Supporting Information

Aminobenzofuran-containing analogues of proximicins exhibit higher antiproliferative activity against human UG-87 glioblastoma cells compared to temozolomide

Table of Contents
Synthetic procedures page 2
MTT cytotoxicity assay page 14
Table S1. \%viability of proximixicins analogues in U87-MG and WI-38 cells page 15
Growth curves for U87-MG and WI-38 cells page 18
Spectral data page 19

Experimental section

General information

Nuclear Magnetic Resonance (NMR) spectroscopy spectra were recorded on a JEOL JNM-ECZR 600 MHz (equipped with a ROYAL probe) and Bruker 400 Avance 400 MHz . Chemical shifts are reported in parts per million (ppm) with the solvent resonance as the internal standard and coupling constants (J) are quoted in Hertz (Hz). Splitting patterns were denoted as follows: s (singlet), br s (broad singlet), d (doublet), dd (doublet of doublets), t (triplet), q (quadruplet) and m (multiplet). LC-MS analysis was conducted on Thermo Fisher - Agilent 6100 series Quadrupole LC-MS system with a G4220A 1290 binary pump/DAD with a Kinetex C18 Phenomenex reversed-phase column ($150 \times 4.6 \mathrm{~mm}$) and a flow rate of $0.5 \mathrm{~mL} \mathrm{~min}^{-1}$ and an eluent gradient of A ($5-95 \%$) over 15 min . Eluent A: $\mathrm{CH}_{3} \mathrm{CN} / 0.1 \%$ formic acid; Eluent B: $\mathrm{H}_{2} \mathrm{O} / 0.1 \%$ formic acid. The total run time was 15 min with an injection volume of 20 $\mu \mathrm{L}$. UHPLC-HRMS were acquired on an Agilent 1290 UHPLC coupled to an Agilent 6530 QTOF mass spectrometer used in the TOF mode. The total run time was 2.51 min and the injection volume was $5 \mu \mathrm{~L}$. The mass spectrometer was operated in electrospray positive ion mode. Calibration of the TOF mass spectrometer was performed daily before analyses. HRMS reference masses: $121.0508 \mathrm{~m} / \mathrm{z}$ and $922.0098 \mathrm{~m} / \mathrm{z}$. TLC was performed on Merk silica gel $60 \mathrm{~F}_{254}$ aluminium sheets. Column flash chromatography was performed on $40-63 \mu \mathrm{~m}$ particle size, $60 \AA$ silica gel with ethyl acetate / hexane mixture as the eluent. All reagents were supplied by Sigma-Aldrich, Fischer Scientific, Merk and AlfaAesar in standard research grade. Human cancer cell line U-87 MG and human non-cancer cell line WI-38 were obtained from the American Type Culture Collection (ATCC) and cultured in $75 \mathrm{~cm}^{3}$ flasks using Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% of Fetal Bovine Serum (FBS). DMEM was purchased from Sigma-Aldrich and FBS was purchased from Thermo Fisher.

Synthetic procedures

Ethyl 5- amino benzofuran-2-carboxylate (16). Benzofuran scaffold was synthesised according to previous methods ${ }^{23}$ from 5-nitrosalicylaldehyde (14). In a round-bottom flask fitted with a condenser and charged with DMF were added $\mathbf{1 4}(100 \mathrm{mg}, 0.59 \mathrm{mmol})$, ethyl bromoacetate ($295 \mathrm{mg}, 1.77 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(489 \mathrm{mg}, 3.5 \mathrm{mmol})$. The reaction mixture was allowed to stir under reflux for 8 hours. After the reaction was completed as determined by TLC analysis, the mixture was poured into ice-cold water and extracted with DCM $(3 \times 2 \mathrm{~mL})$, washed with water $(3 \times 20 \mathrm{~mL})$, brine $(3 \times 20 \mathrm{~mL})$ and dried over MgSO_{4}. The solvent was evaporated in vacuo, and the resulting crude solid was purified by flash chromatography (Hexane:EtOAc / 9:1) to obtain (15) 5-nitro ethylbenzofuran-2-carboxylate (LC-MS: $\left.m / z=235.19\left[\mathrm{M}^{+}\right]\right)$. For the subsequent hydrogenation reaction, $\mathbf{1 5}$ was dissolved in 30 mL ethyl acetate and evacuated and flushed with nitrogen before adding $10-\mathrm{mol} \%$ palladium on carbon $(\mathrm{Pd} / \mathrm{C})$.

The reaction mixture was left to react under hydrogen for 3 hours, filtered through a celite pad and evaporated to dryness to give $\mathbf{1 6}$ as light brown solid. The compound was characterised by LC-MS and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy. LC-MS: m / z (ES+) 206.19 [M+H]+. ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHZ}$, DMSO-D6) $\delta 7.50$ (d, J = 1.Hz, 1H), $7.36(\mathrm{dd}, \mathrm{J}=1.04 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dd}, \mathrm{J}=0.54,1.46 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~s}, \mathrm{~J}=1.94 \mathrm{~Hz}, 1 \mathrm{H})$, $4.32(\mathrm{q}, \mathrm{J}=2.17 \mathrm{~Hz}, 2 \mathrm{H}), 3.168(\mathrm{~d}, \mathrm{~J}=0.63 \mathrm{~Hz}, 2 \mathrm{H}), 1.31(\mathrm{t}, \mathrm{J}=3.27 \mathrm{~Hz}, 3 \mathrm{H})$.

Ethyl 5-(methoxycarbonylamino)benzofuran-2-carboxylate (17). In a round-bottom flask, to a solution of $\mathbf{1 6}(100 \mathrm{mg}, 0.487 \mathrm{mmol})$ in dry THF was added DIPEA ($125 \mathrm{mg}, 169,76 \mu \mathrm{~L}, 0.97 \mathrm{mmol}$) under a nitrogen atmosphere. After stirring at room temperature for $10 \mathrm{~min}, \mathrm{MeOCOCl}(110 \mathrm{mg}, 94.07$ $\mu \mathrm{L}, 1.21 \mathrm{mmol}$, dissolved in 1 mL dry THF) was added dropwise and the reaction mixture was allowed to stir at $70^{\circ} \mathrm{C}$ for 1.5 hours. After evaporation, the residue was dissolved in EtOAc (20 mL) and then washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL}), 10 \% \mathrm{HCl}(3 \times 20 \mathrm{~mL}), \mathrm{NaHCO}_{3}(3 \times 20 \mathrm{~mL})$ and brine $(3 \times 20 \mathrm{~mL})$. The solvent was evaporated, and the crude solid was purified by flash chromatography (Hex:EtOAc / 7:3) to obtain $95.6 \mathrm{mg}(96.20 \%)$ of 17. LC-MS: $m / z(\mathrm{ES}+) 264.07[\mathrm{M}+\mathrm{H}]+.{ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}$, DMSO-D6) $\delta 9.76(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.35(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.

5-(methoxycarbonylamino)benzofuran-2-carboxylic acid (18). To a solution of $\mathbf{1 7}$ ($95.6 \mathrm{mg}, 0.363$ $\mathrm{mmol})$ in THF $(15 \mathrm{~mL})$ was added dropwise $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(114 \mathrm{mg}, 2.72 \mathrm{mmol}$ dissolved in 3 mL of $\mathrm{H}_{2} \mathrm{O}$). The reaction was allowed to react for 3 hours at room temperature. The solvent was evaporated, and the residue was treated with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. After acidification by $10 \% \mathrm{HCl}$ to pH 3 , the solution was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$), dried over MgSO_{4} and concentrated in vacuo to obtain 68.6 mg (80.12%) of 18 as a white solid. LC-MS: $m / z(E S+) 235.07[\mathrm{M}+] .{ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}$, DMSO-D6) δ $9.70(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.58-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{dd}, \mathrm{J}=9.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H})$.

