Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2023

Supporting Information Petal-like Mn-doped α-Ni(OH)₂ nanosheets for highperformance Li–S cathode material

- 4 Changfeng Zhao^{a,*}, Hanyang Liu^a, Jiawei Liu^b, Yanhong Shi^a, Shuguang
- 5 Wang^a, Qiwei Tang^a, Xiangbing Zhu^a, Huimin Zhang^a, Yan Zhao^a
- 6 aSchool of Energy and Mechanical Engineering, Dezhou University, DeZhou, Shandong,
- 7 253023, P. R. China
- 8 ^bCollege of Agriculture, Shihezi University, Shihezi, Xinjiang, 832003, P. R. China
- 9 *Corresponding author: Changfeng Zhao, E-mail: 867713584@qq.com
- 10

11

12 Fig. S1 SEM images of (a) Ni(OH)₂, (b) Ni_{1-x}Mn_x(OH)₂, and (c) NiMn-LDH at low

2 Fig. S2 N₂ adsorption/desorption isotherms of Ni(OH)₂ and Ni_{1-x}Mn_x(OH)₂.

1

9

The polysulfide adsorption tests show that the color of polysulfide (Fig. S3a) changed from dark yellow to transparent after 5 h, indicating that Ni_{1-x}Mn_x(OH)₂ has obviously adsorption effect on polysulfide. However, in the case of Ni(OH)₂ powder (Fig. S3b), after 5 h, the color of mixture changed from dark yellow to light yellow. The results confirm that the sulfur/polysulfide has a superior adsorption ability by Ni₁. xMn_x(OH)₂ host than Ni(OH)₂.

10 Fig. S3 Adsorption experiment of Li_2S_6 solution a) $Ni_{1-x}Mn_x(OH)_2$, and b) $Ni(OH)_2$.

2 Fig. S4 The TGA profile of (a) $Ni_{1-x}Mn_x(OH)_2/S/CNT$, (b) $Ni(OH)_2/S/CNT$ and (c)

3 S/CNT.

1 Table S1. Comparison of electrochemical performance of this work with some

- 2 important references in manuscript and previously reported graphene-based Li-S
- 3 cathodes.

Structure characteristic	Sulfur percentage (by weight)	Initial discharge capacity (C)	Cycle performance (cycles, C)	Ref.
Ni(OH) ₂ @hollow carbon spheres	75 % (~2.1 mg cm ⁻²)	961 mAh·g ⁻¹ (0.5 C)	803 mAh·g ⁻¹ (200 th , 0.5 C)	[S1]
Ni(OH) ₂ @porous carbon/sulfur composites	49.7 % (~3 mg cm ⁻²)	1310 mAh·g ⁻¹ (0.1 C)	720 mAh·g ⁻¹ (70 th , 0.1 C)	[S2]
CNT-assembled dodecahedra core@NH shell	78.4 % (2 mg cm ⁻²)	1115 mAh·g ⁻¹ (0.1 C)	724 mAh·g ⁻¹ (100 th , 0.1 C)	[S3]
Uniform α -Ni(OH) ₂ hollow spheres	81% (~2.5 mg cm ⁻²)	708 mAh·g ⁻¹ (1 C)	595 mAh·g ⁻¹ (200 th , 1C)	[S4]
NH-Modified Sulfur/Carbon Composite	60 % (~1.5 mg cm ⁻²)	897 mAh·g ⁻¹ (0.2 C)	787 mAh·g ⁻¹ (100 th , 0.2 C)	[S5]
Ca(OH) ₂ -Carbon Framework	63 % (1.2-1.5 mg cm ⁻²)	1215 mAh·g ⁻¹ (0.5 C)	873 mAh·g ⁻¹ (250 th , 0.5 C)	[7]
CB@Ni(OH) ₂	78.4 % (1.8-2.5 mg cm ⁻²)	968 mAh·g ⁻¹ (0.2 C)	1100 mAh·g ⁻¹ (150 th , 0.2 C)	[8]
Flexible Nanostructured Paper of rGO	44 %	1302 mAh·g ⁻¹ (0.1 C)	978 mAh·g ⁻¹ (200 th , 0.1C)	[23]
TiC nanoparticles@ GO	66.6 % (~3.5 mg cm ⁻²)	1032 mAh·g ⁻¹ (0.2 C)	670 mAh·g ⁻¹ (100 th , 0.2C)	[24]
CoS2@GO	66.6 % (~2.9 mg cm ⁻²)	1368 mAh·g ⁻¹ (0.5 C)	1005 mAh·g ⁻¹ (150 th , 0.5C)	[29]
Hollow carbon nanofiber@N-doped porous carbon core-shell composite	77.5 % (1.8-2.5 mg cm ⁻²)	1170 mAh·g ⁻¹ (0.5 C)	590 mAh·g ⁻¹ (200 th , 0.5C)	[32]
self-supporting CoNi@porous N- doped carbon fibers	69.7 %	798 mAh·g ⁻¹ (5 C)	770 mAh·g ⁻¹ (1500 th , 5C)	[40]
Co ₄ N/N-doped graphene	77.5 % (4.1 mg cm ⁻²)	1109 mAh·g ⁻¹ (0.5 C)	810 mAh·g ⁻¹ 150 th , 0.5C)	[41]
Ni _{1-x} Mn _x (OH) ₂	75% (~5 mg cm ⁻²)	1375 mAh·g ⁻¹ (0.2 C)	813 mAh·g ⁻¹ (200 th , 0.2 C)	This work

