Supporting Information for

α-Arylsulfonyloxyacrylates: attractive *O*-centered electrophiles for synthesis of α-substituted acrylates via Pd-catalysed Suzuki reactions

Zhongya Zhang, Li Zhang, Linge Huai, Zhentao Wang and Yewen Fang

Table of Contents

1 General Information
1.1 Solvents, Reagents, and Starting Materials
1.2 Instruments
2 General Procedure of Synthesis of α-Arylsulfonyloxyacrylates
3 General Procedure of Suzuki Reaction
3.1 General Procedure of the (Hetero)arylation Reactions of α -Arylsulfonyloxyacrylates.S7
3.2 General Procedure of the Alkylation Reactions of α -Arylsulfonyloxyacrylates
4 References
5 NMR Spectra of New Compounds

1 General Information

1.1 Solvents, Reagents, and Starting Materials

All reactions were carried out under an atmosphere of nitrogen in oven-dried glassware. The α -ketoesters are commercially available or prepared following literature known methods.¹ The potassium (hetero)aryltrifluoroborates were reported by our previous work or prepared according to the literature procedures.² The employed phosphorus ligands are commercially available. The dried solvents were obtained from commercial sources and used without further purification unless otherwise noted.

1.2 Instruments

NMR spectra were recorded on a BrukerAvance 500 spectrometer (500 MHz) (500 MHz for ¹H NMR, 126 MHz for ¹³C NMR, and 471 MHz for ¹⁹F NMR). Chemical shifts were reported in ppm downfield from tetramethylsilane and calibrated using residue undeuterated solvent (Chloroform-*d* at 7.26 ppm ¹H NMR; 77.0 ppm ¹³C NMR). Spectra were reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad). Coupling constants are reported in Hertz where available. High resolution mass spectra (HRMS) were recorded on Waters Premier GC-TOF MS, Waters G2-Xs QTOF MS, and JEOL-AccuTOF-GCv4G-GCT MS. Analytical thin layer chromatography was performed on Polygram SIL G/UV254 plates. Visualization was accomplished with short wave UV light, or KMnO₄ staining solutions. Flash column chromatography was performed using silica gel (300-400 mesh) with solvents to use.

2 General Procedure of Synthesis of α-Arylsulfonyloxyacrylates

A mixture of α -ketoester (15 mmol, 1.0 equiv), *p*-fluorosulfonyl chloride (3.5 g, 18 mmol), DMAP (134.5 mg, 1.1 mmol) was dissolved in dichloromethane (30 mL). Triethylamine (4.1 mL, 29.5 mmol) was added dropwise and reacted for 24 h. At the end of the reaction, the mixture was then quenched with H₂O (20 mL). The organic phase was separated and the aqueous phase extracted with ethyl acetate (3 x 15 mL). The combined organic phase was dried by MgSO₄ and the solvent removed *in vacuo*. Crude products were purified by silica gel column chromatography.

1a

Ethyl 2-(((4-fluorophenyl)sulfonyl)oxy)acrylate (1a). Flash column chromatography to afford product **1a** as a yellow liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.93 – 7.86 (m, 2H), 7.18 (t, J = 8.6 Hz, 2H), 6.08 (d, J = 2.5 Hz, 1H), 5.57 (d, J = 2.5 Hz, 1H), 4.06 (q, J = 7.2 Hz, 2H), 1.12 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 165.7 (d, J = 258.3 Hz), 160.3, 142.8, 131.3 (d, J = 2.5 Hz), 131.2 (d, J = 10.1 Hz), 116.9, 116.2 (d, J = 22.7 Hz), 61.7, 13.5. ¹⁹F NMR (471 MHz, CDCl₃) δ -102.16. HRMS (ESI) [M+Na]⁺: calculated forC₁₁H₁₁FO₅SNa: 297.0209, found 297.0210.

Methyl 2-(((4-fluorophenyl)sulfonyl)oxy)acrylate (1d). Flash column chromatography to afford product **1d** as a yellow liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.99 – 7.91 (m, 2H), 7.22 (t, J = 8.5 Hz, 2H), 6.13 (d, J = 2.5 Hz, 1H), 5.64 (d, J = 2.6 Hz, 1H), 3.67 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.0 (d, J = 258.3 Hz), 161.1, 142.7, 131.4 (d, J = 2.5 Hz), 131.3 (d, J = 10.1 Hz), 117.40, 116.4 (d, J = 25.2 Hz), 52.6. ¹⁹F NMR (471 MHz, CDCl₃) δ -101.82. HRMS (ESI) [M+Na]⁺: calculated for C₁₀H₉FO₅SNa: 283.0052, found 283.0059.

Isopropyl 2-(((4-fluorophenyl)sulfonyl)oxy)acrylate (1e). Flash column chromatography to afford product **1e** as a yellow liquid. ¹H NMR (500 MHz, CDCl₃) δ 8.06 – 7.85 (m, 2H), 7.38 – 7.09 (m, 2H), 6.15 (s, 1H), 5.68 (d, J = 2.3 Hz, 1H), 4.99 (p, J = 6.3 Hz, 1H), 1.21 (d, J = 6.4 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 166.1 (d, J = 258.3 Hz), 160.2, 143.4, 131.8 (d, J = 2.5 Hz), 131.5 (d, J = 10.1 Hz), 117.0, 116.5 (d, J = 23.9 Hz), 70.2, 21.5. ¹⁹F NMR (471 MHz, CDCl₃) δ -102.0. HRMS (ESI) [M+Na]⁺: calculated for C₁₂H₁₃FO₅SNa: 311.0362, found 311.0364.