General procedure for amide coupling reactions

To a solution of the appropriate heterocyclic carboxylic acid (9-23, Scheme 2) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:DMF (2:1) were added either EDCI-DMAP, or HATU, or EDCI-HOBt, DIPEA and left to stir for 15 min under nitrogen atmosphere, before adding amino benzofuran 16. The reaction mixture was then allowed to react for 24 h at room temperature. After consumption of the starting material, the solution was poured into ice-cold $\mathrm{H}_{2} \mathrm{O}$, extracted with EtOAc ($3 \times 20 \mathrm{~mL}$), washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL}), 10 \% \mathrm{HCl}$ $(3 \times 10 \mathrm{~mL}), 1 \mathrm{M} \mathrm{NaHCO} 3(3 \times 10 \mathrm{~mL})$, and brine $(3 \times 10 \mathrm{~mL})$, and dried over MgSO_{4}. the solvent was evaporated, and residues purified by flash chromatography.

General procedure for hydrolysis

To a solution of ester in THF (5 mL) was added dropwise $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}$ dissolved in 3 mL of $\mathrm{H}_{2} \mathrm{O}$. The reaction mixture was allowed to stir for $1.5-3 \mathrm{~h}$ at room temperature. The solvent was evaporated under
reduced pressure and the residue was treated with 5 mL of $\mathrm{H}_{2} \mathrm{O}$. After acidification by $10 \% \mathrm{HCl}$ to pH 3 , the solution was extracted with $\mathrm{EtOAc}(3 \times 20 \mathrm{~mL})$, dried over MgSO_{4} and concentrated in vacuo to obtain the desired carboxylic acid.

NS-A9. Ethyl5-[(2-methyl-1H-benzimidazole-5-carbonyl)amino]benzofuran-2-carboxylate 21(9). 2-methyl-1 H-benzimidazole-5-carboxylic acid (1) ($38.5 \mathrm{mg}, 0.219 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: DMF (2:1) was treated with DIPEA ($76.3 \mu \mathrm{~L}, 0.438 \mathrm{mmol}$), HATU ($111 \mathrm{mg}, 0.292 \mathrm{mmol}$), and amino benzofuran $\mathbf{1 6}(30 \mathrm{mg}, 0.146 \mathrm{mmol})$ according to the general procedure. The final product was purified by column chromatography using EtOAc: $\operatorname{Hex}\left(6: 4, \mathrm{R}_{\mathrm{f}}: 0.24\right)$ to afford $21(9)(0.07 \mathrm{mmol}, 48.50 \%) .{ }^{1} \mathrm{H}-$ NMR (600 MHz, ACETONE-D6) $\delta 8.69(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{dd}, \mathrm{J}=9.0,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.99(\mathrm{dd}, \mathrm{J}=9.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.85(\mathrm{~m}, 1 \mathrm{H}), 7.79-7.77(\mathrm{~m}, 1 \mathrm{H})$, 7.72-7.69 (m, 1H), 5.08 (d, J = 6.2 Hz, 1H), $4.84(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{~s}, 1 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 1.84-$ $1.82(\mathrm{~m}, 3 \mathrm{H})$, LC-MS: $m / z(\mathrm{ES}+) 364.3[\mathrm{M}+\mathrm{H}]+$. HRMS calc. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4} 363.1219$, found 363.1727.

NS-A11. Ethyl 5-(pyridine-3-carbonylamino)benzofuran-2-carboxylate 21(18). Nicotinic acid (18) ($26.9 \mathrm{mg}, 0.219 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: DMF ($2: 1$) was treated with DIPEA ($76.3 \mu \mathrm{~L}, 0.438$ mmol), HATU ($111 \mathrm{mg}, 0.292 \mathrm{mmol}$), and amino benzofuran $16(30 \mathrm{mg}, 0.146 \mathrm{mmol})$ according to the general procedure. The final product was purified by column chromatography using EtOAc:Hex (9:1, $\mathrm{R}_{\mathrm{f}}: 0.25$) to obtain 21(18) ($0.057 \mathrm{mmol}, 39.66 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}$, CHLOROFORM-D) $\delta 9.40$ (s, $1 \mathrm{H}), 8.69(\mathrm{~s}, 1 \mathrm{H}), 8.42(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H}), 7.63-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 0 \mathrm{H})$, $4.45(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.44(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(151 \mathrm{MHz}, \mathrm{CHLOROFORM}-\mathrm{D}) \delta 160.2$, $158.2,154.9,143.4,133.9,128.8,125.0,120.2,112.6,109.4,85.0,29.6-29.7$. LC-MS: $m / z(\mathrm{ES}+) 311.0$ $[\mathrm{M}+\mathrm{H}]+$. HRMS calc. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4} 310.3090$, found 310.3041 .

NS-A20. Ethyl 5-(pyridine-4-carbonylamino)benzofuran-2-carboxylate 21(19). Isonicotinic acid (19) (26.9 mg, 0.219 mmol$)$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: DMF ($2: 1$) was treated with DIPEA $(76.3 \mu \mathrm{~L}, 0.438$ $\mathrm{mmol})$, HATU ($111 \mathrm{mg}, 0.292 \mathrm{mmol}$), and amino benzofuran $16(30 \mathrm{mg}, 0.146 \mathrm{mmol})$, according to the general procedure. The final product was purified by column chromatography using EtOAc:Hex $\left(9: 1, \mathrm{R}_{\mathrm{f}}: 0.21\right)$ to obtain $21(19)(0.02 \mathrm{mmol}, 15 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}$, ACETONE-D6) $\delta 10.31$ (s, $1 \mathrm{H}), 9.18(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.81(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{dd}, \mathrm{J}=4.3,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.23(\mathrm{dd}, \mathrm{J}=9.0$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.79(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. LC-MS: $m / z(\mathrm{ES}+) 311.2[\mathrm{M}+\mathrm{H}]+$. HRMS calc. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4} 310.3090$, found 310.30406 .

NS-A25. Ethyl 5-[[5-(3-pyridyloxy)furan-2-carbonyl]amino]benzofuran-2-carboxylate 21(11). 5-(3-pyridinyloxy)-2-furoic acid (11) (29.9 mg, 0.146 mmol$)$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: DMF was treated with EDCI ($33.58 \mathrm{mg}, 0.174 \mathrm{mmol}$), HOBt ($23.51 \mathrm{mg}, 0.174 \mathrm{mmol}$), DMAP ($21.25 \mathrm{mg}, 0.174 \mathrm{mmol}$) and 16 ($30 \mathrm{mg}, 0.146 \mathrm{mmol}$). The final product was purified by column chromatography using EtOAc:Hex (2:8, $\left.\mathrm{R}_{\mathrm{f}}: 0.20\right)$ to afford $21(11)(0.011 \mathrm{mmol}, 8 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}$, DMSO-D6) $\delta 9.79(\mathrm{~s}, 1 \mathrm{H})$,
$8.14(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{dd}, \mathrm{J}=4.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.31(\mathrm{dd}, \mathrm{J}=9.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{q}, \mathrm{J}=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, \mathrm{~J}=3.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.57(\mathrm{~d}, \mathrm{~J}=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.93-3.90(\mathrm{~m}, 2 \mathrm{H}), 0.90-0.88(\mathrm{~m}, 3 \mathrm{H})$. LC-MS: $m / z(\mathrm{ES}+) 392.1[\mathrm{M}+\mathrm{H}]+$. HRMS calc. for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{6} 392.1008$, found 392.1009.

