Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2023

TiO₂ compact layer induced charge transfer enhancement in threedimensional TiO₂-Ag array SERS substrate for quantitative and multiplex analysis

Zhuang Ding, ^a Yaru Wang, ^a Wanpeng Zhou, ^a Yanna Shui, ^a Zhengdong Zhu, ^a Maofeng Zhang, ^{*a} Youju Huang, ^{*c} Changlong Jiang, ^{*d} Jianhua Li, ^e Yucheng Wu ^b

^a School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China

^b School of Materials Science and Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China

^c College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China

^d Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China

^e Anhui Topway Testing Services Co. Ltd., 18 Rixin Road, Xuancheng Economic and Technological Development Zone, 242000, China

*Corresponding Authors E-mail: mfzhang@hfut.edu.cn , yjhuang@hznu.edu.cn, cljiang@iim.ac.c

Figure S1. Cross-sectional SEM images of (A) FTO substrate, TiO₂ compact layers prepared by different spin-coating cycles (B) once, (C) twice, (D) 3 times, (E) 4 times, (F) 5 times.

Estimation method of TiO₂ compact layer thickness

Since there is no obvious boundary between the TiO_2 compact layer and the SnO_2 coating of FTO, we estimated the thickness of the dense layer by comparing with the surface of FTO. For example, Figure S1A shows the thickness of SnO_2 coating, and Figure S1B shows the sum of the thickness of SnO_2 coating and TiO_2 compact layer by once of spin-coating. The thickness of TiO_2 compact layer can be obtained by the difference. The data of TiO_2 compact layer thickness in the figure is the approximate value obtained by comparison.

Figure S2. Images of TiO₂ nanorod arrays grown under (A) 17.5 mL deionized water, 12.5 mL hydrochloric acid and 388 μ L tetra-butyl titanate at 150°C for 5h; (B) 15 mL deionized water, 15 mL hydrochloric acid and 388 μ L tetra-butyl titanate at 150°C for 5h; (C) 15 mL deionized water, 15 mL hydrochloric acid and 388 μ L tetrabutyl titanate at 150°C for 7.5h; (D) 15 mL deionized water, 15 mL hydrochloric acid and 388 μ L tetrabutyl titanate at 150°C for 7.5h; (D) 15 mL deionized water, 15 mL

Figure S3. The locally enlarged view of the TiO2-Ag composite structure.

Figure S4. (A) SERS spectra of CV (10⁻⁶ M) at 20 different points on TiO₂-Ag composite structure; the RSD values of different peaks (B) 912 cm⁻¹, (C) 1172 cm⁻¹ and (D) 1619 cm⁻¹

Figure S5. SERS spectra of newly prepared substrate and that stored for 30 days.

Calculation of SERS enhancement factor (EF)

To quantify the enhancement contribution from TiO_2 -Ag composite structure and TiO_2 compact layer , we calculated their enhancement factor (EF) based on the following formula:

$$EF = (I_{SERS} / I_{BULK}) \times (N_{BULK} / N_{SERS})$$

where I_{SERS} and I_{BULK} represent the intensities of SERS and normal Raman scattering, whereas N_{SERS} and N_{BULK} , respectively, denote the numbers of corresponding CV molecules effectively excited by a laser beam. According to the above formula, the EF for the TiO₂-Ag composite structure without TiO₂ compact layer is calculated to be 2.70×10⁴. The EF is calculated to be 4.02×10⁵ for the TiO₂-Ag composite structure. As a result, the EF for the TiO₂-Ag composite structure shows a 10-fold enhancement compared to the composite structure without TiO₂ compact layer.

 N_{BULK} = (Laser spot area/Diffusion area) × (N_A × Volume _{BULK} × Concentration _{BULK})

N_{SERS} = (Laser spot area/Substrate area) × (N_A × Volume _{SERS} × Concentration _{SERS})

Diffusion area= π (d/2)²=0.5027 cm⁻²

Substrate area=0.25 cm⁻²

Volume BULK = Volume SERS

Concentration $_{BULK}$ = 10⁵ × Concentration $_{SERS}$

N_{BULK} /N_{SERS}= (0.25/0.5027) ×10⁴=5×10³

I = intensity of the 1172 cm^{-1} peak

I _{BULK}=14989

I _{SERS}, _{TiO2/Ag}=80855

I SERS, TiO2/Ag /I BULK=5.39

 $\mathsf{EF}_{\mathsf{TiO2/Ag}} = (\mathsf{I}_{\mathsf{SERS}} / \mathsf{I}_{\mathsf{BULK}}) \times (\mathsf{N}_{\mathsf{BULK}} / \mathsf{N}_{\mathsf{SERS}}) = 2.70 \times 10^4$

I SERS, c-TiO2/TiO2 /Ag =847235

I SERS, c-TiO2/TiO2 /Ag /IBULK=56.52

 $\mathsf{EF}_{\mathsf{c}-\mathsf{TiO2}/\mathsf{TiO2}/\mathsf{Ag}} = (\mathsf{I}_{\mathsf{SERS}}/\mathsf{I}_{\mathsf{BULK}}) \times (\mathsf{N}_{\mathsf{BULK}}/\mathsf{N}_{\mathsf{SERS}}) = 2.83 \times 10^5$

EF _{c-TiO2/TiO2 /Ag} /EF _{TiO2 /Ag}=2.83×10⁵/2.70×10⁴=10.48

Figure S6. Raman spectrum of CV solution and SERS spectra of CV absorbed on TiO_2 -Ag composite structure with or without TiO_2 compact layer