Cyclohexyl2-(((4-fluorophenyl)sulfonyl)oxy)acrylate (1f). Flash column chromatography to afford product 1f as a yellow liquid. ¹H NMR (500 MHz, CDCl₃) δ 8.08 – 7.97 (m, 2H), 7.26 – 7.21 (m, 2H), 6.15 (d, J = 2.3 Hz, 1H), 5.66 (d, J = 2.3 Hz, 1H), 4.80 – 4.74 (m, 1H), 1.80 – 1.67 (m, 4H), 1.54 – 1.49 (m, 1H), 1.43 – 1.24 (m, 5H). ¹³C NMR (126 MHz, CDCl₃) δ 166.1 (d, J = 257.0 Hz), 160.1, 143.4, 131.7 (d, J = 2.5 Hz), 131.4 (d, J = 10.1 Hz), 116.9, 116.5 (d, J = 25.2 Hz), 74.8, 31.2, 25.2, 23.4. ¹⁹F NMR (471 MHz, CDCl₃) δ -102.02. HRMS (ESI) [M+Na]⁺: calculated for C₁₅H₁₇FO₅S Na: 351.0678, found 351.0685.

Benzyl 2-(((4-fluorophenyl)sulfonyl)oxy)acrylate (1g). Flash column chromatography to afford product **1g** as a yellow liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.93 – 7.90 (m, 2H), 7.38 – 7.35 (m, 3H), 7.30 – 7.26 (m, 2H), 7.10 (t, J = 8.5 Hz, 2H), 6.23 (d, J = 2.3 Hz, 1H), 5.76 (d, J = 2.4 Hz, 1H), 5.13 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 165.9 (d, J = 258.3 Hz), 160.6, 142.8, 134.7, 131.4 (d, J = 8.8 Hz), 131.3 (d, J = 3.8 Hz), 128.6, 128.5, 128.4, 117.9, 116.4 (d, J = 25.2 Hz), 67.7. ¹⁹F NMR (471 MHz, CDCl₃) δ -101.64. HRMS (ESI) [M+Na]⁺: calculated for C₁₆H₁₃FO₅S Na: 359.0365, found 359.0368.

1-Phenylethyl 2-(((4-fluorophenyl)sulfonyl)oxy)acrylate (**1h**). Flash column chromatography to afford product **1h** as a colorless liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.94 – 7.85 (m, 2H), 7.41 – 7.26 (m, 5H), 7.19 – 7.06 (m, 2H), 6.22 (d, J = 2.4 Hz, 1H), 5.85 (q, J = 6.6 Hz, 1H), 5.74 (d, J = 2.4 Hz, 1H), 1.53 (d, J = 6.6 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 165.9 (d, J = 258.3 Hz), 159.9, 143.1, 140.4, 131.4 (d, J = 3.8 Hz), 131.3 (d, J = 10.1 Hz), 128.5, 128.2, 126.1, 117.5, 116.4 (d, J = 22.7 Hz), 74.6, 21.8. ¹⁹F NMR (471 MHz, CDCl₃) δ -101.73. HRMS (ESI) [M+Na]⁺: calculated for C₁₇H₁₅FO₅SNa: 373.0522, found 373.0526.

Ethyl 2-(((4-fluorophenyl)sulfonyl)oxy)-3-methylbut-2-enoate (4a). Flash column chromatography to afford product **4a** as a colorless liquid. ¹H NMR (500 MHz, CDCl₃) δ 8.01 – 7.99 (m, 2H), 7.24 (t, J = 8.5 Hz, 2H), 4.10 (q, J = 7.1 Hz, 2H), 2.18 (s, 3H), 1.82 (s, 3H), 1.20 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 165.8 (d, J = 257.0 Hz), 162.0, 144.5, 132.9, 132.8(d, J = 13.8 Hz), 131.1(d, J = 8.8 Hz), 116.3 (d, J = 25.2 Hz), 61.1, 21.3, 20.4, 13.9. ¹⁹F NMR (471 MHz, CDCl₃) δ -102.73. HRMS (ESI) [M+Na]⁺: calculated for C₁₃H₁₅FO₅SNa: 325.0522, found 325.0524.

Ethyl 3-ethyl-2-(((4-fluorophenyl)sulfonyl)oxy)pent-2-enoate (4b). Flash column chromatography to afford product **4b** as a colorless liquid. ¹H NMR (500 MHz, CDCl₃) δ 8.01 – 7.97 (m, 2H), 7.25 – 7.20 (m, 2H), 4.11 (q, J = 7.1 Hz, 2H), 2.50 (q, J = 7.5 Hz, 2H), 2.15 (q, J = 7.6 Hz, 2H), 1.21 (t, J = 7.1 Hz, 3H), 1.09 (t, J = 7.5 Hz, 3H), 0.97 (t, J = 7.6 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 165.8 (d, J = 258.3 Hz), 162.1, 153.8, 132.7 (d, J = 3.8 Hz), 132.4, 131.1 (d, J = 8.8 Hz), 116.3 (d, J = 25.2 Hz), 61.2, 24.6, 23.9, 13.9, 12.9, 11.6. ¹⁹F NMR (471 MHz, CDCl₃) δ -102.76. HRMS (ESI) [M+H]⁺: calculated for C₁₅H₁₉FO₅S: 331.1015, found 331.1002.

Ethyl 2-cyclobutylidene-2-(((4-fluorophenyl)sulfonyl)oxy)acetate (4c). Flash column chromatography to afford product **4c** as a yellow liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.96 – 7.93 (m, 2H), 7.26 – 7.14 (m, 2H), 4.01 (q, *J* = 7.1 Hz, 2H), 3.07 – 3.03 (m, 2H), 2.78 – 2.74 (m, 2H), 1.98 (p, *J* = 7.9 Hz, 2H), 1.11 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 165.6 (d, *J* = 257.0 Hz), 161.2, 156.4, 132.4 (d, *J* = 2.5 Hz), 131.1 (d, *J* = 10.1 Hz), 129.5, 116.0 (d, *J* = 22.7 Hz), 60.8, 31.4, 29.7, 16.8, 13.8. ¹⁹F NMR (471 MHz, CDCl₃) δ -102.88.HRMS (ESI) [M+Na]⁺: calculated for C₁₄H₁₅FO₅SNa: 337.0522, found 337.0523.