NS-MHA1. Methyl N-[2-(benzothiophen-5-ylcarbamoyl)benzofuran-5-yl]carbamate 20(7). Carboxylic acid 18 ($30 \mathrm{mg}, 0.127 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: DMF was treated with EDCI (29.34 mg , $0.153 \mathrm{mmol})$, DMAP ($18.69 \mathrm{mg}, 0.153 \mathrm{mmol}$) and 1-benzothiophen-5-amine (7) (18.95 mg, 0.127 mmol) according to the general procedure. The final product was purified by column chromatography using EtOAc:Hex (2:8, $\left.\mathrm{R}_{\mathrm{f}}: 0.20\right)$ to afford 20(7) (27.78\%). ${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}, \mathrm{CHLOROFORM-D})$ $\delta 8.41(\mathrm{~s}, 1 \mathrm{H}), 8.38(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, \mathrm{~J}=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{dd}, \mathrm{J}=$ 8.6, 2.1 Hz, 1H), $7.51(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{t}, \mathrm{J}=2.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.12(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$. LC-MS: $\mathrm{m} / \mathrm{z}(\mathrm{ES}+) 367.1[\mathrm{M}+\mathrm{H}]+$. HRMS calc. for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S} 366.0674$, found $367.0815[\mathrm{M}+\mathrm{H}]+$.

NS-MHA2. Methyl \boldsymbol{N}-[2-[(1-methylpyrazol-3-yl)carbamoyl]benzofuran-5-yl]carbamate 20(8). Carboxylic acid $\mathbf{1 8}(30 \mathrm{mg}, 0.127 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: DMF was treated with EDCI (29.34 mg , $0.153 \mathrm{mmol})$, DMAP ($18.69 \mathrm{mg}, 0.153 \mathrm{mmol}$), and amine 1-methyl-1H-pyrazol-3-amine (8) (12.33 mg, 0.127 mmol), according to the general procedure. The final product was purified by column chromatography using EtOAc:Hex (2:8, $\mathrm{R}_{\mathrm{f}}: 0.24$) to afford 20(8) (26.09\%). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (600 MHz , CHLOROFORM-D) $\delta 8.84(\mathrm{~s}, 1 \mathrm{H}), 7.85-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.52(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.34(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}$, $3 H), 3.80(\mathrm{~s}, 3 \mathrm{H})$. LC-MS: $m / z(\mathrm{ES}+) 315.1[\mathrm{M}+\mathrm{H}]+$. HRMS calc. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4} 314.1015$, found $315.1397[\mathrm{M}+\mathrm{H}]+$.

NS-MHA4. Methyl N-[2-(2-furylmethylcabamoyl)benzofuran-5-yl]carbamate 20(2). Carboxylic acid $18(30 \mathrm{mg}, 0.127 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: DMF was treated with EDCI (29.34 mg , $0.153 \mathrm{mmol})$, DMAP ($18.69 \mathrm{mg}, 0.153 \mathrm{mmol}$), and 1-(furan-2-yl)methanamine (2) ($12.33 \mathrm{mg}, 0.127$ mmol), according to the general procedure. The final product was purified by column chromatography using EtOAc:Hex (4.5:5.5, $\mathrm{R}_{\mathrm{f}}: 0.20$) to afford $\mathbf{2 0}(2)(38.71 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}, \mathrm{CHLOROFORM}-$ D) $\delta 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H})$, $6.75(\mathrm{~s}, 1 \mathrm{H}), 6.36-6.32(\mathrm{~m}, 2 \mathrm{H}), 4.66(\mathrm{~d}, \mathrm{~J}=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$. LC-MS: $m / z(\mathrm{ES}+) 315.2$ $[\mathrm{M}+\mathrm{H}]+$. HRMS calc. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{5}$ 314.2970, found 314.2927.

NS-MHA5. Methyl N-[2-(2-thienylmethylcarbamoyl)benzofuran-5-yl]carbamate $\mathbf{2 0}(1)$. Carboxylic acid $18(30 \mathrm{mg}, 0.127 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: DMF was treated with EDCI (29.34 mg , $0.153 \mathrm{mmol})$, DMAP ($18.69 \mathrm{mg}, 0.153 \mathrm{mmol}$), and amine 1-(thiophen-2-yl)methanamine (1) (14.37 mg, 0.127 mmol), according to the general procedure. The final product was purified by column chromatography using EtOAc:Hex (4.5:5.5, $\mathrm{R}_{\mathrm{f}}: 0.20$) to afford $\mathbf{2 0}$ (1) (42.72\%). ${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}$,

CHLOROFORM-D) $\delta 7.79$ (s, 1H), $7.46(\mathrm{~d}, \mathrm{~J}=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, \mathrm{~J}=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{q}, \mathrm{J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{dd}, \mathrm{J}=5.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{t}, \mathrm{J}=$ $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 4.84(\mathrm{dd}, \mathrm{J}=5.9,0.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{LC}-\mathrm{MS}: m / z(\mathrm{ES}+) 331.1[\mathrm{M}+\mathrm{H}]+$. HRMS calc. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}, 330.0674$, found $331.0799[\mathrm{M}+\mathrm{H}]+$.

NS-MHA6. Methyl N[2-(benzylcarbamoyl)benzofuran-5-yl]carbamate 20(3). Carboxylic acid $\mathbf{1 8}$ ($30 \mathrm{mg}, 0.127 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: DMF was treated with EDCI ($29.34 \mathrm{mg}, 0.153 \mathrm{mmol}$), DMAP ($18.69 \mathrm{mg}, 0.153 \mathrm{mmol}$), 1-phenylmethanamine (3) ($13.60 \mathrm{mg}, 0.127 \mathrm{mmol}$), according to the general procedure. The final product was purified by column chromatography using EtOAc:Hex (4.5:5.5, $\mathrm{R}_{\mathrm{f}}: 0.21$) to afford 20(3) (29.80%). ${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}$, CHLOROFORM-D) $\delta 7.79(\mathrm{~s}, 1 \mathrm{H})$, $7.46(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{q}, \mathrm{J}=3.2 \mathrm{~Hz}, 5 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.88(\mathrm{~m}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 4.67(\mathrm{~d}, \mathrm{~J}=$ $5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$. LC-MS: $\mathrm{m} / \mathrm{z}(\mathrm{ES}+) 325.1[\mathrm{M}+\mathrm{H}]+$. HRMS calc. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4} 324.3360$, 324.33064.

NS-MHA8. Methyl N-[2-[(4-methylsulfonylphenyl)methylcabamoyl]benzofuran-5-yl]carbamate 20(4). Carboxylic acid $\mathbf{1 8}(30 \mathrm{mg}, 0.127 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: DMF was treated with EDCI $(29.34 \mathrm{mg}, \quad 0.153 \mathrm{mmol})$, DMAP $(18.69 \mathrm{mg}, \quad 0.153 \mathrm{mmol})$, and 1-(4methanesulfonylphenyl)methanamine (4) ($23.52 \mathrm{mg}, 0.127 \mathrm{mmol}$), according to the general procedure. The final product was purified by column chromatography using EtOAc:Hex (7:3, $\mathrm{R}_{\mathrm{f}}: 0.20$) to afford 20(4) (79.14\%). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($\left.600 \mathrm{MHz}, ~ D M S O-D 6\right) ~ \delta 9.73(\mathrm{~s}, 1 \mathrm{H}), 9.38(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.92-7.88$ (m, 4H), 7.58 (dd, J = 8.4, $5.3 \mathrm{~Hz}, 3 \mathrm{H}$), 7.54 ($\mathrm{s}, 1 \mathrm{H}), 4.56$ (s, 2H), 3.68 (s, 3H), 3.18 ($\mathrm{s}, 3 \mathrm{H}$). LC-MS: $m / z(\mathrm{ES}+) 403.1[\mathrm{M}+\mathrm{H}]+$. HRMS calc. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S} 402.42100$, found 402.42102 .

