TiO² compact layer induced charge transfer enhancement in threedimensional TiO2-Ag array SERS substrate for quantitative and multiplex analysis

Zhuang Ding, a Yaru Wang, a Wanpeng Zhou, a Yanna Shui, a Zhengdong Zhu, a Maofeng Zhang, *a Youju Huang, *c Changlong Jiang, *d Jianhua Li, e Yucheng Wu b

a School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China

b School of Materials Science and Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China

^c College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China

d Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China

^e Anhui Topway Testing Services Co. Ltd., 18 Rixin Road, Xuancheng Economic and Technological Development Zone, 242000, China

Corresponding Authors E-mail: mfzhang@hfut.edu.cn , [yjhuang@hznu.edu.cn,](mailto:yjhuang@hznu.edu.cn) cljiang@iim.ac.c

Figure S1. Cross-sectional SEM images of (A) FTO substrate, TiO₂ compact layers prepared by different spin-coating cycles (B) once, (C) twice, (D) 3 times, (E) 4 times, (F) 5 times.

Estimation method of TiO² compact layer thickness

Since there is no obvious boundary between the $TiO₂$ compact layer and the SnO₂ coating of FTO, we estimated the thickness of the dense layer by comparing with the surface of FTO. For example, Figure S1A shows the thickness of $SnO₂$ coating, and Figure S1B shows the sum of the thickness of $SnO₂$ coating and $TiO₂$ compact layer by once of spin-coating. The thickness of $TiO₂$ compact layer can be obtained by the difference. The data of $TiO₂$ compact layer thickness in the figure is the approximate value obtained by comparison.

Figure S2. Images of TiO₂ nanorod arrays grown under (A) 17.5 mL deionized water, 12.5 mL hydrochloric acid and 388 μL tetra-butyl titanate at 150℃ for 5h; (B) 15 mL deionized water, 15 mL hydrochloric acid and 388 μL tetra-butyl titanate at 150℃ for 5h; (C) 15 mL deionized water, 15 mL hydrochloric acid and 388 μL tetrabutyl titanate at 150℃ for 7.5h; (D) 15 mL deionized water, 15 mL hydrochloric acid and 388 μL tetrabutyl titanate at 150℃ for 10h.

Figure S3. The locally enlarged view of the TiO2-Ag composite structure.

Figure S4. (A) SERS spectra of CV (10⁻⁶ M) at 20 different points on TiO₂-Ag composite structure; the RSD values of different peaks (B) 912 cm⁻¹, (C) 1172 cm⁻¹ and (D) 1619 cm⁻¹

Figure S5. SERS spectra of newly prepared substrate and that stored for 30 days.

Calculation of SERS enhancement factor (EF)

To quantify the enhancement contribution from $TiO₂$ -Ag composite structure and $TiO₂$ compact layer , we calculated their enhancement factor (EF) based on the following formula:

$$
EF = (I_{SERS} / I_{BULK}) \times (N_{BULK} / N_{SERS})
$$

where I_{SERS} and I_{BULK} represent the intensities of SERS and normal Raman scattering, whereas N_{SERS} and N_{BULK} , respectively, denote the numbers of corresponding CV molecules effectively excited by a laser beam. According to the above formula, the EF for the $TiO₂$ -Ag composite structure without TiO $_2$ compact layer is calculated to be 2.70×10⁴. The EF is calculated to be 4.02×10⁵ for the $TiO₂$ -Ag composite structure. As a result, the EF for the TiO₂-Ag composite structure shows a 10fold enhancement compared to the composite structure without $TiO₂$ compact layer.

 N_{BULK} = (Laser spot area/Diffusion area) × (N_A × Volume $_{\text{BULK}}$ × Concentration $_{\text{BULK}}$)

$$
N_{\text{SERS}} = (Laser spot area/Substrate area) \times (N_A \times Volume_{\text{SERS}} \times Concentration_{\text{SERS}})
$$

Diffusion area= π (d/2)²=0.5027 cm⁻²

Substrate area=0.25 cm-2

Volume $_{\text{BULK}}$ =Volume $_{\text{SERS}}$

Concentration $_{\text{BULK}}$ = 10⁵ × Concentration $_{\text{SERS}}$

 $N_{\text{BULK}}/N_{\text{SERS}}$ = (0.25/0.5027) ×10⁴ = 5 × 10³

I = intensity of the 1172 cm^{-1} peak

 I_{BULK} =14989

I SERS, $TiO_{2/Ag}=80855$

I SERS, $TiO₂/A_g$ /I BULK=5.39

EF $_{\text{TiO2/Ag}} = (I_{\text{SERS}} / I_{\text{BULK}}) \times (N_{\text{BULK}} / N_{\text{SERS}}) = 2.70 \times 10^4$

 $I_{SERS, c-TiO2/TiO2/Aq} = 847235$

 I SERS, c-TiO2/TiO2 /Ag I_{BULK} =56.52

EF $_{c\text{-TiO2/TiO2/Aq}} = (I_{SERS}/I_{BULK}) \times (N_{BULK}/N_{SERS}) = 2.83 \times 10^5$

EF _{c-TiO2/TiO2/Ag}/EF _{TiO2/Ag}=2.83×10⁵/2.70×10⁴=10.48

Figure S6. Raman spectrum of CV solution and SERS spectra of CV absorbed on TiO₂-Ag composite structure with or without $TiO₂$ compact layer