 (d, *J* = 7.8 Hz, 1H), 7.35-7.25 (m, 4H), 7.22 (d, *J* = 7.5 Hz, 1H), 6.95 (d, *J* = 16.2 Hz, 1H), 6.76 (d, *J* = 16.2 Hz, 1H), 3.89 (s, 3H), 2.10 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.9, 158.9, 149.6, 139.7, 137.9, 136.4, 136.2, 135.6, 130.4, 130.3, 129.7, 128.8, 128.5, 128.3, 128.2, 127.9, 125.4, 123.1, 121.9, 52.1, 20.2. HRMS (ESI) *m/z* calcd. for C₂₂H₂₀NO₂ [M+H]⁺: 330.1489, found 330.1496.

(E)-2-(2-(4-fluorostyryl)-6-methylphenyl)pyridine (2h)[10]

Yellow oil. (**Procedure A**, 25.3 mg, 87%; **Procedure B**, 24.4 mg, 84%). ¹H NMR (500 MHz, CDCl₃) δ 8.77-8.75 (m, 1H), 7.77 (td, *J* = 7.7, 1.8 Hz, 1H), 7.58 (d, *J* = 7.8 Hz, 1H), 7.35-7.24 (m, 3H), 7.23-7.15 (m, 3H), 6.97-6.85 (m, 3H), 6.60 (d, *J* = 16.2 Hz, 1H), 2.09 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 162.1 (d, *J* = 246.4 Hz), 159.0, 149.6, 139.6, 136.4, 136.1, 135.8, 133.7 (d, *J* = 3.3 Hz), 129.4, 128.5, 128.2, 127.9 (d, *J* = 8.0 Hz), 127.0 (d, *J* = 2.3 Hz), 125.4, 122.9, 121.9, 115.4 (d, *J* = 20.8 Hz), 20.3. HRMS (ESI) *m/z* calcd. for C₂₀H₁₇NF [M+H]⁺: 290.1340, found 290.1342.

(E)-2-(2-(4-chlorostyryl)-6-methylphenyl)pyridine (2i)[10]

Me

Yellow oil. (**Procedure A**, 25.6 mg, 84%; **Procedure B**, 23.9 mg, 78%). ¹H NMR (500 MHz, CDCl₃) δ 8.77-8.75 (m, 1H), 7.77 (td, *J* = 7.6, 1.8 Hz, 1H), 7.58 (d, *J* = 7.7 Hz, 1H), 7.35-7.28 (m, 2H), 7.28-7.23 (m, 1H), 7.24-7.18 (m, 3H), 7.15 (d, *J* = 8.6 Hz, 2H), 6.88 (d, *J* = 16.2 Hz, 1H),

6.66 (d, J = 16.2 Hz, 1H), 2.09 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.0, 149.7, 139.7, 136.5, 136.2, 136.1, 135.7, 133.0, 129.7, 128.7, 128.5, 128.2, 127.9, 127.6, 125.4, 123.0, 122.0, 20.3. HRMS (ESI) m/z calcd. for C₂₀H₁₇NCI [M+H]⁺: 306.1044, found 306.1042.

(E)-2-(2-(4-bromostyryl)-6-methylphenyl)pyridine (2j)^[10]

Yellow oil. (**Procedure A**, 30.6 mg, 87%; **Procedure B**, 30.1 mg, 86%). ¹H NMR (500 MHz, CDCl₃) δ 8.77-8.75 (m, 1H), 7.76 (td, *J* = 7.7, 1.8 Hz, 1H), 7.58 (d, *J* = 7.8 Hz, 1H), 7.36 (d, *J* = 8.5 Hz, 2H), 7.33-7.28 (m, 2H), 7.27-7.23 (m, 1H), 7.21 (d, *J* = 7.5 Hz, 1H), 7.09 (d, *J* = 8.5 Hz, 2H), 6.86 (d, *J* = 16.2 Hz, 1H), 6.67 (d, *J* = 16.2 Hz, 1H), 2.09 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 158.8, 149.5, 139.5, 136.3, 136.0, 135.4, 131.4, 129.5, 128.3, 128.0, 127.8, 127.7, 125.2, 122.8, 121.8, 120.9, 20.1. HRMS (ESI) *m/z* calcd. for C₂₀H₁₇BrN [M+H]⁺: 350.0539, found 350.0536.