1 References

2 [S1] J. G. Zhao, Ni(OH)₂@hollow carbon spheres/sulfur composites as cathode
3 materials for high-performance Li-S batteries. J. Mater. Sci-Mater. el. 2019, 30,
4 17155-17163.

- 5 [S2] Y. Xia, H. Y. Zhong, R. Y. Fang, C. Liang, Z. Xiao, H.Huang, Y. P. Gan, J.
 6 Zhang, X. Y. Tao, W. K. Zhang, Biomass derived Ni(OH)₂@porous carbon/sulfur
 7 composites synthesized by a novel sulfur impregnation strategy based on supercritical
 8 CO₂ technology for advanced Li-S batteries. *J. Power Sources* 2018, **378**, 73-80.
- 9 [S3] H. L. Wu, Y. Li, J. Ren, D. W. Rao, Q. J. Zheng, L. Zhou, D. M. Lin, CNT10 assembled dodecahedra core@nickel hydroxide nanosheet shell enabled sulfur
 11 cathode for high-performance lithium-sulfur batteries. *Nano Energy* 2019, 55, 82-92.
- 12 [S4] C. L. Dai, L. Y. Hu, M. Q. Wang, Y. M. Chen, J. Han, J. Jiang, Y. Zhang, B. L.
- 13 Shen, Y. B. Niu, S. J. Bao, M. W. Xu, Uniform α-Ni(OH)₂ hollow spheres
 14 constructed from ultrathin nanosheets as efficient polysulfide mediator for long-term
 15 lithium-sulfur batteries. *Energy Storage Mater.* 2017, 8, 202-208.
- 16 [S5] X. Q. Niu, X. L. Wang, D. Xie, D. H. Wang, Y. D. Zhang, Y. Li, T. Yu, J. P. Tu.
- 17 Nickel hydroxide-modified sulfur/carbon composite as a highperformance cathode
- 18 material for lithium sulfur battery. ACS Appl. Mater. Inter. 2015, 7, 16715-16722.
- 19 [7] H. Y. Shao, B. C. Huang, N. Q. Liu, W. K. Wang, H. Zhang, A. B. Wang, F.
- 20 Wang, Y. Q. Huang, Modified separators coated with a Ca(OH)₂-carbon framework
- 21 derived from crab shells for lithium-sulfur batteries, J. Mater. Chem. A 2016, 4,

22 16627-16634.

- [8] J. Jiang, J. Zhu, W. Ai, X. Wang, Y. Wang, C. Zou, W. Huang and T. Yu,
 Encapsulation of sulfur with thin-layered nickel-based hydroxides for long-cyclic
 lithium-sulfur cells, *Nat. Commun.* 2015, 6, 8622-8630.
- 4 [23] J. Cao, C. Chen, Q. Zhao, N. Zhang, Q. Lu, X. Wang, Z. Niu, J. Chen, A flexible
 5 nanostructured paper of a reduced graphene oxide-sulfur composite for high6 performance lithium-sulfur batteries with unconventional configurations, *Adv. Mater.*7 2016, 28, 9629-9636.
- 8 [29] Z. Yuan, H. J. Peng, T. Z. Hou, J. Q. Huang, C. M. Chen, D. W. Wang, X. B.
- 9 Cheng, F. Wei, Q. Zhang, Powering lithium-sulfur battery performance by propelling
 10 polysulfide redox at sulfiphilic hosts, *Nano Lett.* 2016, 16, 519-527.
- [32] Q. Li, Z. A. Zhang, Z. P. Guo, Y. Q. Lai, K. Zhang, Improved cyclability of
 lithium-sulfur battery cathode using encapsulated sulfur in hollow carbon
 nanofiber@nitrogen-doped porous carbon core-shell composite. *Carbon* 2014, 78, 1-9.
 [40] Y. S. He, M. J. Li, Y. G. Zhang, Z. Z. Shan, Y. Zhao, J. D. Li, G. H. Liu, C. Y.
 Liang, Z. Bakenov, Q. Li, All-purpose electrode design of flexible conductive
 scaffold toward high-performance Li-S batteries, *Adv. Funct. Mater.* 2020, 30,
 2000613.
- [41] M. Zhao, H. J. Peng, B. Q. Li, X. Chen, J. Xie, X. Y. Liu, Q. Zhang, J. Q. Huang,
 Electrochemical phase evolution of metal-based pre-catalysts for high-rate polysulfide
 conversion, *Angew. Chem. Int. Ed.* 2020, 132, 9096-9102.
- 21