Ethyl 2-cyclopentylidene-2-(((4-fluorophenyl)sulfonyl)oxy)acetate (4d). Flash column chromatography to afford product **4d** as a yellow liquid. ¹H NMR (500 MHz, CDCl₃) δ 8.01 – 7.98 (m, 2H), 7.23 – 7.18 (m, 2H), 4.05 (t, J = 7.1 Hz, 2H), 2.81 – 2.76 (m, 2H), 2.57 – 2.53 (m, 2H), 1.75 (p, J = 6.9 Hz, 2H), 1.64 (q, J = 7.1 Hz, 2H), 1.15 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 165.7 (d, J = 257.0 Hz), 161.8, 158.2, 133.1 (d, J = 3.8 Hz), 133.1 (d, J = 10.1 Hz), 130.2, 116.2 (d, J = 22.7 Hz), 60.9, 33.4, 32.7, 26.6, 25.4, 13.9. ¹⁹F NMR (471 MHz, CDCl₃) δ - 103.03. HRMS (ESI) [M+Na]⁺: calculated for C₁₅H₁₇FO₅SNa: 351.0678, found 351.0679.

Ethyl 2-cyclohexylidene-2-(((4-fluorophenyl)sulfonyl)oxy)acetate (4e). Flash column chromatography to afford product **4e** as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.99 – 7.92 (m, 2H), 7.24 – 7.18 (m, 2H), 4.07 (q, J = 7.1 Hz, 2H), 2.72 – 2.66 (m, 2H), 2.17 (m, J = 6.8, 5.1 Hz, 2H), 1.60 (p, J = 5.7 Hz, 2H), 1.55 – 1.44 (m, 4H), 1.18 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 165.8 (d, J = 258.3 Hz), 162.2, 150.1, 132.5 (d, J = 3.8 Hz), 131.1 (d, J = 8.8 Hz), 130.0, 116.3 (d, J = 25.2 Hz), 61.1, 30.0, 29.5, 27.5, 27.1, 25.7, 13.8. ¹⁹F NMR (471 MHz, CDCl₃) δ -102.71. HRMS (ESI) [M+Na]⁺: calculated for C₁₆H₁₉FO₅SNa: 365.0835, found 365.0833.

Ethyl (*Z*)-2-(((4-fluorophenyl)sulfonyl)oxy)but-2-enoate (6). Flash column chromatography to afford product 6 as a yellow liquid. ¹H NMR (500 MHz, CDCl₃) δ 8.00 – 7.97 (m, 2H), 7.22 – 7.17 (m, 2H), 6.76 – 6.72 (m, 1H), 4.08 (q, *J* = 7.1 Hz, 2H), 1.75 (d, *J* = 7.3 Hz, 3H), 1.15 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 165.8 (d, *J* = 258.3 Hz), 161.2, 138.0,

132.4 (d, J = 2.5 Hz), 131.6, 131.1 (d, J = 10.1 Hz), 116.2 (d, J = 25.2 Hz), 61.4, 13.8, 12.2. ¹⁹F NMR (471 MHz, CDCl₃) δ -102.56. HRMS (ESI) [M+Na]⁺: calculated for C₁₂H₁₃FO₅SNa: 311.0365, found 311.0372.

3 General Procedure of Suzuki Reaction

3.1 General Procedure of the (Hetero)arylation Reactions of α-Arylsulfonyloxyacrylates

To a reaction tube equipped with a magnetic bar were added α -arylsulfonyloxyacrylate **1**, **4** or **6** (0.2 mmol), potassium (hetero)aryltrifluoroborate **2** or **11** (0.26 mmol or 0.3 mmol), SPhos (8.2 mg, 0.02 mmol), K₃PO₄ (63.6 mg, 0.3 mmol), Pd(OAc)₂ (2.3 mg, 0.01 mmol). The toluene or 1,4-dioxane (3.0 mL) and H₂O (1.0 mL) were added subsequently. The reaction mixture was stirred at 60 °C or 80 °C for 24 h. The reaction was allowed to cool to room temperature, diluted with water (10 mL) and extracted with ethyl acetate (3 × 10 mL). The organic phase was dried with MgSO₄ and concentrated *in vacuo*. The crude product was purified by silica gel column chromatography to afford the product.

Ethyl 2-phenylacrylate (3a). Flash column chromatography to afford product 3a as a yellow liquid (25.7 mg, 73% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.44 – 7.42 (m, 2H), 7.37-7.34 (m, 3H), 6.35 (d, J = 1.3 Hz, 1H), 5.89 (d, J = 1.2 Hz, 1H), 4.30 (q, J = 7.1 Hz, 2H), 1.34 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.8, 141.6, 136.8, 128.3, 128.0(9), 128.0(5), 126.4, 61.1, 14.2. These data are consistent with the published literature.³

Ethyl 2-(*p*-tolyl)acrylate (3b). Flash column chromatography to afford product 3b as a colorless liquid (28.2 mg, 74% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.32-7.31 (m, 2H), 7.17 (d, *J* = 7.8 Hz, 2H), 6.30 (d, *J* = 1.3 Hz, 1H), 5.86 (d, *J* = 1.3 Hz, 1H), 4.29 (q, *J* = 7.1 Hz, 2H), 2.37 (s, 3H), 1.34 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 167.0, 141.4, 138.0, 133.9, 128.8, 128.1, 125.7, 61.0, 21.2, 14.2. These data are consistent with the published literature.⁴