(E)-2-(2-(2-([1,1'-biphenyl]-4-yl)vinyl)-6-methylphenyl)pyridine (2k)

Foam solid. (**Procedure A**, 25.2 mg, 73%; **Procedure B**, 26.4 mg, 76%). ¹H NMR (500 MHz, CDCl₃) δ 8.80-8.78 (m, 1H), 7.79 (td, *J* = 7.6, 1.8 Hz, 1H), 7.64 (d, *J* = 7.8 Hz, 1H), 7.59-7.54 (m, 2H), 7.51 (d, *J* = 8.3 Hz, 2H), 7.45-7.40 (m, 2H), 7.37-7.28 (m, 6H), 7.23 (d, *J* = 7.5 Hz, 1H), 6.99 (d, *J* = 16.2 Hz, 1H), 6.76 (d, *J* = 16.2 Hz, 1H), 2.12 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.1, 149.6, 140.6, 140.1, 139.6, 136.6, 136.4, 136.1, 136.0, 129.4, 129.2, 128.7, 128.2, 127.4, 127.2, 127.2, 126.9, 126.8, 125.4, 123.0, 121.9, 20.3. HRMS (ESI) *m/z* calcd. for C₂₆H₂₂N [M+H]*: 348.1747, found 348.1748.

(E)-4-(3-methyl-2-(pyridin-2-yl)styryl)phenyl acetate (2l)

Yellow oil. (**Procedure A**, 24.3 mg, 74%; **Procedure B**, 24.1 mg, 73%).¹H NMR (500 MHz, CDCl₃) δ 8.77-8.75 (m, 1H), 7.76 (td, *J* = 7.7, 1.8 Hz, 1H), 7.58 (d, *J* = 7.8 Hz, 1H), 7.32-7.20 (m, 6H), 6.97 (d, *J* = 8.7 Hz, 2H), 6.91 (d, *J* = 16.1 Hz, 1H), 6.64 (d, *J* = 16.1 Hz, 1H), 2.27 (s, 3H), 2.09 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 169.4, 159.0, 149.8, 149.6, 139.6, 136.4, 136.2, 135.8, 135.4, 129.5, 128.7, 128.1, 127.6, 127.3, 125.4, 123.0, 121.9, 121.6, 21.1, 20.2. HRMS (ESI) *m/z* calcd. for C₂₂H₂₀NO₂ [M+H]⁺: 330.1489, found 330.1489.

(E)-2-(2-methyl-6-(4-(trifluoromethyl)styryl)phenyl)pyridine (2m)[10]

Pale yellow oil. (**Procedure A**, 29.6 mg, 87%; **Procedure B**, 29.2 mg, 86%). ¹H NMR (500 MHz, CDCl₃) δ 8.78-8.76 (m, 1H), 7.78 (td, J = 7.7, 1.8 Hz, 1H), 7.61 (d, J = 7.8 Hz, 1H), 7.49 (d, J = 8.2 Hz, 2H), 7.34-7.29 (m, 4H), 7.29-7.21 (m, 2H), 6.95 (d, J = 16.2 Hz, 1H), 6.78 (d, J = 16.2 Hz, 1H), 2.10 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 158.8, 149.7, 141.0, 139.9, 136.5, 136.2, 135.3, 130.0, 129.8, 129.0 (q, J = 32.7 Hz), 128.3, 128.2, 126.5, 125.4 (q, J = 3.5 Hz), 125.4, 124.2 (q, J = 272.0 Hz), 123.1, 122.0, 20.2. HRMS (ESI) m/z calcd. for C₂₁H₁₇NF₃ [M+H]⁺: 340.1308, found 340.1313.

(E)-4-(3-methyl-2-(pyridin-2-yl)styryl)benzonitrile (2n)

Yellow oil. (**Procedure A**, 22.4 mg, 76%). ¹H NMR (500 MHz, CDCl₃) δ 8.78-8.77 (m, 1H), 7.79 (td, J = 7.7, 1.8 Hz, 1H), 7.60 (d, J = 7.6 Hz, 1H), 7.52 (d, J = 8.4 Hz, 2H), 7.38-7.21 (m, 6H), 6.92 (d, J = 16.2 Hz, 1H), 6.81 (d, J = 16.2 Hz, 1H), 2.11 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 158.7, 149.7, 142.0, 140.1, 136.6, 136.2, 135.0, 132.3, 131.0, 130.3, 128.3 127.7, 126.8, 125.3, 123.1, 122.1, 119.0, 110.3, 20.2. HRMS (ESI) m/z calcd. for C₂₁H₁₇N₂ [M+H]⁺: 297.1386, found 297.1382.

(E)-2-(2-methyl-6-(4-(trimethylsilyl)styryl)phenyl)pyridine (20)

Yellow oil. (Procedure A, 28.4 mg, 83%). ¹H NMR (500 MHz, CDCl₃) δ 8.76-8.75 (m, 1H), 7.75 (td, J = 7.7, 1.8 Hz, 1H), 7.60 (d, J = 7.8 Hz, 1H), 7.60 (d, J = 7.8 Hz, 1H), 7.61 (d, J = 7.8 Hz, 1H), 7.8 Hz, 1H),

1H), 7.41 (d, J = 8.0 Hz, 2H), 7.33-7.18 (m, 6H), 6.93 (d, J = 16.2 Hz, 1H), 6.72 (d, J = 16.2 Hz, 1H), 2.09 (s, 3H), 0.23 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 159.1, 149.6, 139.7, 139.6, 137.9, 136.4, 136.1, 136.0, 133.5, 129.7, 129.4, 128.1, 127.6, 125.7, 125.4, 123.0, 121.8, 20.2, -1.2. HRMS (ESI) *m*/z calcd. for C₂₃H₂₆NSi [M+H]⁺: 344.1829, found 344.1827.

