Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Admirable Stability Achieved by ns² Ions Co-doping for All-inorganic Metal Halide towards Optical Anti-counterfeiting

Chuang Yang,^a Fengwan Guo, *^a Shanping Wang,^a Wenwen Chen,^a Nan Wang^a, Zhuozhen Li^a and Juan Wang^{*c}

a Collaborative Innovation Center for Advanced Organic Chemical Materials, Co-constructed by the Province and Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China

b Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Hubei University, Wuhan, 430062 (P. R. China).

c Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei University, Wuhan, 430062 (P. R. China).

Figure S1. The PL and PLE spectra of pristine Cs_2SnCl_6 .

Figure S2. (a) CIE chromaticity coordinates of Cs_2SnCl_6 : $Bi_{0.2-x}Sb_x$ sample excited at 365 nm. (x= 0, 0.04, 0.08, 0.12, 0.16, 0.2) (b) CIE chromaticity coordinates of Cs_2SnCl_6 : $Bi_{0.2-x}Sb_x$ sample excited at 395 nm. (x= 0, 0.04, 0.08, 0.12, 0.16, 0.2)

Figure S3 Photograph of pattern made by anti-counterfeiting ink composed of Cs_2SnCl_6 : Bi_{0.08}Sb_{0.12} at natural light and irradiated by a UV lamp at 365 nm and 395 nm

Figure S4. The thermogravimetric analysis of pristine Cs₂SnCl₆, Cs₂SnCl₆: Bi_{0.2} and Cs₂SnCl₆: Sb_{0.2}.

Figure S5 Integrated PL intensity as a function of temperature for Cs_2SnCl_6 : $Bi_{0.2}$ and Cs_2SnCl_6 : $Sb_{0.2}$ crystals crystals. The line represents fit curve of binding energies.

Conduction Band

Valence Band

Figure S6. The schematic representation of the luminescent emission mechanism of Bi^{3+} and Sb^{3+} co-doped Cs_2SnCl_6 .

Figure S7. Broken line of photoluminescence lifetime at 666nm with different Bi³⁺/Sb³⁺ codoping contents.

Figure S8 (a) Full range of XPS of pristine Cs_2SnCl_6 and Cs_2SnCl_6 : $Bi_{0.08}Sb_{0.12}$. **(b-f)** High-resolution XPS of Cs ($3d_{3/2}$, $3d_{5/2}$), Sn ($3d_{3/2}$, $3d_{5/2}$), Cl ($2p_{1/2}$, $2p_{3/2}$), Bi ($4f_{5/2}$, $4f_{7/2}$) and Sb ($3d_{3/2}$, $3d_{5/2}$) in pristine Cs_2SnCl_6 and Cs_2SnCl_6 : $Bi_{0.08}Sb_{0.12}$.

Table S1. Comparison of Bi^{3+} and Sb^{3+} concentrations obtained from ICP-MS of Cs_2SnCl_6 : $Bi_{0.2-}$ _xSb_x (x= 0, 0.04, 0.08, 0.12, 0.16, 0.2). Bi% is calculated following the equation ([Bi]/[Sn])×100%. Sb% is calculated following the equation ([Sb]/[Sn])×100%.

	Precursor		Product (ICP-MS)	
Sample Category	Bi %	Sb %	Bi %	Sb %
Cs ₂ SnCl ₆ : Bi _{0.2}	20	0	4.55	0
Cs ₂ SnCl ₆ : Bi _{0.16} Sb _{0.04}	16	4	4.49	3.34
Cs ₂ SnCl ₆ : Bi _{0.12} Sb _{0.08}	12	8	3.82	6.31
Cs ₂ SnCl ₆ : Bi _{0.08} Sb _{0.12}	8	12	2.30	7.47
Cs ₂ SnCl ₆ : Bi _{0.04} Sb _{0.12}	4	16	1.40	14.07
Cs ₂ SnCl ₆ : Sb _{0.2}	0	20	0	14.89

Emission	$\tau(us)$	Cs ₂ SnCl ₆ :	Cs ₂ SnCl ₆ :	Cs ₂ SnCl ₆ :	Cs ₂ SnCl ₆ :	Cs ₂ SnCl ₆ :	Cs ₂ SnCl ₆ :
Peak	τ(μ5)	Bi _{0.2}	$Bi_{0.16}Sb_{0.04}$	$\mathrm{Bi}_{0.12}\mathrm{Sb}_{0.08}$	$\mathrm{Bi}_{0.08}\mathrm{Sb}_{0.12}$	$\mathrm{Bi}_{0.04}\mathrm{Sb}_{0.16}$	Sb _{0.2}
454 nm	τ	0.3819	0.3425	0.3276	0.3087	0.3064	_
666 nm	$ au_1$	_	0.40	0.37	0.36	0.35	0.34
	τ2	—	4.93	4.47	4.18	3.72	3.84

Table S2. The lifetime (μ s) of Cs₂SnCl₆: Bi_{0.2-x}Sb_x (x = 0, 0.04, 0.08, 0.12, 0.16, 0.2) at 454 and 666 nm.