Ethyl 2-(*m*-tolyl)acrylate (3c). Flash column chromatography to afford product 3c as a colorless liquid (20.9 mg, 55% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.26 – 7.20 (m, 3H), 7.16 – 7.13 (m, 1H), 6.31 (d, *J* = 1.3 Hz, 1H), 5.86 (d, *J* = 1.3 Hz, 1H), 4.29 (q, *J* = 7.1 Hz, 2H), 2.37 (s, 3H), 1.33 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.9, 141.7, 137.7, 136.7, 128.9, 128.7, 127.9, 126.2, 125.4, 61.1, 21.4, 14.2.These data are consistent with the published literature.⁴

Ethyl 2-(2,4-dimethylphenyl)acrylate (3d). Flash column chromatography to afford product 3d as a colorless liquid (28.6 mg, 70% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.04 – 6.99 (m, 3H), 6.47 (d, J = 1.8 Hz, 1H), 5.67 (d, J = 1.8 Hz, 1H), 4.24 (q, J = 7.1 Hz, 2H), 2.33 (s, 3H), 2.17 (s, 3H), 1.28 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.8, 142.0, 137.8, 135.9, 134.5, 130.7, 129.4, 128.0, 126.3, 60.9, 21.1, 19.8, 14.2. HRMS (ESI) [M+Na]⁺: calculated for C₁₃H₁₆O₂Na: 227.1048, found 227.1049.

Ethyl 2-(3,5-dimethylphenyl)acrylate (3e). Flash column chromatography to afford product 3e as a yellow liquid (32.7 mg, 80% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.01 (d, *J* = 25.1 Hz, 3H), 6.29 (d, *J* = 1.4 Hz, 1H), 5.85 (d, *J* = 1.3 Hz, 1H), 4.29 (q, *J* = 7.1 Hz, 2H), 2.33 (s, 6H), 1.34 (t, *J*

= 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 167.0, 141.8, 137.6, 136.7, 129.8, 126.1, 125.9, 61.0, 21.3, 14.2. This compound was reported in the published literature.^{1b}

Ethyl 2-(4-ethylphenyl)acrylate (3f). Flash column chromatography to afford product 3f as a yellow liquid (23.7 mg, 58% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.38 – 7.34 (m, 2H), 7.20 (d, J = 8.0 Hz, 2H), 6.30 (d, J = 1.3 Hz, 1H), 5.87 (d, J = 1.3 Hz, 1H), 4.30 (q, J = 7.1 Hz, 2H), 2.67 (q, J = 7.7 Hz, 2H), 1.34 (t, J = 7.2 Hz, 3H), 1.25 (t, J = 7.6 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 167.0, 144.3, 141.4, 134.1, 128.2, 127.6, 125.7, 61.0, 28.6, 15.4, 14.2. This compound was reported in the published literature.⁵

3g

Ethyl 2-(4-(*tert*-butyl)phenyl)acrylate (3g). Flash column chromatography to afford product 3g as a colorless liquid (38.6 mg, 83% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.39 (s, 4H), 6.31 (d, J = 1.4 Hz, 1H), 5.89 (d, J = 1.3 Hz, 1H), 4.31 (q, J = 7.2 Hz, 2H), 1.35 (t, J = 7.0 Hz, 3H).1.34 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 167.0, 151.1, 141.3, 133.8, 128.0, 125.7, 125.0, 61.0, 34.6, 31.3, 14.2. This compound was reported in the published literature.^{1b}

Ethyl 2-(4-methoxyphenyl)acrylate (3h). Flash column chromatography to afford product **3h** as a colorless liquid (24.7 mg, 60% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.39 – 7.32 (m, 2H), 6.90 –

a colorless liquid (24.7 mg, 60% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.39 – 7.32 (m, 2H), 6.90 – 6.87 (m, 2H), 6.25 (d, J = 1.2 Hz, 1H), 5.82 (d, J = 1.2 Hz, 1H), 4.29 (q, J = 7.1 Hz, 2H), 3.82 (s, 3H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 167.1, 159.6, 140.9, 129.5, 129.2, 124.9, 113.5, 61.0, 55.3, 14.2. These data are consistent with the published literature.⁶

Ethyl 2-(3,4-dimethoxyphenyl)acrylate (3i). Flash column chromatography to afford product **3i** as a yellow liquid (30.2 mg, 64% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.01-6.99 (m, 2H), 6.85 (d,

J = 6.7 Hz, 1H), 6.26 (d, J = 1.2 Hz, 1H), 5.84 (d, J = 1.3 Hz, 1H), 4.29 (q, J = 7.1 Hz, 2H), 3.89 (s, 6H), 1.34 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 167.0, 149.1, 148.4, 141.0, 129.5, 125.2, 120.9, 111.6, 110.7, 61.0, 55.9, 55.8, 14.2. This compound was reported in the published literature.⁷

Ethyl 2-(benzo[d][1,3]dioxol-5-yl)acrylate (3j). Flash column chromatography to afford product 3j as a yellow liquid (33.0 mg, 75% yield). ¹H NMR (500 MHz, CDCl₃) δ 6.95 – 6.87 (m, 2H), 6.79 (d, J = 8.0 Hz, 1H), 6.25 (s, 1H), 5.97 (s, 2H), 5.81 (s, 1H), 4.28 (q, J = 7.1 Hz, 2H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.9, 147.6, 147.4, 141.0, 130.8, 125.5, 122.1, 108.9, 107.9, 101.1, 61.1, 14.2. These data are consistent with the published literature.⁸