(E)-2-(2-methyl-6-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)styryl)phenyl)pyridine (2p)

Pale yellow oil. (**Procedure A**, 15.7 mg, 40%). ¹H NMR (500 MHz, CDCl₃) δ 8.76-8.75 (m, 1H), 7.75 (td, J = 7.7, 1.8 Hz, 1H), 7.69 (d, J = 7.8 Hz, 2H), 7.60 (d, J = 7.8 Hz, 1H), 7.33-7.20 (m, 6H), 6.94 (d, J = 16.1 Hz, 1H), 6.74 (d, J = 16.2 Hz, 1H), 2.10 (s, 3H), 1.32 (s, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 159.0, 149.6, 140.2, 139.7, 136.4, 136.1, 135.9, 135.0, 129.8, 129.6, 128.4, 128.2, 125.7, 125.4, 123.1, 121.9, 83.7, 24.8, 20.3. HRMS (ESI) *m*/z calcd. for C₂₆H₂₉BNO₂ [M+H]⁺: 398.2286, found 398.2287.

(E)-2-(2-(2,5-dimethylstyryl)-6-methylphenyl)pyridine (2q)

Pale yellow oil. (**Procedure A**, 26.1 mg, 87%). ¹H NMR (500 MHz, CDCl₃) δ 8.75-8.74 (m, 1H), 7.74 (td, *J* = 7.7, 1.9 Hz, 1H), 7.58 (d, *J* = 7.8 Hz, 1H), 7.33-7.19 (m, 4H), 7.07 (d, *J* = 16.0 Hz, 1H), 7.03-6.97 (m, 2H), 6.91 (d, *J* = 7.4 Hz, 1H), 6.58 (d, *J* = 16.1 Hz, 1H), 2.27 (s, 3H), 2.22 (s, 3H), 2.09 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.2, 149.6, 139.5, 136.5, 136.4, 136.4, 136.2, 135.3, 132.7, 130.1, 129.3, 128.5, 128.1, 128.1, 126.2, 125.4, 123.4, 121.8, 20.9, 20.2, 19.4. HRMS (ESI) *m/z* calcd. for C₂₂H₂₂N [M+H]⁺: 300.1747, found 300.1748.

(E)-2-(2-methyl-6-(2,4,6-trimethylstyryl)phenyl)pyridine (2r)

Colorless oil. (**Procedure A**, 13.6 mg, 44%). ¹H NMR (500 MHz, CDCl₃) δ 8.70-8.68 (m, 1H), 7.71 (td, *J* = 7.7, 1.8 Hz, 1H), 7.63 (d, *J* = 7.5 Hz, 1H), 7.33 (t, *J* = 7.7 Hz, 1H), 7.27-7.18 (m, 3H), 6.92 (d, *J* = 16.6 Hz, 1H), 6.80 (s, 2H), 6.18 (d, *J* = 16.6 Hz, 1H), 2.23 (s, 3H), 2.15 (s, 6H), 2.08 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.2, 149.6, 139.4, 136.4, 136.3, 136.1, 136.1, 134.3, 132.3, 129.1, 128.5, 128.2, 127.9, 125.1, 122.8, 121.8, 20.9, 20.2. HRMS (ESI) *m/z* calcd. for C₂₃H₂₄N [M+H]⁺: 314.1903, found 314.1901.

(E)-2-(2-methyl-6-(2-(naphthalen-2-yl)vinyl)phenyl)pyridine (2s)[10]

Pale yellow oil. (26.7 mg, 83%).¹H NMR (500 MHz, CDCl₃) δ 8.82-8.75 (m, 1H), 7.79-7.72 (m, 3H), 7.70-7.63 (m, 3H), 7.45-7.26 (m, 6H), 7.25-7.20 (m, 1H), 7.10 (d, *J* = 16.2 Hz, 1H), 6.82 (d, *J* = 16.2 Hz, 1H), 2.11 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.1, 149.6, 139.7, 136.4, 136.1, 136.0, 135.0, 133.5, 132.8, 129.9, 129.5, 128.2, 128.1, 127.9, 127.6, 127.6, 126.6, 126.2, 125.8, 125.4, 123.4, 123.0, 121.9, 20.3. HRMS (ESI) *m/z* calcd. for C₂₄H₂₀N [M+H]⁺: 322.1590, found 322.1587.

