Electronic Supplementary Information (ESI)

Computational Studies on Functionalized Janus MXenes MM'CT₂, (M, M'=Zr, Ti, Hf, M ≠ M'; T = -O, -F, -OH): Photoelectronic Properties and Potential Photocatalytic Activities

Kuangwei Xiong,*,^a Ziqiang Cheng,^a Jianpeng Liu,^a Peng-Fei Liu,^b Zhenfa Zi^c

^a Department of Physics, East China Jiaotong University, Nanchang 330013, P.R. China

^b Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. China

^c School of Physics and Materials Engineering, Hefei Normal University, Hefei 230601,
P.R. China

* E-mail: xiongkw@ecjtu.edu.cn;

Fig. S1 Top view (top) and side view (bottom) of geometries of (a–c) MM'CF₂-I, II, III; (d–f) MM'C(OH)₂-I, II, III. M, M' = Zr, Ti, Hf; $M \neq M'$.

Fig. S2 Phonon dispersion of surface-functionalized ZrTiC MXenes with ZrTiCT₂-I, ZrTiCT₂-II, and ZrTiCT₂-III structures (T = -O, -F, and -OH). The insets in (e) and (f) display magnified images of the acoustic branches around the Γ -point.

Fig. S3 Phonon dispersion of surface-functionalized ZrHfC MXenes with ZrHfCT₂-I, ZrHfCT₂-II, and ZrHfCT₂-III structures (T = -O, -F, and -OH). The insets in (e) and (f) display magnified images of the acoustic branches around the Γ -point.

Fig. S4 Phonon dispersion of surface-functionalized HfTiC MXenes with HfTiCT₂-I, HfTiCT₂-II, and HfTiCT₂-III structures (T = -O, -F, and -OH). The insets in (e) and (f) display magnified images of the acoustic branches around the Γ -point.

Fig. S5 Band structures of ZrTiCO₂-I with PBE and PBE+SOC methods. The red dashed lines mark the Fermi level at 0 eV.

Fig. S6 Band structures of (a) ZrTiC(OH)₂-I, (b) ZrTiC(OH)₂-II, (c) ZrTiC(OH)₂-III, (d) ZrHfC(OH)₂-I, (e) ZrHfC(OH)₂-II, (f) ZrHfC(OH)₂-III, (g) HfTiC(OH)₂-I, (h) HfTiC(OH)₂-II, and (i) HfTiC(OH)₂-III. The red dashed lines mark the Fermi level at 0 eV.

Fig. S7 (a) $ZrTiCO_2$ -I Janus monolayer; the black and red dashed lines represent a 4×4 hexagonal supercell and the orthogonal primitive cell, respectively. (b) Relationship between total energy and uniaxial strain along the *x* and *y* directions. (c,d) Shift of band edge position with respect to the uniaxial strain along the (c) *x*- and, (d) *y*-direction.

Details of Carrier Mobility Calculations

As an example, we describe the calculations of the electron carrier mobility along the x direction of the ZrTiCO₂-I Janus monolayer. To obtain the elastic modulus C and deformation potential constant E_I , we calculated the total energy and band edge positions as a function of the uniaxial strain ε , as shown in Fig. S6(b,c). The calculated results are listed in Table S4.

To calculate the effective mass, we plotted the relationship between the energy E(k) and the wave vector k with 30 high-density k-points near the CBM, then employed a second-order polynomial function to fit the curve:

$$E(k) = Intercept + B_1k + B_2k^2$$

The second derivative of the fitting function is:

$$\frac{\partial^2 E(k)}{\partial k^2}\Big|_{k=M(0.5,0,0)} = 2B_2$$

According to the definition of carrier effective mass, the electron effective mass along the *x*-direction can be calculated as:

$$m^* = \mathbf{h}^2 / (\partial^2 E(k) / \partial k^2) = \mathbf{h}^2 / 2B_2$$

	ZrTiCT ₂			ZrHfCT ₂			HfTiCT ₂		
	T=O	T=F	Т=ОН	Т=О	T=F	T=OH	Т=О	T=F	Т=ОН
Geometry I	7.59	6.88	5.99	8.14	7.25	6.28	7.78	6.99	6.09
Geometry II	7.20	6.79	5.95	7.71	7.19	6.25	7.38	6.90	6.05
Geometry III	7.42	6.82	6.00	7.96	7.26	6.29	7.60	6.94	6.08

Table S1 Cohesive energies (E_{coh} , eV/atom) of functionalized Janus MXenes.