NS-MHA10. Methyl N-[2-[2-(4-hydroxyphenyl)ethylcarbamoyl]benzofuran-5-yl]carbamate 20(5). Carboxylic acid $\mathbf{1 8}(30 \mathrm{mg}, 0.127 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:DMF was treated with EDCI ($29.34 \mathrm{mg}, 0.153 \mathrm{mmol}$), DMAP ($18.69 \mathrm{mg}, 0.153 \mathrm{mmol}$), and 4-(2-aminoethyl)phenol (5) (17.42 mg , 0.127 mmol), according to the general procedure. The final product was purified by column chromatography using EtOAc:Hex (1:1, $\mathrm{R}_{\mathrm{f}}: 0.20$) to afford 20(5) (97\%). ${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}$, ACETONE-D6) $\delta 9.17$ (s, 1H), 8.42 (d, J = $15.5 \mathrm{~Hz}, 2 \mathrm{H}$), 8.13 (d, J = $7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.99 (dd, J = 9.0, $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.87$ (m, 2H), 7.84 (d, J = $8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.68 (s, 1H), 7.56-7.53 (m, 1H), 7.48-7.46 (m, $1 \mathrm{H}), 4.22-4.18(\mathrm{~m}, 2 \mathrm{H}), 4.16(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H})$. LC-MS: m/z (ES+) $355.1[\mathrm{M}+\mathrm{H}]+$. HRMS calc. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5} 354.36200$, found 354.35662 .

NS-MHA11. Methyl \boldsymbol{N}-[2-(propylcarbamoyl)benzofuran-5-yl]carbamate 20(6). Carboxylic acid 18 ($30 \mathrm{mg}, 0.127 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: DMF was treated with EDCI ($29.34 \mathrm{mg}, 0.153 \mathrm{mmol}$), DMAP ($18.69 \mathrm{mg}, 0.153 \mathrm{mmol}$), and 2-(1-H-indol-3-yl)ethan-1-amine (0) ($20.34 \mathrm{mg}, 0.127 \mathrm{mmol}$) was added, according to the general procedure. The final product was purified by column chromatography using EtOAc: Hex ($6: 4 \mathrm{R}_{\mathrm{f}}: 0.21$) to afford $\mathbf{2 0}(6)(41.34 \%)$. ${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}$, DMSO-D6) $\delta 9.71$ (s, $1 \mathrm{H}), 9.19(\mathrm{~s}, 1 \mathrm{H}), 8.70(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{q}, \mathrm{J}=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{q}, \mathrm{J}$
$=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, \mathrm{~J}=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{dd}, \mathrm{J}=6.5,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 6.68$ $(\mathrm{dd}, \mathrm{J}=6.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.44-3.40(\mathrm{~m}, 2 \mathrm{H}), 2.73(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H})$. LC-MS: $m / z(\mathrm{ES}+)$ $378.1[\mathrm{M}+\mathrm{H}]+$. HRMS calc. for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4} 377.1375$, found $378.1579[\mathrm{M}+\mathrm{H}]+$.

NS-AT1. 5-[(4,5-dimethylfuran-2-carbonyl)amino]- N-[2-(4-hydroxyphenyl)ethyl]benzofuran-2carboxamide 23(15).
Carboxylic acid (15) 4,5 dimethyl-2-furoic acid ($20.52 \mathrm{mg}, 0.146 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: DMF 2:1 was treated with EDCI ($33.58 \mathrm{mg}, 0.175 \mathrm{mmol}$), DMAP $(21.37 \mathrm{mg}, 0.175 \mathrm{mmol})$, and $16(30 \mathrm{mg}, 0.146$ mmol) was added, according to the general procedure, and purified (EtOAc: Hex 3:7) to afford 32.44 mg intermediate, yield $\mathbf{2 1}(15)(67.80 \%)$. The compound was hydrolysed to give $20.40 \mathrm{mg}(0.068 \mathrm{mmol})$ carboxylic acid $22(15)$ in 68.78% yield. The acid was judged pure by TLC analysis (20.40 mg , $0.068 \mathrm{mmol})$ and coupled with tyramine (5) $(9.32 \mathrm{mg}, 0.068 \mathrm{mmol})$ according to the general procedure of amide- coupling. The final product was purified by column chromatography using EtOAc: Hex 3:7 $\left(\mathrm{R}_{\mathrm{f}}: 0.24\right)$ to give the final product $\mathbf{2 3}(15) 14.89 \mathrm{mg}$ in: 52.21% yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{D} 6)$ $\delta 10.01(\mathrm{~s}, 1 \mathrm{H}), 9.13(\mathrm{~s}, 1 \mathrm{H}), 8.68(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{dd}, \mathrm{J}=9.1,2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.56(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, \mathrm{~J}=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{dd}, \mathrm{J}=6.5,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.64$ $(\mathrm{dd}, \mathrm{J}=6.5,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H})$. LC-MS: $m / z(\mathrm{ES}+) 419.1[\mathrm{M}+\mathrm{H}]+$. HRMS calc. for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5} 418.44900$, found 418.44188 .

NS-AT4. $\quad N$-[2-(4-hydroxyphenyl)ethyl]-5-[[4-(3-thienyl)benzoyl]amino]benzofuran-2carboxamid 23(14). 4-(3-thienyl) benzoic acid (14) ($29.82 \mathrm{mg}, 0.389 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: DMF 2:1 and treated with EDCI ($89.48 \mathrm{mg}, 0.466 \mathrm{mmol}$), DMAP ($56.93 \mathrm{mg}, 0.466 \mathrm{mmol}$), and 16 (80 $\mathrm{mg}, 0.389 \mathrm{mmol}$) according to the general procedure. The mixture was purified by column chromatography using (EtOAc: Hex 3:7) to afford 109.73 mg of intermediate 21(14) (yield 71.91\%). The compound was hydrolysed to give 57.58 mg of carboxylic acid $22(14)$ in 56.53% yield. The carboxylic acid ($57.58 \mathrm{mg}, 0.158 \mathrm{mmol}$) was judged pure by TLC analysis and coupled with tyramine (5) ($21.73 \mathrm{mg}, 0.158 \mathrm{mmol}$) according to the general procedure of amide- coupling. The final product was purified by column chromatography using EtOAc: Hex $3: 7\left(\mathrm{R}_{\mathrm{f}}: 0.20\right)$ to give 5.40 mg of final product 23 (14) (yield: 7.1\%). ${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}, ~ A C E T O N E-D 6) ~ \delta 8.11(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.92$7.90(\mathrm{~m}, 2 \mathrm{H}), 7.85(\mathrm{q}, \mathrm{J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{dt}, \mathrm{J}=8.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{dd}, \mathrm{J}=$ $6.7,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.07-7.06(\mathrm{~m}, 1 \mathrm{H}), 7.03(\mathrm{dd}, \mathrm{J}=6.4,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.77-6.74(\mathrm{~m}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 1 \mathrm{H})$, 3.60-3.56 (m, 2H), 3.49-3.45 (m, 1H), 3.36-3.33 (m, 2H). LC-MS: $m / z(E S+) 483[M+H]+$. HRMS calc. for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S} 482.55400$, found 482.55028 .

NS-AT5. N-[2-[2-(4-hydroxyphenyl)ethylcarbamoyl]benzofuran-5-yl]-1-methyl-benzotriazole-5carboxamide 23(10). 1-methyl-1H-1,2,3-benzotriazole-5-carboxylic acid (10) (68.91 mg, 0.389 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: DMF 2:1 was treated with EDCI ($89.48 \mathrm{mg}, 0.466 \mathrm{mmol}$) DMAP ($56.93 \mathrm{mg}, 0.466$ $\mathrm{mmol}), \mathrm{HOBt}(62.96 \mathrm{mg}, 0.466 \mathrm{mmol})$, and $\mathbf{1 6}(80 \mathrm{mg}, 0.389 \mathrm{mmol})$ according to the general procedure. The mixture was purified by column chromatography using EtOAc: Hex $7: 3$ to afford 76.1 mg
intermediate $21(10)$ in 53.67% yield. The compound was hydrolysed to give 29.76 mg carboxylic acid $\mathbf{2 2}(10)$ in 42.40% yield. The carboxylic acid ($29.76 \mathrm{mg}, 0.088 \mathrm{mmol}$) was judged pure by TLC and coupled with tyramine (5) ($12.07 \mathrm{mg}, 0.088 \mathrm{mmol}$) according to the general procedure of amidecoupling. The mixture was purified by column chromatography using EtOAc: Hex $\left(9.5: 0.5, \mathrm{R}_{\mathrm{f}}: 0.25\right)$ to give 3.56 mg of $\mathbf{2 3}(10)$ (yield: 8.6%). ${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}$, ACETONE-D6) $\delta 8.49(\mathrm{t}, \mathrm{J}=1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 8.12(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{dd}, \mathrm{J}=8.6,0.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{dd}, \mathrm{J}=6.5,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.37(\mathrm{~s}, 3 \mathrm{H}), 3.64-3.60(\mathrm{~m}, 2 \mathrm{H}), 2.86$ $(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{~s}, 3 \mathrm{H})$. LC-MS: $m / z(\mathrm{ES}+) 456.1[\mathrm{M}+\mathrm{H}]+$. HRMS calc. for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{4}$ 455.15935 , found 455.15823 .