(E)-3-(3-methyl-2-(pyridin-2-yl)styryl)quinoline (2t)

White foam solid. (**Procedure A**, 26.9 mg, 84%). ¹H NMR (500 MHz, CDCl₃) δ 8.83 (d, J = 2.2 Hz, 1H), 8.81-8.76 (m, 1H), 8.02 (d, J = 8.4 Hz, 1H), 7.91 (d, J = 2.2 Hz, 1H), 7.79 (td, J = 7.7, 1.8 Hz, 1H), 7.74 (d, J = 8.2 Hz, 1H), 7.68-7.61 (m, 2H), 7.53-7.47 (m, 1H), 7.38-7.25 (m, 4H), 7.08 (d, J = 16.3 Hz, 1H), 6.91 (d, J = 16.3 Hz, 1H), 2.12 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 158.8, 149.8, 149.2, 147.3, 139.9, 136.6, 136.3, 135.4, 132.5, 130.5, 130.0, 129.6, 129.2, 129.1, 128.3, 128.0, 127.7, 126.9, 126.2, 125.4, 122.9, 122.1, 20.3. HRMS (ESI) *m/z* calcd. for C₂₃H₁₉N₂ [M+H]⁺: 323.1543, found 323.1549.

(E)-3-(3-methyl-2-(pyridin-2-yl)styryl)-1-tosyl-1H-indole (2u)

White foam solid. (**Procedure A**, 30.2 mg, 65%). ¹H NMR (500 MHz, CDCl₃) δ 8.79-8.78 (m, 1H), 7.94 (d, *J* = 8.3 Hz, 1H), 7.79 (td, *J* = 7.7, 1.8 Hz, 1H), 7.72 (d, *J* = 8.4 Hz, 2H), 7.60 (d, *J* = 7.8 Hz, 1H), 7.50 (s, 1H), 7.35-7.12 (m, 9H), 6.99 (d, *J* = 16.2 Hz, 1H), 6.78 (d, *J* = 16.2 Hz, 1H),

2.32 (s, 3H), 2.10 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.1, 149.8, 145.0, 139.5, 136.4, 136.3, 135.9, 135.5, 135.0, 129.9, 129.4, 128.9, 128.4, 128.2, 126.8, 125.4, 124.8, 124.0, 123.3, 122.4, 121.9, 121.0, 120.3, 120.2, 113.7, 21.5, 20.3. HRMS (ESI) *m/z* calcd. for C₂₉H₂₅N₂O₂S [M+H]*: 465.1631, found 465.1632.

(E)-2-(2-methyl-6-(2-(thiophen-2-yl)vinyl)phenyl)pyridine (2v)

Yellow oil. (**Procedure A**, 16.8 mg, 60%). ¹H NMR (500 MHz, CDCl₃) δ 8.77-8.75 (m, 1H), 7.77 (td, J = 7.7, 1.8 Hz, 1H), 7.54 (d, J = 7.7 Hz, 1H), 7.33-7.23 (m, 3H), 7.19 (d, J = 7.5 Hz, 1H), 7.09-7.02 (m, 2H), 6.91 (d, J = 3.3 Hz, 2H), 6.51 (d, J = 16.0 Hz, 1H), 2.09 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 158.9, 149.6, 143.1, 139.4, 136.4, 136.1, 135.6, 129.4, 128.2, 127.4, 127.0, 125.7, 125.4, 124.2, 122.7, 122.7, 121.9, 20.3. HRMS (ESI) *m/z* calcd. for C₁₈H₁₆NS [M+H]⁺: 278.0998, found 278.0990.

(13S)-13-methyl-3-((*E*)-3-methyl-2-(pyridin-2-yl)styryl)-6,7,8,9,11,12,13,14,15,16-decahydro-17*H*-cyclopenta[*a*]phenanthren-17-one (2z)

White foam solid. (**Procedure A**, 39.4 mg, 88%; **Procedure B**, 30.5 mg, 68%). ¹H NMR (500 MHz, CDCl₃) δ 8.77-8.75 (m, 1H), 7.75 (td, J = 7.6, 1.8 Hz, 1H), 7.58 (d, J = 7.8 Hz, 1H), 7.33-7.25 (m, 3H), 7.20 (s, 2H), 7.06 (s, 1H), 6.99 (s, 1H), 6.88 (d, J = 16.2 Hz, 1H), 6.65 (d, J = 16.2 Hz, 1H), 2.86 (dd, J = 9.1, 4.2 Hz, 2H), 2.50 (dd, J = 19.0, 8.6 Hz, 1H), 2.42-2.33 (m, 1H), 2.31-2.22 (m, 1H), 2.20-1.90 (m, 7H), 1.64-1.41 (m, 6H), 0.89 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 220.8, 159.1, 149.6, 139.5, 139.2, 136.6, 136.4, 136.2, 136.1, 135.2, 129.6, 129.3, 128.1, 127.3, 126.8, 125.5, 125.4, 123.7, 123.0, 121.8, 50.5, 47.9, 44.4, 38.1, 35.8, 31.5, 29.3, 26.4, 25.7, 21.6, 20.3, 13.8. HRMS (ESI) *m/z* calcd. for C₃₂H₃₄NO [M+H]⁺: 448.2635, found 448.2640.