Ethyl 2-(4-chlorophenyl)acrylate (3k). Flash column chromatography to afford product **3k** as a yellow liquid (22.7 mg, 54% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.39 – 7.30 (m, 4H), 6.37 (d, *J* = 1.1 Hz, 1H), 5.89 (d, *J* = 1.1 Hz, 1H), 4.29 (q, *J* = 7.1 Hz, 2H), 1.33 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.4, 140.4, 135.2, 134.2, 129.7, 128.3, 126.9, 61.2, 14.2. These data are consistent with the published literature.⁴

Ethyl 2-(3,4-dichlorophenyl)acrylate (31). Flash column chromatography to afford product **31** as a yellow liquid (15.2 mg, 31% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.54 (d, J = 2.1 Hz, 1H), 7.42 (d, J = 8.4 Hz, 1H), 7.28 – 7.26 (m, 1H), 6.41 (d, J = 0.9 Hz, 1H), 5.92 (d, J = 1.0 Hz, 1H), 4.29 (q, J = 7.1 Hz, 2H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.0, 139.4, 136.7, 132.3, 132.2, 130.3, 130.0, 128.0 127.7, 61.4, 14.2. These data are consistent with the published literature.⁹

Ethyl 2-(4-fluorophenyl)acrylate (3m). Flash column chromatography to afford product **3m** as a yellow liquid (15.1 mg, 39% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.41 – 7.37 (m, 2H), 7.06 – 7.02 (m, 2H), 6.35 (d, J = 1.2 Hz, 1H), 5.86 (d, J = 1.2 Hz, 1H), 4.29 (q, J = 7.1 Hz, 2H), 1.34 (d, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.6, 162.7 (d, J = 252 Hz), 140.5, 132.8 (d, J = 2.5 Hz), 130.1 (d, J = 8.8 Hz), 126.5, 115.1 (d, J = 21.4 Hz), 61.2, 14.2. ¹⁹F NMR (471 MHz, CDCl₃) δ -113.95. These data are consistent with the published literature.⁶

3n

Ethyl 2-(naphthalen-2-yl)acrylate (3n). Flash column chromatography to afford product **3n** as a yellow liquid (23.5 mg, 52% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.93 (d, J = 1.8 Hz, 1H), 7.88 – 7.80 (m, 3H), 7.59-7.54 (m, 1H), 7.50-7.48 (m, 2H), 6.44 (d, J = 1.2 Hz, 1H), 6.02 (d, J = 1.2 Hz, 1H), 4.34 (q, J = 7.1 Hz, 2H), 1.39 – 1.34 (t, J = 7.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.9, 141.6, 134.2, 133.1, 132.9, 128.3, 127.6, 127.5, 127.4, 126.7, 126.3, 126.2, 126.1, 61.2, 14.2. These data are consistent with the published literature.¹⁰

Ethyl 2-(6-methoxynaphthalen-2-yl)acrylate (30). Flash column chromatography to afford product **30** as a white solid (31.3 mg, 61% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, J = 1.8 Hz, 1H), 7.75 – 7.69 (m, 2H), 7.53 – 7.50 (m, 1H), 7.17 – 7.10 (m, 2H), 6.38 (s, 1H), 5.98 (s, 1H), 4.33 (q, J = 7.2 Hz, 2H), 3.93 (s, 3H), 1.35 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 167.1, 158.0, 141.5, 134.2, 131.9, 129.8, 128.5, 127.3, 126.6, 126.4, 125.9, 119.0, 105.5, 61.1, 55.3, 14.2. These data are consistent with the published literature.⁴

Methyl 2-phenylacrylate (3p). Flash column chromatography to afford product **3p** as a colorless liquid (27.2 mg, 84% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.44 – 7.40 (m, 2H), 7.39 – 7.34 (m,

3H), 6.37 (s, 1H), 5.90 (s, 1H), 3.83 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 167.3, 141.3, 136.7, 128.3, 128.2, 128.1, 127.0, 52.2. These data are consistent with the published literature.³

Iso-propyl 2-phenylacrylate (3q). Flash column chromatography to afford product 3q as a yellow liquid (20.2 mg, 53% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.48 – 7.42 (m, 2H), 7.41 – 7.32 (m, 3H), 6.33 (s, 1H), 5.89 (s, 1H), 5.23 – 5.13 (m, 1H), 1.34 (d, *J* = 6.3 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 166.4, 141.9, 136.8, 128.3, 128.2, 126.0, 68.6, 21.8. These data are consistent with the published literature.³

3r

Cyclohexyl 2-phenylacrylate (3r). Flash column chromatography to afford product **3r** as a colorless liquid (30.4 mg, 66% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.46 – 7.40 (m, 2H), 7.39 – 7.30 (m, 3H), 6.33 (d, J = 1.2 Hz, 1H), 5.87 (t, J = 1.0 Hz, 1H), 4.98 – 4.92 (m, 1H), 1.94 – 1.87 (m, 2H), 1.77 – 1.69 (m, 2H), 1.55 – 1.51 (m, 2H), 1.45 – 1.37 (m, 2H), 1.36 – 1.23 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 166.2, 141.9, 136.9, 128.3, 128.0, 127.9, 126.0, 73.29, 31.5, 25.4, 23.6. These data are consistent with the published literature.¹⁵

Benzyl 2-phenylacrylate (3s). Flash column chromatography to afford product **3s** as a yellow liquid (33.4 mg, 70% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.44 – 7.42 (m, 2H), 7.39 – 7.33 (m, 8H), 6.40 (s, 1H), 5.92 (s, 1H), 5.28 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 166.6, 141.2, 136.6, 135.9, 128.7, 128.5, 128.4, 128.3, 128.2, 127.1, 66.8. These data are consistent with the published literature.³

1-Phenylethyl 2-phenylacrylate (3t). Flash column chromatography to afford product **3t** as a colorless liquid (31.7 mg, 63% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.44 – 7.31 (m, 10H), 6.41 (s, 1H), 6.06 (q, J = 6.6 Hz, 1H), 5.92 (s, 1H), 1.63 (d, J = 6.6 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃)

δ 165.9, 141.6, 141.5, 136.7, 128.5, 128.4, 128.3, 128.1, 128.0, 127.9, 126.6, 126.0, 22.3. HRMS (ESI) [M+Na]⁺: calculated for C₁₇H₁₆O₂Na : 275.1048, found 275.1054.