NS-AT7. N-[2-(4-hydroxyphenyl)ethyl]-5-[(5-methylthiophene-2-carbonyl)amino]benzofuran-2carboxamide 23(21). 5-methyl-2- thiophene carboxylic acid (21) (20.75 $\mathrm{mg}, 0.146 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: DMF 2:1 was treated with EDCI ($33.58 \mathrm{mg}, 0.175 \mathrm{mmol}$), DMAP ($21.37 \mathrm{mg}, 0.175 \mathrm{mmol}$), and 16 (30 $\mathrm{mg}, 0.146 \mathrm{mmol}$) according to the general procedure. The mixture was purified by column chromatography using EtOAc: Hex (3:7) to afford 16.59 mg of intermediate $\mathbf{2 1}(21)$ in 34.5% yield. The compound was hydrolysed to give 13.8 mg carboxylic acid $\mathbf{2 2}(21)$ in 91% yield. The carboxylic acid ($13.81 \mathrm{mg}, 0.046 \mathrm{mmol}$), which was judged pure by TLC, was coupled with tyramine (5) (6.31 $\mathrm{mg}, 0.046 \mathrm{mmol}$) according to the general procedure of amide coupling to give, after column chromatography purification (EtOAc: Hex / 3:7, $\mathrm{R}_{\mathrm{f}}: 0.28$), 7.08 mg of $\mathbf{2 3}(21)$ (yield: 36.73%). ${ }^{1} \mathrm{H}-$ NMR (600 MHz, DMSO-D6) $\delta 9.76(\mathrm{~s}, 1 \mathrm{H}), 8.72(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.39(\mathrm{~d}, \mathrm{~J}=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dd}, \mathrm{J}=9.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, \mathrm{~J}=0.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.48(\mathrm{dd}, \mathrm{J}=3.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{dd}, \mathrm{J}=6.5,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.00-$ $2.96(\mathrm{~m}, 3 \mathrm{H}), 2.94-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H})$. LC-MS: $m / z(\mathrm{ES}+) 421.2[\mathrm{M}+\mathrm{H}]+$. HRMS calc. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S} 420.48300$, found 420.4809.

NS-AT10. 5-[(2,5-dimethylfuran-3-carbonyl)amino]- N-[2-(4-hydroxyphenyl)ethyl]benzofuran-2carboxamide 23(16). 2,5-dimethyl-3-furoic acid (16) (20.46 mg, 0.146 mmol) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: DMF 2:1 and treated with EDCI ($33.58 \mathrm{mg}, 0.175 \mathrm{mmol}$), DMAP ($21.37 \mathrm{mg}, 0.175 \mathrm{mmol}$), and $16(30 \mathrm{mg}, 0.146 \mathrm{mmol})$ according to the general procedure. The mixture was purified by column chromatography using (EtOAc: Hex 3:7) to afford 21.64 mg of intermediate 21(16) in 45.28% yield. The compound was hydrolysed to give 15.63 mg carboxylic acid $\mathbf{2 2}$ (16) in 79% yield. The carboxylic acid ($15.63 \mathrm{mg}, 0.052 \mathrm{mmol}$), which was judged pure by TLC, was coupled with tyramine (5) (7.13 $\mathrm{mg}, 0.052 \mathrm{mmol}$) according to the general procedure of amide-coupling to give, after column chromatography purification (EtOAc: Hex $6: 4 \mathrm{R}_{\mathrm{f}}: 0.26$), 11.43 mg of final product 23 (16) (yield: $52.57 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{D} 6) \delta 9.65(\mathrm{~s}, 1 \mathrm{H}), 9.13(\mathrm{~s}, 1 \mathrm{H}), 8.68(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.15$ $(\mathrm{d}, \mathrm{J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{dd}, \mathrm{J}=9.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, \mathrm{~J}=0.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.99(\mathrm{dd}, \mathrm{J}=6.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{dd}, \mathrm{J}=6.5,2.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.41-3.37(\mathrm{~m}, 2 \mathrm{H}), 3.34(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}$,
$0 \mathrm{H}), 2.70(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{LC}-\mathrm{MS}: m / z(\mathrm{ES}+) 419.1[\mathrm{M}+\mathrm{H}]+$. HRMS calc. for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5} 418.44900$, found 418.44188 .

NS-AT15. [5-[[2-[2-(4-hydroxyphenyl)ethylcarbamoyl]benzofuran-5-yl]carbamoyl]-2thienyl]boronic acid 23(23). 5-(dihydroxyboryl)-2-thiophene carboxylic acid (23) ($66.89 \mathrm{mg}, 0.389$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: DMF 2:1 was treated with EDCI ($89.48 \mathrm{mg}, 0.466 \mathrm{mmol}$), DMAP ($56.93 \mathrm{mg}, 0.466$ $\mathrm{mmol})$, and $\mathbf{1 6}(80 \mathrm{mg}, 0.389 \mathrm{mmol})$ according to the general procedure. The mixture was purified by column chromatography using EtOAc: Hex (7:3) to afford 66.64 mg of intermediate 21(23) in 47.7% yield. The compound was hydrolysed to give 45.27 mg carboxylic acid $\mathbf{2 2}(23)$ in 73.69% yield. The carboxylic acid ($45.27 \mathrm{mg}, 0.136 \mathrm{mmol}$), which was judged pure by TLC, was coupled with tyramine (5) $(18.65 \mathrm{mg}, 0.136 \mathrm{mmol})$ according to the general procedure of amide-coupling to give, after column chromatography purification (EtOAc: Hex 7:3 $\mathrm{R}_{\mathrm{f}}: 0.25$), 7.64 mg of final product $\mathbf{2 3}(23)$ (yield: 12.41%). ${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}$, DMSO-D6) $\delta 9.88(\mathrm{~s}, 1 \mathrm{H}), 8.72(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.72$ $(\mathrm{d}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{dd}, \mathrm{J}=3.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{dd}, \mathrm{J}=4.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{dd}, \mathrm{J}=9.0,2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{dd}, \mathrm{J}=4.7,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{dd}, \mathrm{J}=$ $6.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{dd}, \mathrm{J}=6.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{t}, \mathrm{J}=4.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}) . \mathrm{LC}-$ MS: $m / z(\mathrm{ES}+) 451.1 \mathrm{M}+\mathrm{H}]+$. HRMS calc. for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{BN}_{2} \mathrm{O}_{6} \mathrm{~S} 450.27200$, found 450.27206 .