Step 1: the alkenylation was conducted following the general procedure A with 10 mol% Rh-catalyst.

Step 2: a 5 mL flame-dried flask was charged with the alkenylation product and 10 mg Pd/C (10 wt%). The reaction flask was evacuated and backfilled with H₂ through a H₂ balloon followed by addition of ethanol (0.5 mL) and ethyl acetate (0.5 mL). The reaction mixture was stirred at room temperature for 12 hours. The reaction mixture was filtered through a pad of celite and eluted with CH_2Cl_2 (10 mL). The residue was concentrated *in vacuo* and afforded **2w**, **2x**, **2y** in quantitative yield.

2-(2-(2-cyclohexylethyl)-6-methylphenyl)pyridine (2w)

Colorless oil. (18.9 mg, 67%). ¹H NMR (500 MHz, CDCl₃) δ 8.72-8.71 (m, 1H), 7.75 (td, *J* = 7.7, 1.8 Hz, 1H), 7.28-7.20 (m, 3H), 7.13-7.07 (m, 2H), 2.32 (t, 2H), 2.02 (s, 3H), 1.63-1.52 (m, 3H), 1.51-1.43 (m, 2H), 1.36-1.20 (m, 2H), 1.17-0.99 (m, 4H), 0.75-0.64 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 159.8, 149.5, 141.1, 140.1, 136.0, 135.8, 127.9, 127.4, 126.6, 124.7, 121.6, 39.2, 37.5, 33.0, 30.8, 26.6, 26.2, 20.3. HRMS (ESI) *m/z* calcd. for C₂₀H₂₆N [M+H]⁺: 280.2060, found 280.2062.

2-(2-heptyl-6-methylphenyl)pyridine (2x)

Colorless oil. (12.4 mg, 46%). ¹H NMR (500 MHz, CDCl₃) δ 8.65-8.63 (m, 1H), 7.67 (td, *J* = 7.6, 1.8 Hz, 1H), 7.21-7.13 (m, 3H), 7.07-7.01 (m, 2H), 2.24 (t, *J* = 8.0 Hz, 2H), 1.95 (s, 3H), 1.42-1.24 (m, 2H), 1.18-1.01 (m, 8H), 0.76 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.8, 149.5, 140.7, 140.1, 136.0, 135.8, 127.9, 127.4, 126.6, 124.7, 121.6, 33.4, 31.6, 31.1, 29.4, 28.9, 22.6, 20.3, 14.1. HRMS (ESI) *m/z* calcd. for C₁₉H₂₆N [M+H]*: 268.2060, found 268.2069.

2-(2-methyl-6-(3-phenylpropyl)phenyl)pyridine (2y)

Colorless oil. (11.8 mg, 41%). ¹H NMR (500 MHz, CDCl₃) δ 8.69-8.68 (m, 1H), 7.70 (td, *J* = 7.6, 1.8 Hz, 1H), 7.25-7.18 (m, 5H), 7.15-7.09 (m, 3H), 7.04-7.00 (m, 2H), 2.47 (t, *J* = 7.6 Hz, 2H), 2.37 (t, *J* = 8.0 Hz, 2H), 2.02 (s, 3H), 1.83-1.66 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 159.6, 149.5, 142.2, 140.2, 140.1, 136.0, 135.9, 128.3, 128.1, 127.9, 127.6, 126.6, 125.5, 124.6, 121.6, 35.6, 33.1, 32.5, 20.3. HRMS (ESI) *m/z* calcd. for C₂₁H₂₂N [M+H]⁺: 288.1747, found 288.1753.

2.5 Arylation of *α*-Branched Amine

General procedure: In an nitrogen-filled glove-box, an oven-dried 15 mL sealed tube was charged with a stir bar, α -branched primary amine (0.1 mmol, 1.0 equiv.), [Cp^{°CyP}Rh(CH₃CN)₃](SbF₆)₂ (8.8 mg, 10 mol %), AgF (25 mg, 2.0 equiv.), CuF₂·2H₂O (28 mg, 2.0 equiv.). toluene (3.2 mL), DME (0.8 mL) and aryl silane (0.3 mmol, 3.0 equiv.). The mixture was stirred at 150 °C for 24 hours. After cooling to room temperature, the reaction mixture was filtered through a pad of celite and eluted with CH₂Cl₂(10 mL). The filtrate was concentrated *in vacuo* and the residue was purified by silica gel chromatography eluting with petroleum ether/acetone (20:1 to 10:1, v/v) to afford corresponding arylation product.