Ethyl 3-methyl-2-phenylbut-2-enoate (5a). Flash column chromatography to afford product **5a** as a yellow liquid (25.3 mg, 62% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.36 – 7.33 (m, 2H), 7.29 – 7.27 (m, 1H), 7.21 – 7.19 (m, 2H), 4.17 (q, *J* = 7.1 Hz, 2H), 2.12 (s, 3H), 1.70 (s, 3H), 1.22 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 168.8, 143.9, 138.1, 130.3, 129.4, 128.0, 126.9, 60.4, 23.1, 22.5, 14.2. These data are consistent with the published literature.¹²

5b

Ethyl 3-methyl-2-(*p*-tolyl)**but-2-enoate (5b).** Flash column chromatography to afford product **5b** as a colorless liquid (32.3 mg, 74% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.16 – 7.11 (m, 2H), 7.09 – 7.06 (m, 2H), 4.16 (q, *J* = 7.1 Hz, 2H), 2.35 (s, 3H), 2.09 (s, 3H), 1.70 (s, 3H), 1.22 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 169.0, 143.2, 136.5, 135.0, 130.2, 129.3, 128.8, 60.4, 22.9, 22.5, 21.2, 14.2. These data are consistent with the published literature.⁴

5c

Ethyl 2-(4-methoxyphenyl)-3-methylbut-2-enoate (5c). Flash column chromatography to afford product **5c** as a colorless liquid (29.9 mg, 64% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.12 – 7.09 (m, 2H), 6.88 – 6.85 (m, 2H), 4.16 (q, *J* = 7.1 Hz, 2H), 3.81 (s, 3H), 2.07 (s, 3H), 1.70 (s, 3H), 1.22 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 169.1, 158.5, 143.1, 130.5, 130.3, 129.9, 113.5, 60.4, 55.2, 22.9, 22.5, 14.2. HRMS (ESI) [M+Na]⁺: calculated for C₁₄H₁₈O₃Na: 257.1154, found 257.1142.

Ethyl 2-(3-methoxyphenyl)-3-methylbut-2-enoate (5d). Flash column chromatography to afford product **5d** as a colorless liquid (30.5 mg, 65% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.31 – 7.27

(m, 1H), 6.87 - 6.74 (m, 3H), 4.20 (q, J = 7.1 Hz, 2H), 3.83 (s, 3H), 2.13 (s, 3H), 1.73 (s, 3H), 1.25 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 168.7, 159.3, 143.9, 139.4, 130.2, 129.0, 121.9, 114.9, 112.5, 60.4, 55.2, 23.1, 22.5, 14.1. These data are consistent with the published literature.⁴

Ethyl 2-(2-methoxyphenyl)-3-methylbut-2-enoate (5e). Flash column chromatography to afford product **5e** as a colorless liquid (27.6 mg, 59% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.29 – 7.27 (m, 1H), 7.12 – 7.10 (m, 1H), 6.97 – 6.93 (m, 1H), 6.88 (d, J = 1.1 Hz, 1H), 4.18 – 4.13 (q, J = 7.5 Hz, 2H), 3.78 (s, 3H), 2.20 (s, 3H), 1.74 (s, 3H), 1.18 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 168.4, 157.1, 146.8, 131.6, 128.5, 127.6, 126.5, 120.2, 110.5, 59.9, 55.4, 23.9, 22.5, 14.2. These data are consistent with the published literature.⁴

Ethyl 2-(4-(*tert*-butyl)phenyl)-3-methylbut-2-enoate (5f). Flash column chromatography to afford product 5f as a yellow liquid (48.4 mg, 93% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.36 – 7.31 (m, 2H), 7.12 (d, J = 8.3 Hz, 2H), 4.17 (q, J = 7.1 Hz, 2H), 2.07 (s, 3H), 1.71 (s, 3H), 1.32 (s, 9H), 1.24 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 169.2, 149.7, 142.5, 134.8, 130.3, 128.9, 124.9, 60.4, 34.5, 31.3, 22.9, 22.6, 14.2. HRMS (ESI) [M+H]⁺: calculated for C₁₇H₂₄O₂: 261.1852, found 261.1855.

Ethyl 2-(4-fluorophenyl)-3-methylbut-2-enoate (5g). Flash column chromatography to afford product **5g** as a yellow liquid (27.1 mg, 61% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.16 – 7.11 (m, 2H), 7.03 – 6.99 (m, 2H), 4.15 (q, J = 7.1 Hz, 2H), 2.11 (s, 3H), 1.67 (s, 3H), 1.21 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 168.5, 161.8 (d, J = 245.7 Hz), 144.9, 134.1 (d, J = 2.5 Hz), 131.1 (d, J = 7.6 Hz), 129.3, 115.1 (d, J = 21.5 Hz), 60.4, 23.2, 22.5, 14.2. ¹⁹F NMR (471 MHz, CDCl₃) δ -115.58. HRMS (ESI) [M+H]⁺: calculated for C₁₃H₁₅FO₂: 223.1134, found 223.1137.