	ZrTiCT ₂			ZrHfCT ₂			HfTiCT ₂		
	T=O	T=F	Т=ОН	Т=О	T=F	Т=ОН	T=O	T=F	Т=ОН
MM'CT ₂ -I	1.37	none	М	1.71	none	М	1.43	none	М
MM′CT ₂ -II	none	none	М	none	none	М	none	none	М
MM'CT ₂ -III	none	none	М	1.77	none	М	1.94	none	М

Table S2 Band gaps (E_g , eV) of MM'CT₂ with differently functionalized geometries calculated at the HSE06 level. The M label denotes metallic properties of the corresponding MM'CT₂ material.

Table S3 Vacuum level, CBM and VBM levels (eV) of ZrTiCO₂-I, ZrHfCO₂-I, ZrHfCO₂-I, ZrHfCO₂-III, HfTiCO₂-I, and ZrHfCO₂-III. E_{CBM} and E_{VBM} denote band edge positions, whose value are listed relative to the Fermi level, vacuum level and normal hydrogen electrode ($E_{NHE} = -4.5 \text{ eV}$), respectively.

		<i>E_{Fermi}</i>		E _{CBM}		E_{VBM}		
	E_{Vacuum}		VS.	VS.	VS.	VS.	VS.	VS.
			Fermi	vacuum	NHE	Fermi	vacuum	NHE
ZrTiCO ₂ -I	4.24	-1.77	1.29	-4.73	0.23	-0.08	-6.09	1.59
ZrHfCO ₂ -I	3.99	-1.61	1.59	-4.01	-0.49	-0.12	-5.72	1.22
ZrHfCO ₂ -III	4.21	-2.47	1.52	-5.16	0.66	-0.25	-6.93	2.43
HfTiCO ₂ -I	3.69	-2.19	1.24	-4.65	0.15	-0.19	-6.08	1.58
HfTiCO ₂ -III	3.92	-3.35	1.83	-5.43	0.93	-0.10	-7.37	2.87

		<i>C</i> (N/m)	$ E_l $ (eV)	$ m^* (m_e)$	$\mu(\text{ cm}^2 \cdot \text{V}^{-1} \cdot \text{s}^{-1})$
	Electron (x)	280	0.08	16.45	2296
	Hole (<i>x</i>)	280	2.68	0.16	21621
Zr11CO ₂ -1	Electron (y)	253	4.56	4.21	10
	Hole (y)	253	2.38	1.08	544
	Electron (<i>x</i>)	289	7	1.92	23
Z-ILICO I	Hole (<i>x</i>)	289	3.84	0.18	8589
ZrHICO ₂ -I	Electron (y)	258	3.08	2.31	72
	Hole (y)	258	1.18	1.15	1989
	Electron (<i>x</i>)	267	11.34	2.76	4
Z-ILICO III	Hole (<i>x</i>)	267	9.82	0.30	437
ZrhiCO ₂ -iii	Electron (y)	240	2.42	2.65	83
	Hole (y)	240	0.52	2.16	2701
	Electron (x)	267	3.58	2.99	33
HET:CO I	Hole (<i>x</i>)	267	0.58	13.23	64
HITICO ₂ -I	Electron (y)	240	8.04	3.93	3
	Hole (y)	240	10.22	1.16	24
	Electron (x)	262	4.02	2.81	29
HET:CO U	Hole (x)	262	6.3	0.69	197
	Electron (y)	234	0.16	2.57	19649
	Hole (y)	234	1.88	1.46	441

Table S4 Effective mass $|m^*|$, deformation potential constant $|E_I|$, in-plane stiffness *C*, and carrier-mobility μ for electrons and holes along the *x* and *y* directions.