2-(3-methyl-[1,1'-biphenyl]-2-yl)pyridine (3a)[11]

White foam solid, (13.7 mg, 56%). ¹H NMR (500 MHz, CDCl₃) δ 8.62 (d, J = 4.8 Hz, 1H), 7.44 (td, J = 7.7, 1.8 Hz, 1H), 7.36 (t, J = 7.6 Hz, 1H), 7.32-7.24 (m, 2H), 7.16-7.04 (m, 6H), 6.88 (d, J = 7.8 Hz, 1H), 2.18 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.6, 148.8, 141.6, 141.2, 139.3, 136.7, 135.7, 129.6, 129.4, 128.0, 127.6, 126.2, 125.6, 121.3, 20.5. HRMS (ESI) m/z calcd. for C₁₈H₁₆N [M+H]⁺: 246.1277, found 246.1286.

2-(3-methoxy-[1,1'-biphenyl]-2-yl)pyridine (3b)^[12]

White foam solid, (13.2 mg, 51%). ¹H NMR (600 MHz, CDCl₃) δ 8.60-8.55 (m, 1H), 7.48 (td, J = 7.7, 1.8 Hz, 1H), 7.43 (t, J = 8.0 Hz, 1H), 7.15-7.11 (m, 3H), 7.10-7.05 (m, 4H), 7.03-7.00 (m, 2H), 3.79 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 157.2, 156.8, 148.8, 142.8, 141.0, 135.5, 129.6, 129.2, 127.6, 126.3, 126.3, 122.5, 121.3, 110.1, 55.8. HRMS (ESI) *m/z* calcd. for C₁₈H₁₆NO [M+H]⁺: 262.1226, found 262.1233.

2-(3-fluoro-[1,1'-biphenyl]-2-yl)pyridine (3c)[11]

White foam solid, (11.5 mg, 46%). ¹H NMR (600 MHz, CDCl₃) δ 8.60-8.58 (m, 1H), 7.53 (td, J = 7.7, 1.8 Hz, 1H), 7.46-7.41 (m, 1H), 7.26-7.24 (m, 1H), 7.20-7.16 (m, 4H), 7.16-7.12 (m, 1H), 7.11-7.06 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 160.3 (d, J = 247.4 Hz), 154.2, 149.2, 143.4, 140.0, 135.7, 129.6 (d, J = 8.8 Hz), 129.5, 127.9, 127.7 (d, J = 14.6 Hz), 126.9, 126.2, 125.9 (d, J = 3.2 Hz), 122.0, 114.7 (d, J = 22.9 Hz). HRMS (ESI) *m/z* calcd. for C₁₇H₁₃NF [M+H]⁺: 250.1027, found 250.1033.

2-(4-methyl-[1,1'-biphenyl]-2-yl)pyridine (3d)[12]

White foam solid, (11.8 mg, 48%).¹H NMR (500 MHz, CDCl₃) δ 8.64 (d, J = 4.7 Hz, 1H), 7.53 (s, 1H), 7.39-7.31 (m, 2H), 7.30-7.20 (m, 4H), 7.16-7.07 (m, 3H), 6.86 (d, J = 7.9 Hz, 1H), 2.45 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.3, 149.3, 141.3, 139.2, 137.8, 137.4, 135.1, 131.0, 130.4, 129.7, 129.3, 128.0, 126.5, 125.5, 121.3, 21.1. HRMS (ESI) m/z calcd. for C₁₈H₁₅N [M+H]⁺: 246.1277, found 246.1290.

2-([1,1':4',1"-terphenyl]-2'-yl)pyridine (3e)[13]

White foam solid, (15.8 mg, 51%). ¹H NMR (500 MHz, CDCl₃) δ 8.66 (d, *J* = 4.6 Hz, 1H), 7.94 (s, 1H), 7.71 (d, *J* = 7.8 Hz, 3H), 7.52 (d, *J* = 7.9 Hz, 1H), 7.48-7.33 (m, 4H), 7.26-7.19 (m, 5H), 7.15-7.10 (m, 1H), 6.94 (d, *J* = 7.9 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 159.2, 149.4, 140.9, 140.5, 140.5, 139.8, 139.6, 135.3, 131.0, 129.7, 129.3, 128.7, 128.1, 127.4, 127.2, 127.1, 126.8, 125.5, 121.5. HRMS (ESI) *m*/*z* calcd. for C₂₃H₁₇N [M+H]*: 308.1434, found 308.1446.