5h

Ethyl 2-(4-chlorophenyl)-3-methylbut-2-enoate (5h). Flash column chromatography to afford product **5h** as a colorless liquid (24.3 mg, 51% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.33 – 7.29 (m, 2H), 7.14 – 7.10 (m, 2H), 4.16 (q, *J* = 7.1 Hz, 2H), 2.13 (s, 3H), 1.70 (s, 3H), 1.21 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 168.2, 145.5, 132.6, 130.8, 129.1, 128.2, 60.5, 23.3, 22.6, 14.2.These data are consistent with the published literature.⁴

Ethyl 3-methyl-2-(naphthalen-2-yl)but-2-enoate (5i). Flash column chromatography to afford product **5i** as a yellow liquid (30.9 mg, 61% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.84 – 7.75 (m, 3H), 7.65 (d, J = 1.7 Hz, 1H), 7.51 – 7.42 (m, 2H), 7.32 (d, J = 1.7 Hz, 1H), 4.17 (q, J = 7.1 Hz, 2H), 2.17 (s, 3H), 1.74 (s, 3H), 1.20 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 168.7, 144.7, 135.6, 133.2, 132.3, 130.2, 128.2, 127.9, 127.8, 127.6, 127.5, 125.9, 125.8, 60.4, 23.3, 22.6, 14.2. These data are consistent with the published literature.¹³

Ethyl 3-methyl-2-(naphthalen-1-yl)but-2-enoate (5j). Flash column chromatography to afford product 5j as a colorless liquid (31.0 mg, 61% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.86 – 7.79 (m, 3H), 7.48 – 7.45 (m, 3H), 7.31 – 7.29 (m, 1H), 4.10 – 4.05 (m, 2H), 2.30 (s, 3H), 1.54 (s, 3H), 1.07 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 168.3, 147.9, 136.2, 133.6, 132.2, 128.2, 127.9, 127.5, 127.3, 125.9, 125.6, 125.5, 125.4, 60.2, 23.8, 22.4, 14.1. HRMS (ESI) [M+Na]⁺: calculated for C₁₇H₁₈O₂Na: 277.1024, found 277.1203.

5k

Ethyl 3-methyl-2-(thiophen-2-yl)but-2-enoate (5k). Flash column chromatography to afford product **5k** as a yellow liquid (19.3 mg, 46% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.29 – 7.27 (m, 1H), 7.00 – 6.98 (m, 1H), 6.87 – 6.83 (m, 1H), 4.21 (q, *J* = 7.1 Hz, 2H), 2.09 (s, 3H), 1.86 (s, 3H),

1.26 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 168.2, 146.0, 138.5, 127.2, 126.5, 125.5, 123.6, 60.7, 23.3, 22.9, 14.1. HRMS (ESI) [M+Na]⁺: calculated for C₁₁H₁₄O₂SNa: 233.0612, found 233.0613.

Ethyl 3-ethyl-2-phenylpent-2-enoate (5l). Flash column chromatography to afford product **5l** as a colorless liquid (32.5 mg, 70% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.36 – 7.32 (m, 2H), 7.31 – 7.26 (m, 1H), 7.23 – 7.19 (m, 2H), 4.15 (q, J = 7.1 Hz, 2H), 2.45 (q, J = 7.5 Hz, 2H), 2.00 (q, J = 7.5 Hz, 2H), 1.22 (t, J = 7.1 Hz, 3H), 1.16 (t, J = 7.5 Hz, 3H), 0.95 (t, J = 7.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 168.8, 153.5, 137.9, 129.9, 129.3, 128.0, 126.9, 60.3, 25.6, 14.1, 13.3, 12.7. HRMS (ESI) [M+Na]⁺: calculated for C₁₅H₂₀O₂Na: 255.1361, found 255.1263.

Ethyl 2-cyclobutylidene-2-phenylacetate (5m). Flash column chromatography to afford product **5m** as a yellow liquid (21.6 mg, 50% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.36 – 7.32 (m, 2H), 7.28-7.23 (m, 3H), 4.22 (q, J = 7.1 Hz, 2H), 3.29 – 3.24 (m, 2H), 2.82 – 2.78 (m, 2H), 2.10-2.04 (m, 2H), 1.59 (s, 3H), 1.29 (t, J = 7.1 Hz, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 166.8, 162.4, 135.7, 129.2, 127.9, 126.9, 125.9, 60.2, 34.4, 32.5, 17.2, 14.4. HRMS (ESI) [M+Na]⁺: calculated for C₁₄H₁₆O₂Na: 239.1048, found 239.1044.

Ethyl 2-cyclopentylidene-2-phenylacetate (5n). Flash column chromatography to afford product **5n** as a yellow liquid (25.3 mg, 55% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.37 – 7.34 (m, 2H), 7.29 – 7.27 (m, 1H), 7.19 – 7.17 (m, 2H), 4.20 – 4.16 (q, J = 7.0 Hz , 2H), 2.91 – 2.88 (m, 2H), 2.24 – 2.21 (m, 2H), 1.82-1.76 (m, 2H), 1.63-1.58 (m, 3H), 1.24 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 167.5, 162.8, 139.1, 129.2, 127.9, 126.7, 125.8, 60.1, 35.2, 34.0, 26.8, 25.8, 14.3. HRMS (ESI) [M+Na]⁺: calculated for C₁₅H₁₈O₂Na: 253.1204, found 253.1205.