NS-AT17. 5-[(3-bromothiophene-2-carbonyl)amino]-N-[2-(4-hydroxyphenyl)ethyl]benzofuran-2-carboxamide 23(22). 3-bromothiophene-2-carboxylic acid (22) ($80.68 \mathrm{mg}, 0.389 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: DMF 2:1 was treated with EDCI ($89.48 \mathrm{mg}, 0.466 \mathrm{mmol}$), DMAP ($56.93 \mathrm{mg}, 0.466 \mathrm{mmol}$), and 16 (80 $\mathrm{mg}, 0.389 \mathrm{mmol}$) according to the general procedure. The mixture was purified by column chromatography using EtOAc: Hex (2:8) to afford 55.88 mg of intermediate 21(22) in 36.4% yield. The compound was hydrolysed to give 43.30 mg carboxylic acid $22(22)$ in 83.43% yield. The carboxylic acid ($43.30 \mathrm{mg}, 0.118 \mathrm{mmol}$), which was judged pure by TLC, was coupled with tyramine (5) $(16.18 \mathrm{mg}, 0.118 \mathrm{mmol})$ according to the general procedure of amide-coupling to give, after column chromatography purification (EtOAc:Hex 6:4, $\mathrm{R}_{\mathrm{f}}: 0.25$) 4.56 mg of final product 23(22) (yield: 7.95\%). ${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}$, CHLOROFORM-D) $\delta 8.96(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.61(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{dd}, \mathrm{J}=6.5,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.03(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{dd}, \mathrm{J}=6.5,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.78(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{~d}, \mathrm{~J}=36.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.35(\mathrm{dd}, \mathrm{J}=43.6,6.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.82(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}) . \mathrm{LC}-\mathrm{MS}: m / z(\mathrm{ES}+)$ $486.9[\mathrm{M}+\mathrm{H}]+$. HRMS calc. for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{BrN}_{2} \mathrm{O}_{4} \mathrm{~S} 485.0092$, found 485.0168 .

NS-AT22.5-[(4-bromothiophene-2-carbonyl)amino]- N-[2-(4-hydroxyphenyl)ethyl]benzofuran-2carboxamide $23(20)$. 4-bromothiophene-2-carboxylic acid (20) ($30.22 \mathrm{mg}, 0.146 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: DMF 2:1 was treated with EDCI ($33.58 \mathrm{mg}, 0.175 \mathrm{mmol}$), DMAP ($21.37 \mathrm{mg}, 0.175 \mathrm{mmol}$), HOBt $(23.64 \mathrm{mg}, 0.175 \mathrm{mmol})$, and $\mathbf{1 6}(30 \mathrm{mg}, 0.146 \mathrm{mmol})$ according to the general procedure. The mixture was purified by column chromatography using EtOAc:Hex (2:8) to afford 36.0 mg of intermediate
$\mathbf{2 1}(20)$ in 62.6% yield. The compound was hydrolysed to give 19.98 mg of carboxylic acid $\mathbf{2 2 (2 0)}$ in 59.7% yield. The carboxylic acid ($19.98 \mathrm{mg}, 0.054 \mathrm{mmol}$), which was judged pure by TLC, was coupled with tyramine (5) ($7.40 \mathrm{mg}, 0.052 \mathrm{mmol}$) according to the general procedure of amide coupling to give, after column chromatography purification (EtOAc: Hex 6:4, $\mathrm{R}_{\mathrm{f}}: 0.33$) 19.77 mg of final product 23(20) (yield: 74.66\%). ${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}$, ACETONE-D6) $\delta 9.70(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H})$, $7.92(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{dd}, \mathrm{J}=9.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{dd}, \mathrm{J}=6.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.18-5.16(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{~s}$, $1 \mathrm{H}), 3.63-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.20-3.20(1 \mathrm{H})$. LC-MS: $m / z(\mathrm{ES}+) 486.5[\mathrm{M}+\mathrm{H}]+$. HRMS calc. for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{BrN}_{2} \mathrm{O}_{4} \mathrm{~S} 485.35200$, found 485.35038 .

NS-AT23. $\quad N$-[2-(4-hydroxyphenyl)ethyl]-5-[(2-methylfuran-3-carbonyl)amino]benzofuran-2carboxamide 23(17). 2-methyl-3-furoic acid (17) ($18.41 \mathrm{mg}, 0.146 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: DMF 2:1 was treated with EDCI ($33.58 \mathrm{mg}, 0.175 \mathrm{mmol}$), DMAP ($21.37 \mathrm{mg}, 0.175 \mathrm{mmol}$), and $\mathbf{1 6}(30 \mathrm{mg}, 0.146$ mmol) according to the general procedure. The mixture was purified by column chromatography using EtOAc:Hex (2:8) to afford 31.1 mg of intermediate $\mathbf{2 1}(17)$ in 67.9%. yield. The compound was hydrolysed to give 21.5 mg carboxylic acid $\mathbf{2 2}$ (17) in 75.9% yield. The carboxylic acid (21.5 mg , 0.075 mmol), which was judged pure by TLC, was coupled with tyramine (5) ($10.28 \mathrm{mg}, 0.075 \mathrm{mmol}$) according to the general procedure of amide coupling to give, after column chromatography purification (EtOAc:Hex 7:3, $\mathrm{R}_{\mathrm{f}}: 0.28$) 23.4 mg of final product 23(17) (yield: 76.6\%). ${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}$, ACETONE-D6) $\delta 9.15(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{t}, \mathrm{J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.46(\mathrm{~m}$, $2 \mathrm{H}), 7.44-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{dt}, \mathrm{J}=9.1,2.4 \mathrm{~Hz}, 2 \mathrm{H})$, $3.64-3.60(\mathrm{~m}, 3 \mathrm{H}), 3.20(\mathrm{~s}, 1 \mathrm{H}), 2.86(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H})$. LC-MS: $m / z(\mathrm{ES}+) 405.1$ $[\mathrm{M}+\mathrm{H}]+$. HRMS calc. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5} 404.4220$, found 404.4153.

NS-ATP1. 5-[(4,5-dimethylfuran-2-carbonyl)amino]- N-[2-(1H-indol-3-yl)ethyl]benzofuran-2carboxamide 24(15). 4,5 dimethyl-2-furoic acid (15) ($20.52 \mathrm{mg}, 0.146 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: DMF 2:1 was treated with EDCI ($33.58 \mathrm{mg}, 0.175 \mathrm{mmol}$) DMAP ($21.37 \mathrm{mg}, 0.175 \mathrm{mmol}$), and $\mathbf{1 6}(30 \mathrm{mg}, 0.146$ $\mathrm{mmol})$, according to the general procedure. The mixture was purified by column chromatography using EtOAc:Hex (3:7) to afford 32.4 mg of intermediate $\mathbf{2 1}(15)$ in 67.8% yield. The compound was hydrolysed to give 20.4 mg of carboxylic acid $\mathbf{2 2}$ (16) in 68.7% yield. The resulting carboxylic acid ($20.4 \mathrm{mg}, 0.068 \mathrm{mmol}$) was coupled with tryptamine (6) ($10.89 \mathrm{mg}, 0.068 \mathrm{mmol}$) according to the general procedure of amide-coupling to give, after column chromatography purification (EtOAc:Hex 3:7, $\mathrm{R}_{\mathrm{f}}: 0.26$), 8.6 mg of final product $\mathbf{2 4}(15)$ (yield: 28.8%). ${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}$, DMSO-D6) $\delta 10.77$ $(\mathrm{s}, 1 \mathrm{H}), 10.01(\mathrm{~s}, 1 \mathrm{H}), 8.77(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{dd}, \mathrm{J}=9.0,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.57-7.55 (m, 1H), 7.48-7.47 (m, 1H), 7.30 (d, J = 8.3 Hz, 1H), 7.15 (d, J = 2.1 Hz, 1H), $7.10(\mathrm{~s}, 1 \mathrm{H})$, 7.04-7.01 (m, 1H), 6.95-6.93 (m, 1H), 3.54-3.51 (m, 2H), $2.93(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 2 \mathrm{H}), 1.95(\mathrm{~d}$, $\mathrm{J}=2.1 \mathrm{~Hz}, 3 \mathrm{H})$. LC-MS: $m / z(\mathrm{ES}+) 442.1[\mathrm{M}+\mathrm{H}]+$. HRMS calc. for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4} 441.1688$, found 441.1834.