2-(4'-fluoro-3-methyl-[1,1'-biphenyl]-2-yl)pyridine (3f)[11]

White foam solid, (12.8 mg, 47%).¹H NMR (600 MHz, CDCl₃) δ 8.64-8.61 (m, 1H), 7.48 (td, J = 7.7, 1.8 Hz, 1H), 7.35 (t, J = 7.6 Hz, 1H), 7.29 (d, J = 7.2 Hz, 1H), 7.24 (d, J = 7.5 Hz, 1H), 7.13-7.08 (m, 1H), 7.05-7.01 (m, 2H), 6.88 (dt, J = 7.8, 1.1 Hz, 1H), 6.85-6.79 (m, 2H), 2.17 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 161.5 (d, J = 245.4 Hz), 159.4, 148.9, 140.2, 139.4, 137.6, 136.8, 135.8, 131.1 (d, J = 7.7 Hz), 129.5, 128.1, 127.5, 125.5, 121.4, 114.5 (d, J = 21.7 Hz). HRMS (ESI) *m*/z calcd. for C₁₈H₁₅NF [M+H]⁺: 264.1183, found 264.1196.

2-(4'-methoxy-3-methyl-[1,1'-biphenyl]-2-yl)pyridine (3g)[11]

White foam solid. (14.6 mg, 53%). ¹H NMR (600 MHz, CDCl₃) δ 8.66-8.62 (m, 1H), 7.47 (td, J = 7.7, 1.8 Hz, 1H), 7.34 (t, J = 7.6 Hz, 1H), 7.28-7.23 (m, 2H), 7.13-7.08 (m, 1H), 6.98 (d, J = 8.7 Hz, 2H), 6.88 (d, J = 7.8 Hz, 1H), 6.67 (d, J = 8.7 Hz, 2H), 3.73 (s, 3H), 2.17 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 159.8, 158.0, 148.8, 140.8, 139.3, 136.7, 135.8, 134.1, 130.7, 129.1, 128.0, 127.6, 125.6, 121.2, 113.1, 55.1, 20.5. HRMS (ESI) *m/z* calcd. for C₁₉H₁₈NO [M+H]⁺: 276.1383, found 276.1389.

2.6 One-Pot Protocol for Divergent Synthesis

In an nitrogen-filled glove-box, an oven-dried 15 mL sealed tube was charged with a stir bar, α -branched primary amine **1a** (0.1 mmol, 1.0 equiv.), $[Cp^{*Cy}Rh(CH_3CN)_3](SbF_6)_2$ (4.4 mg, 5 mol %), Ag₂CO₃ (33 mg, 1.2 equiv.), and Ag₃PO₄ (83 mg, 2.0 equiv.). Then, toluene (3.2 mL), DME (0.8 mL), and styrene (0.3 mmol, 3.0 equiv.) were added. The reaction mixture was stirred at 150 °C for 24 hours. After cooling to room temperature, the solvent was removed *in vacuo* and the residue was dissolved in THF (3 mL). The Allylmagnesium bromide solution (0.15 mL, 1.5 equiv., 1.0 M in diethyl ether) was added dropwise at 0 °C. The reaction mixture was stirred at this temperature for 2 hours. Then, the mixture was filtered through a pad of celite and eluted with CH₂Cl₂ (10 mL). The filtrate was concentrated *in vacuo* and the residue was purified by silica gel chromatography eluting with petroleum ether/acetone (15:1 to 10:1, v/v) to afford **2a** (22.4 mg, 83%) and **4** (20.6 mg, 68%).

4-methyl-N-(1-phenylbut-3-en-1-yl)benzenesulfonamide (4)[14]

White solid. ¹H NMR (600 MHz, CDCl₃) δ 7.55 (d, *J* = 8.2 Hz, 2H), 7.21-7.12 (m, 5H), 7.07 (m, 2H), 5.56-5.45 (m, 1H), 5.09-5.03 (m, 2H), 4.80 (d, *J* = 6.4 Hz, 1H), 4.38 (q, *J* = 6.6 Hz, 1H), 2.50-2.40 (m, 2H), 2.37 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 143.1, 140.3, 137.4, 133.0, 129.3, 128.4, 127.4, 127.1, 126.5, 119.4, 57.0, 41.9, 21.5.

2.7 Mechanism Study

Table S4. Reaction Monitoring

In an nitrogen-filled glove-box, an oven-dried 4 mL vial was charged with a stir bar, **1a** (21.4 mg, 0.05 mmol), $[Cp^{-Cy}Rh(CH_3CN)_3](SbF_6)_2$ (2.2 mg, 5 mol %), Ag₂CO₃ (16.5 mg, 0.06 mmol) and Ag₃PO₄ (41.5 mg, 0.1 mmol), toluene (1.6 mL), DME (0.4 mL) and styrene (18 µL, 0.15 mmol). The mixture was stirred at 150 °C for the specific time (as shown in the above table **S4**). Then the mixture was filtered through a pad of celite and eluted with CH₂Cl₂ (5 mL). The filtrate was concentrated *in vacuo*. The remaining substrate **1a** and yields of **2a** and **2a'** were detected by ¹H NMR by using 1,1,2,2-tetrachloroethane as the standard.

