Electronic Supplementary Information

Iron Nanoparticles Decorated Boron Nitride Quantum Dots (Fe@BNQDs) as Improvement in Photo-Fenton Catalysis, Theoretical and Experimental Investigations

Shinwar A. Idrees,^{a*} Lazgin A. Jamil,^{a*} and Khalid M. Omer^{b*}

a Dept. of Chemistry, Faculty of Science, University of Zakho, Kurdistan Region, Iraq

b Dept. of Chemistry, Faculty of Science, University of Sulaimani, Kurdistan Region, Iraq

Figure S1. efficiency (time course) of photo-catalytic degradation of folic acid by Fe@BNQDs.

Figure S2. Thermochemical properties of Fe@BNQDs calculated for a single sheet by DFT/GGA/PBE Dmol³ code.

Figure S3. Scavengers trapping experiments of active species involved in photo-degradation of folic acid over Fe@BNQDs

Table S1. Analysis of Variance and estimated regression coefficient for percent of degradation of folic acid.

Source	DF	Coef.	Seq	Adj	Adj MS	F-	Р-
			SS	SS		value	value
Regression	9		187.126	187.126	20.7918	7.10	0.013
Linear	3		127.679	55.864	18.6213	6.36	0.027
Fe@BNQDs	1	192.879	57.453	25.114	25.1138	8.57	0.026
(g/mL)							
H2O2 (M)	1	56.306	37.563	34.762	34.7620	11.87	0.014
Temp.(C)	1	0.154	32.663	0.241	0.2411	0.08	0.784
Square	3		19.760	19.760	6.5866	2.25	0.183
Fe@BNQDs	1	-798.58	13.414	15.152	15.1518	5.17	0.063

(g/mL)*Fe@BNQDs							
(g/mL)							
$H_2O_2(M)^*H_2O_2$	1	-31.74	6.326	6.308	6.3079	2.15	0.193
(M)							
	1	0.001	0.019	0.019	0.0193	0.01	0.938
Temp.(C)*Temp.(C)							
Interaction	3		39.688	39.688	13.2292	4.52	0.055
Fe@BNQDs	1	115.25	5.313	5.313	5.3130	1.81	0.227
(g/mL)*H2O2 (M)							
Fe@BNQDs	1	-2.825	7.981	7.981	7.9806	2.72	0.150
(g/mL)*Temp.(C)							
H2O2	1	-1.284	26.394	26.394	26.3939	9.01	0.024
(M)*Temp.(C)							
Residual Error	6		17.578	17.578	2.9297		
Lack-of-Fit	4		16.569	16.569	4.1424	8.21	0.111
Pure Error	2		1.009	1.009	0.5043		
Total	15		204.704			R ² =91.41	

Table S2. the Calculated lattice parameters of Fe@BNQDs and h-BN.

Lattice parameter (primitive cube)							Bond length (Å)		
Photo-	a(Å)	b(Å)	c(Å)	V(Å ³)	Alpha	Beta	Gamma	B-N	1.63
catalyst					(α)	(β)	(γ)		
Fe@BNQDs	3.86947	3.86947	3.86947	57.936	90°	90°	90°	B-Fe	1.82
								N-Fe	2.73
Lattice parameter (Face cantered cubic)							Bond le	ength (Å)	
h-BN	3.615	3.615	3.615	48.077	90°	90°	90°	B-N	1.574

Table S3. The bandgap (Eg, eV) values of Fe@BNQDs nanostructure	
utilizing norm conserving pseudopotentials.	

DMol3 code							
m-GGA/eV		GGA/e	V	LDA/eV			
M06-L	0.868	BLYP Gremme	1.072	PWC	0.762		
		& TS					
1411 1	0.000	DOD	1 000	1 /11 / 1	0.7(2		
MII-L	0.286	BOb	1.022	VWN	0.763		
MS0	0.500	BP	0.904				
MS1	0.495	HCTH	1.019				
MS2	0.564	PBE	0.877				
Rev-TPSS	0.92	PBEsol	0.772				
TPSS	0.885	PW91	0.903				
		RPBE	0.899				
		VWN-BP	0.906				
CASTEP code							
Hybrid functions/eV	7	GGA/e	V	LDA/eV			
B3LYP	Direct 1.839	PBE	0.465	CA-PZ	0.626		
	Indirect 2.295						
HSE06	1.002	PBEsol	0.483				
		PW91	0.59				
		WC	0.503				
		RPBE	0.605				
Experimental value/	eV			2.39			

Band Edges calculations

Band Edges (ECB, EVB) for Fe@ BNQDs (Fe_{1.5} BNO₅=according to EDX results)

CB and VB for Fe@ BNQDs

$$E_{VB} = X - E_c + 0.5E_g$$
$$E_{CB} = X - E_c - 0.5E_g$$
$$E_{VB} = E_{CB} + E_g$$
$$X = 1/2(E_{EA} + E_{IE})$$

$$leV = 1.6 \times 10^{-19} j = 1.6 \times 10^{-22} Kj$$

$$?\frac{Kj}{mol} = leV \times \frac{1.6 \times 10^{-22} Kj}{leV} \times \frac{6.022 \times 10^{23}}{lmol} = 96.48 \frac{Kj}{mol}$$

Calculations of X for Fe@ BNQDs:

$$B \begin{bmatrix} E_{IE} = 800 & kj/mol & \div & 96.48 & = 8.29 & eV \\ E_{EA} = & 27 & kj/mol & \div & 96.48 & = 0.2798 & eV \end{bmatrix}$$

$$X_{\rm B} = 1/2(8.29 \pm 0.2798) = 4.28 \text{ eV}$$

O
$$\begin{cases} E_{IE} = 1313.9 \text{ kj/mol} \div 96.48 = 13.62 \text{ eV} \\ E_{EA} = 141 \text{ kj/mol} \div 96.48 = 1.46 \text{ eV} \end{cases}$$

$$X_0 = 1/2(13.62+1.46) = 7.54 \text{ eV}$$

 $X_N = 7.3 \text{ eV}$
 $X_{Fe} = 4.0275 \text{ eV}$

This calculation are based on EDX results

Element	Wt.%
В	5.69
Ν	6.46
0	52.14
Fe	35.70

 $X_{Fe@ BNQDs} = (6124212.595)^{0.105} = 5.16 \text{ eV}$ $E_{VB} = 5.16 - 4.5 + (0.5 * 2.39 \text{ eV}) = 1.855 \text{ eV}$

 $E_{CB} = 5.16 - 4.5 - (0.5 * 2.39 \, eV) = -0.535 \, eV$