NS-ATP7. $\quad \mathrm{N}$-[2-(1H-indol-3-yl)ethyl]-5-[(5-methylthiophene-2-carbonyl)amino]benzofuran-2carboxamide 24(21). 5-methyl-2- thiophene carboxylic acid (21) (20.7 mg, 0.146 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:DMF 2:1 was treated with EDCI ($33.6 \mathrm{mg}, 0.175 \mathrm{mmol}$) DMAP ($21.4 \mathrm{mg}, 0.175 \mathrm{mmol}$), and 16 ($30.1 \mathrm{mg}, 0.146 \mathrm{mmol}$), according to the general procedure. The mixture was purified by column chromatography using EtOAc:Hex (3:7) to afford 16.6 mg of intermediate $\mathbf{2 1}(21)$ in 34.5% yield. The compound was hydrolysed to give 13.8 mg of carboxylic acid $\mathbf{2 2}(21)$ in 91% yield. The resulting carboxylic acid ($13.8 \mathrm{mg}, 0.046 \mathrm{mmol}$) was coupled with tryptamine (0 ($7.36 \mathrm{mg}, 0.046 \mathrm{mmol}$) according to the general procedure of amide- coupling to give, after column chromatography purification (EtOAc:Hex 3:7 $\mathrm{R}_{\mathrm{f}}: 0.29$), 4.7 mg of final product $\mathbf{2 4 (2 1)}$ (yield: 23.25%). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (600 MHz, DMSO-D6) $\delta 10.36(\mathrm{~s}, 1 \mathrm{H}), 9.76(\mathrm{~s}, 1 \mathrm{H}), 8.37(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.39$ (d, J = $3.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.24(\mathrm{dd}, \mathrm{J}=9.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{~d}, \mathrm{~J}=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}$, $\mathrm{J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{td}, \mathrm{J}=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{td}, \mathrm{J}=7.4,0.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.48(\mathrm{dd}, \mathrm{J}=3.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dd}, \mathrm{J}=14.3,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H})$. LC-MS: $m / z(E S+) 444.1[\mathrm{M}+\mathrm{H}]+$. HRMS calc. for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S} 443.52100$, found 443.51754.

NS-ATP10. 5-[(2,5-dimethylfuran-3-carbonyl)amino]- N-[2-(1H-indol-3-yl)ethyl]benzofuran-2carboxamide 24(16). 2,5-dimethyl-3-furoic acid (16) ($20.5 \mathrm{mg}, 0.146 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: DMF 2:1 was treated with EDCI ($33.6 \mathrm{mg}, 0.175 \mathrm{mmol}$) DMAP ($21.4 \mathrm{mg}, 0.175 \mathrm{mmol}$), and $\mathbf{1 6}$ ($30 \mathrm{mg}, 0.146 \mathrm{mmol}$), according to the general procedure. The mixture was purified by column chromatography using EtOAc:Hex (3:7) to afford 21.6 mg intermediate 21(10) in 45.3% yield. The compound was hydrolysed to give 15.6 mg of carboxylic acid $\mathbf{2 2}$ (16) in 79% yield. The resulting carboxylic acid ($15.6 \mathrm{mg}, 0.052$ mmol) was coupled with tryptamine (0) $(8.33 \mathrm{mg}, 0.052 \mathrm{mmol})$ according to the general procedure of amide-coupling to give, after column chromatography purification (EtOAc:Hex 6:4, $\mathrm{R}_{\mathrm{f}}: 0.24$), 5.8 mg of final product 24(16) (yield: 25.3\%). ${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}$, ACETONE-D6) $\delta 10.69(\mathrm{~s}, 1 \mathrm{H}), 8.62(\mathrm{~d}$, $\mathrm{J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.48(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, \mathrm{~J}=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.93-7.90(\mathrm{~m}, 1 \mathrm{H}), 7.77-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.69(\mathrm{t}, \mathrm{J}=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{dd}, \mathrm{J}=13.3,8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{q}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.07$ (m, 1H), 7.04-6.99 (m, 2H), 3.77 (td, J = 7.4, 6.2 Hz, 2H), 3.47-3.51 (1 H), $3.13(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H})$. LCMS: $\mathrm{m} / \mathrm{z}(\mathrm{ES}+) 442.1[\mathrm{M}+\mathrm{H}]+$. HRMS calc. for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4} 441.48700$, found 441.47852 .

NS-ATP12. $\quad N$-[2-[2-(1H-indol-3-yl)ethylcarbamoyl]benzofuran-5-yl]quinoline-2-carboxamide 24(12). 2-quinoline carboxylic acid (12) ($67.4 \mathrm{mg}, 0.389 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:DMF 2:1 was treated with EDCI ($89.5 \mathrm{mg}, 0.466 \mathrm{mmol}$) DMAP ($56.9 \mathrm{mg}, 0.466 \mathrm{mmol}$), HOBt ($62.9 \mathrm{mg}, 0.466 \mathrm{mmol}$), and 16 ($80 \mathrm{mg}, 0.389 \mathrm{mmol}$), according to the general procedure. The mixture was purified by column chromatography using EtOAc: Hex (3:7) to afford 134.1 mg of intermediate 21(12) in 95.7% yield. The compound was hydrolysed to give 70.3 mg of carboxylic acid $\mathbf{2 2}$ (12) in 56.8% yield. The resulting carboxylic acid ($70.3 \mathrm{mg}, 0.211 \mathrm{mmol}$) was coupled with tryptamine (0) ($33.9 \mathrm{mg}, 0.211 \mathrm{mmol}$) according to the general procedure of amide-coupling to give, after column chromatography
purification (EtOAc:Hex 6:4, $\mathrm{R}_{\mathrm{f}}: 0.33$), 10.1 mg of final product 24(12) (yield: 10%). ${ }^{1} \mathrm{H}-\mathrm{NMR}(600$ MHz, ACETONE-D6) $\delta 10.69(\mathrm{~s}, 1 \mathrm{H}), 8.62(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.48(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~d}, \mathrm{~J}=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.93-7.90(\mathrm{~m}, 1 \mathrm{H}), 7.77-7.75(\mathrm{~m}, 1 \mathrm{H})$, $7.69(\mathrm{t}, \mathrm{J}=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{dd}, \mathrm{J}=13.3,8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{q}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}$, $\mathrm{J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 1 \mathrm{H}), 7.04-6.99(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{td}, \mathrm{J}=7.4,6.2$ $\mathrm{Hz}, 2 \mathrm{H}), 3.47-3.51(1 \mathrm{H}), 3.13(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{LC}-\mathrm{MS}: m / z(\mathrm{ES}+) 475.3[\mathrm{M}+\mathrm{H}]+$. HRMS calc. for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{3} 474.1691$, found 474.1881 .

NS-ATP14

5-(benzofuran-5-carbonylamino)- N -[2-(1H-indol-3-yl)ethyl]benzofuran-2carboxamide 24(13). Benzofuran-5-carboxylic acid (13) ($63.1 \mathrm{mg}, 0.389 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: DMF 2:1 was treated with EDCI ($89.5 \mathrm{mg}, 0.466 \mathrm{mmol}$), DMAP ($56.9 \mathrm{mg}, 0.466 \mathrm{mmol}$), HOBt ($62.9 \mathrm{mg}, 0.466$ $\mathrm{mmol})$, and $16(80 \mathrm{mg}, 0.389 \mathrm{mmol})$ according to the general procedure. The mixture was purified by column chromatography using EtOAc:Hex (4:6) to afford 52.6 mg of intermediate 21(13) in $\mathbf{3 8 . 7 \%}$ yield. The compound was hydrolysed to give 31.7 mg carboxylic acid $22(12)$ in 65.5% yield. The resulting carboxylic acid ($31.7 \mathrm{mg}, 0.098 \mathrm{mmol}$) was coupled with tryptamine (0) ($15.7 \mathrm{mg}, 0.098$ mmol) according to the general procedure of amide-coupling to give after column chromatography purification (EtOAc:Hex $6: 4, \mathrm{R}_{\mathrm{f}}: 0.24$), 3.7 mg of final product $\mathbf{2 4}(13)$ (yield: 8%). ${ }^{1} \mathrm{H}-\mathrm{NMR}(600$ MHz, ACETONE-D6) $\delta 10.02(\mathrm{~s}, 1 \mathrm{H}), 9.68(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{q}, \mathrm{J}=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.02(\mathrm{dd}, \mathrm{J}=8.6,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.96(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{dd}, \mathrm{J}=9.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{q}, \mathrm{J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, \mathrm{~J}=9.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.24(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.04-$ $7.01(\mathrm{~m}, 3 \mathrm{H}), 3.76(\mathrm{td}, \mathrm{J}=7.5,6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.12(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H})$. LC-MS: $m / z(\mathrm{ES}+) 464.1[\mathrm{M}+\mathrm{H}]+$. HRMS calc. for $\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4} 463.4900$, found 463.48404.