Alkenylation of 2a' via C-H bond cleavage

In an nitrogen-filled glove-box, an oven-dried 4 mL vial was charged with a stir bar, **2a'** (21.4 mg, 0.05 mmol), $[Cp^{-Cy}Rh(CH_3CN)_3](SbF_6)_2$ (2.2 mg, 5 mol %), Ag₂CO₃ (16.5 mg, 0.06 mmol) and Ag₃PO₄ (41.5 mg, 0.1 mmol), toluene (1.6 mL), DME (0.4 mL) and styrene (18 µL, 0.15 mmol). Set up five reactions individually at the same time. The reaction mixture was heated at 150 °C for 100 minutes. Then, the mixture was filtered through a pad of celite and eluted with CH₂Cl₂ (5 mL). The filtrate was concentrated *in vacuo*. A quantitative yield of **2a** was measured by using ¹H NMR with 1,1,2,2-tetrachloroethane as the standard.

3. X-Ray Crystallographic Data

Crystal data and structure refinement for compound 2k

CCDC	1968169
Empirical formula	C ₂₆ H ₂₁ N
Formula weight	347.44
Temperature/K	100.0
Crystal system	triclinic
Space group	P -1
a/Å	9.0336(5)
b/Å	10.5141(5)
c/Å	12.1297(7)
α/°	110.415(2)
β/°	95.345(2)
γ/°	114.138(2)
Volume/Å3	947.12(9)
Z	2
p _{cale} g/cm3	1.218
µ/mm ⁻¹	0.070
F(000)	368
Crystal size/mm ³	0.077 × 0.355 × 0.448
Radiation	ΜοΚα (λ = 0.71073)
2O range for data collection/°	4.584 to 56.632
Index ranges	-12 ≤ h ≤ 12, -14 ≤ k ≤ 13, -16 ≤l ≤ 16
Reflections collected	36207
Refinement method	Full-matrix least-squares on shelXL
Independent reflections	4665 [Rint = 0.0278, Rsigma = 0.0156]

Data/restraints/parameters	4665/0/245
Goodness-of-fit on F ²	1.047
Final R indexes [I>=2σ (I)]	R1 = 0.0392, wR2 = 0.1031
Final R indexes [all data]	R1 = 0.0431, wR2 = 0.1064
Largest diff. peak/hole / e Å ⁻³	0.036/-0.184

100 90 f1 (ppm) 50 40 30 20

60

190 180

160

150 140 130 120 110

170

4.00E+10

3.00E+10

2.00E+10

1.00E+10

0.00E+00

--1.00E+10

-10

0

200

190 180

170 160

150 140 130 120

110 100 90 80 70 60 50 f1 (ppm) 5.0E+09

0.0E+00

-5.0E+09

0

40 30

5. Reference

- [1] L.-J. Xiao, C.-Y. Zhao, L. Cheng, B.-Y. Feng, W.-M. Feng, J.-H. Xie, X.-F. Xu, Q.-L. Zhou, Angew. Chem. Int. Ed. 2018, 57, 3396.
- [2] P. Gigler, W. A. Herrmann, F. Z. Kühn, Synthesis 2010, 1431.
- [3] T. Piou, e-EROS Encyclopedia of Reagents for Organic Synthesis 2017, 1.
- [4] D. Kalyani, A. R. Dick, W. Q. Anani, M. S. Sandord, *Tetrahedron* 2006, 62, 11483.
- [5] H. Li, Y. Li, X.-S. Zhang, K. Chen, X. Wang, Z.-J. Shi, J. Am. Chem. Soc. 2011, 133, 15244.
- [6] M. A. Mantell, J. W. Kampf, M. Sanford, Organometallics 2018, 37, 3240.
- [7] Y. Matsuura, M. Tamura, T. Kochi, M. Sato, N. Chatani, F. Kakichi, J. Am. Chem. Soc. 2007, 129, 9858.
- [8] N. Satrawala, C. Williams, A. K. Srivastrava, K. N. Sharma, G. S. Smith, R. K. Joshi, Catal. Commum.2019, 129, 105727.
- [9] A. Kumar, N. Muniral, K. R. Prabhu, *Eur. J. Org. Chem.* 2019, **16**, 2735.
- [10] S. Onodera, S. Ishikawa, F. Kochi, F. Kakiuchi, J. Am. Chem. Soc. 2018, 140, 9788.
- [11] H. Li, W. Wei, Y. Xu, C. Zhang, X. Wan, *Chem. Commun.* 2011, **47**, 1497.
- [12] W. Jin, Z. Yu, W. He, W. Ye, W.-J. Xiao, Org. Lett. 2009, 11, 1317.
- [13] Z.-Q. Lei, H. Li, Y. Li, X.-S. Zhang, K. Chen, X. Wang, J. Sun, Z.-J. Shi, Angew. Chem. Int. Ed. 2012, 51, 2690.
- [14] N. Solin, O. A. Wallner, K. J. Szabó, Org. Lett. 2005, 7, 689.