NS-ATP23. $\quad N$-[2-(1H-indol-3-yl)ethyl]-5-[(2-methylfuran-3-carbonyl)amino]benzofuran-2carboxamide 24(17). 2-methyl-3-furoic acid (17) (18.4 mg, 0.146 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:DMF 2:1 was treated with EDCI ($33.6 \mathrm{mg}, 0.175 \mathrm{mmol}$), DMAP ($21.4 \mathrm{mg}, 0.175 \mathrm{mmol}$), HOBt (23.6 mg , $0.175 \mathrm{mmol})$, and $16(30.1 \mathrm{mg}, 0.146 \mathrm{mmol})$ according to the general procedure. The mixture was purified by column chromatography using EtOAc:Hex (2:8) to afford 31.1 mg of intermediate 21(17) in 67.9% yield. The compound was hydrolysed to give 21.5 mg of carboxylic acid 22(17) in 75.9% yield. The resulting carboxylic acid ($21.5 \mathrm{mg}, 0.075 \mathrm{mmol}$) was coupled with tryptamine (0) (12.0 mg , 0.075 mmol) according to the general procedure of amide-coupling to give, after column chromatography purification (EtOAc:Hex 7:3, $\mathrm{R}_{\mathrm{f}}: 0.33$), 18.5 mg of final product $24(17$) (yield: $57.7 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}$, ACETONE-D6) $\delta 10.02(\mathrm{~s}, 0 \mathrm{H}), 9.14(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.97(\mathrm{t}, \mathrm{J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.39(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.11-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.04-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.96(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dd}, \mathrm{J}=13.6,7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 3.11(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H})$. LC-MS: m/z (ES+) $428.1[\mathrm{M}+\mathrm{H}]+$. HRMS calc. for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4} 427.45852$, found 427.45194 .

MTT cytotoxicity assay

Cell culture. The cell lines were grown at $37^{\circ} \mathrm{C}$ in a $5 \% \mathrm{CO} 2$ flux incubator and passaged when a confluence of $70-90 \%$ was reached, to either run the experiments or allow continued cell growth. No antibiotics were used in any part of this work. The growth curve of the cell lines was analysed to choose the optimal cell density. Drug treatment. Cells were seeded and once in logarithmic growth were incubated with compounds for 24 hours, and then removed. in the next step, the old medium was replaced by the fresh medium and incubated for further 48 hours. MTT/DMEM solution was added to the cells and incubated for 2 hours. Lastly, the MTT/DMEM solution was removed and DMSO was added to solubilize the formazan crystals. the absorbance was measured at 570 nm , subsequently, the cell viability (\%) was calculated as (Absorbance value of formazan in treated cells-background/mean absorbance of negative control $\times 100$).

Table S1. Structure of selected benzofuran-containing proximicin analogues belonging to Series $1-4$ and antiproliferative activity (percentage viability) at a single concentration of $12 \mu \mathrm{~g} / \mathrm{mL}$ against U-87 MG and WI-38 cells.

Compound ID	Structures	$\begin{gathered} \text { \% Viability } \\ \text { U-87 MG } \\ (12 \mu \mathrm{~g} / \mathrm{mL}) \end{gathered}$	$\begin{gathered} \hline \text { \% Viability } \\ \text { WI-38 } \\ (12 \mu \mathrm{~g} / \mathrm{mL}) \end{gathered}$
Series 1			
8. NS-MHA5 20(1)		101.13	66.3
7. NS-MHA4 $20(2)$		71.7	56.3
9. NS-MHA6 $20(3)$		73.8	53.43
10. NS-MHA8 20(4)		87.9	114.6
11. NSMHA10 20(5)		89.2	92.5
12. NS- MHA11 $20(\sigma)$		85.4	93.34
5. NS-MHA1 $20(7)$		45.8	48.4
6. NS-MHA2 $20(8)$		79.3	92.7
Series 2			
$\begin{gathered} \text { 1-NS-A9 } \\ \mathbf{2 1 (9)} \\ 1 \end{gathered}$		89.6	123.26

$\begin{gathered} \text { 4. NS-25 } \\ \text { 21(11) } \\ 4 \end{gathered}$		80.9	91.95
$\begin{gathered} \text { 2. NS-A11 } \\ \text { 21(18) } \\ 2 \end{gathered}$		87.05	86.54
$\begin{gathered} \text { 3. NS-A20 } \\ \mathbf{2 1 (1 9)} \\ 3 \end{gathered}$		91.08	68.79
Series 3			
$\begin{aligned} & \text { 15. NS-AT5 } \\ & \mathbf{2 3 (1 0)} \end{aligned}$		84.92	42.1
$\begin{aligned} & \text { 14. NS-AT4 } \\ & \mathbf{2 3 (1 4)} \end{aligned}$		53.4	17.63
13. NS-AT1 $\mathbf{2 3}(15)$		71.23	17.87
$\begin{aligned} & \text { 17. NS-AT10 } \\ & \mathbf{2 3}(16) \end{aligned}$		33.62	75.6
$\begin{aligned} & \text { 21. NS-AT23 } \\ & \mathbf{2 3 (1 7)} \end{aligned}$		63.62	80.21
$\begin{gathered} \text { 20. NS-AT22 } \\ \mathbf{2 3 (2 0)} \end{gathered}$		60.97	62.4
$\begin{aligned} & \text { 16. NS-AT7 } \\ & \mathbf{2 3}(21) \end{aligned}$		92.9	28.14

23. NS-AT17

Figure S1. Growth curves for U87-MG and WI-38 cells using four different cell densities. In the graphs, the results of the growth curves experiments are displayed with ($\pm \mathrm{SD}$ values).

Growth Curve for WI-38

UHPLC-HRMS Data.

20(6) 12. NS-MHA11

23(22) 19. NS-AT17

24(15) 22. NS-ATP1

24(12) 25. NS-ATP12

LC-MS data

21(18) 2. NS-A11 $(\mathrm{MW}=310.09)$

21(19) 3. NS-A20 $(\mathrm{MW}=310.09)$

NMR-Data
Ethyl 5-Amino benzofuran-2-carboxylate ${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{1} \mathrm{H}$ NMR spectrum

21(18) 2. NS-A11

${ }^{1} \mathrm{H}$ NMR spectrum

21(11) 4. NS-A25

${ }^{1} \mathrm{H}$ NMR spectrum
20(3) 6. NS-MHA6

${ }^{13}$ C NMR spectrum

20(8) 6. NS-MHA2

Cheminal Formula $\mathrm{Ca}_{-1} \mathrm{H}_{1} \mathrm{~N}$. O .
Mol
m/z: 314.10150 (100.c
E
${ }^{1} \mathrm{H}$ NMR spectrum

23(10) 15. NS-AT5

${ }^{1} \mathrm{H}$ NMR spectrum

23(16) 17. NS-AT10

${ }^{1} \mathrm{H}$ NMR spectrum

23(23) 18. NS-AT15

${ }^{1} \mathrm{H}$ NMR spectrum

24(21) 23. NS-ATP7

| |
| :--- | :--- | :--- |
| 10.358 |