Ethyl 2-cyclohexylidene-2-phenylacetate (50). Flash column chromatography to afford product 50 as a light yellow liquid (24.4 mg, 50% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.36 – 7.33 (m,

2H), 7.29 – 7.27 (m, 1H), 7.24 – 7.20 (m, 2H), 4.20 – 4.16 (q, J = 7.0 Hz, 2H), 2.55 – 2.53 (m, 2H), 2.12 – 2.09 (m, 2H), 1.74 – 1.70 (m, 2H), 1.64 – 1.55 (m, 4H), 1.24 (d, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 169.2, 148.9, 137.4, 129.4, 128.1, 127.7, 126.9, 60.4, 32.6, 32.0, 28.2(5), 28.2(2), 26.3, 14.1. These data are consistent with the published literature.¹⁴

Ethyl (*E*)-2-phenylbut-2-enoate (7). Flash column chromatography to afford product 7 as a light yellow liquid (30.8 mg, 81% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.39 – 7.35 (m, 2H), 7.33 – 7.29 (m, 1H), 7.20 – 7.14 (m, 3H), 4.21 (q, *J* = 7.1 Hz, 2H), 1.75 (d, *J* = 7.3 Hz, 3H), 1.26 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 167.1, 139.6, 135.1, 134.9, 129.8, 127.9, 127.3, 60.7, 15.4, 14.2. These data are consistent with the published literature.¹⁵

Ethyl 3-methyl-2-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)but-2-enoate (12). Flash column chromatography to afford product 12 as a colorless liquid (45.9 mg, 73% yield). ¹H NMR (500 MHz,CDCl₃) δ 7.23 (d, J = 8.1 Hz, 1H), 7.12 (d, J = 1.9 Hz, 1H), 6.98 – 6.94 (m, 1H), 4.19 (q, J = 7.1 Hz, 2H), 2.04 (s, 3H), 1.72 (s, 3H), 1.68 (s, 4H), 1.28 (s, 6H), 1.26 (s, 6H), 1.25 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 169.4, 144.2, 143.3, 141.4, 134.4, 130.8, 127.6, 126.4, 125.9, 60.4, 35.1(2), 35.1(0), 34.2, 34.0, 31.8, 22.7, 22.6, 14.2. These data are consistent with the published literature.¹⁶

3.2 General Procedure of the Alkylation Reactions of α-Arylsulfonyloxyacrylates

One Schlenk tube equipped with a magnetic stir bar was charged with styrene **8** (208 mg, 2 mmol, 1.0 equiv) and a solution of 9-BBN in THF (4 mL, 0.5 M, 1.0 equiv), stirred for 4 h at room temperature to afford a solution of *B*-phenylethyl-9-BBN in THF. Another Schlenk tube equipped with a magnetic stir bar was charged with **1a** (109.6 mg, 0.4 mmol, 1.0 equiv) or **4a** (120.8 mg, 0.4 mmol, 1.0 equiv), $Pd(OAc)_2$ (4.5 mg, 0.02 mmol), SPhos (16.4 mg, 0.04 mmol), Cs_2CO_3 (260.8 mg, 0.8 mmol, 2.0 equiv) and the solution of *B*-phenylethyl-9-BBN in THF (1.6 mL, prepared above). The mixture was stirred at 50 °C for 24 h. After completed, the reaction mixture was cooled down to room temperature, diluted with ethyl acetate (2 mL), and pushed through a plug of silica gel with ethyl acetate. The filtrate was concentrated under reduced pressure. The residue was chromatographed on silica gel column to give the target product **9** (70.2 mg, 86% yield) or **10** (83.6 mg, 90% yield).

Ethyl 2-methylene-4-phenylbutanoate (9). Flash column chromatography to afford product **9** as a yellow liquid (35.1 mg, 86% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.34 – 7.30 (m, 2H), 7.25 – 7.21 (m, 3H), 6.19 (d, J = 1.4 Hz, 1H), 5.53 (q, J = 1.3 Hz, 1H), 4.26 (q, J = 7.2 Hz, 2H), 2.83 (d, J = 8.4 Hz, 2H), 2.70 – 2.64 (m, 2H), 1.35 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 167.1, 141.4, 140.1, 128.5, 128.3, 125.9, 125.1, 60.6, 34.9, 33.9, 14.2. These data are consistent with the published literature.¹⁷

Ethyl 3-methyl-2-phenethylbut-2-enoate (10). Flash column chromatography to afford product 10 as a colorless liquid (41.8 mg, 90% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.31 – 7.27 (m, 2H), 7.22 – 7.19 (m, 3H), 4.21 (q, *J* = 7.1 Hz, 2H), 2.73 – 2.69 (m, 2H), 2.63 – 2.57 (m, 2H), 2.00 (s, 3H), 1.73 (s, 3H), 1.32 (d, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 169.5, 143.1, 141.8,

128.5, 128.2, 127.0, 125.8, 59.9, 35.3, 32.2, 22.9, 21.7, 14.3. HRMS (ESI) $[M+Na]^+$: calculated for $C_{15}H_{20}O_2Na$: 255.1361, found 255.1360.

4 References

- (a) J. Zhu, Y. Yuan, S. Wang and Z.-J. Yao, Synthesis of 2,3-Dialkylated Tartaric Acid Esters via Visible Light Photoredox-Catalyzed Reductive Dimerization of α-Ketoesters, ACS Omega, 2017, 2, 4665-4677; (b) C. Feng, D. Feng and T.-P. Loh, Rhodium(III)-catalyzed C–H allylation of electron-deficient alkenes with allyl acetates, Chem. Commun., 2015, 51, 342-345; (c) X. del Corte, A. López-Francés, E. Martínez de Marigorta, F. Palacios and J. Vicario, Stereo- and Regioselective [3+3] Annulation Reaction Catalyzed by Ytterbium: Synthesis of Bicyclic 1,4-Dihydropyridines, Adv. Synth. Catal., 2021, 363, 4761-4769.
- (a) L. Zhang, Y. Fang, X. Jin, H. Xu, R. Li, H. Wu, B. Chen, Y. Zhu, Y. Yang and Z. Tian, Pd-Catalysed Suzuki coupling of α-bromoethenylphosphonates with organotrifluoroborates: a general protocol for the synthesis of terminal αsubstituted vinylphosphonates, *Org. Biomol. Chem.*, 2017, **15**, 8985-8989; (b) A. J. J. Lennox and G. C. Lloyd-Jones, Preparation of Organotrifluoroborate Salts: Precipitation-Driven Equilibrium under Non-Etching Conditions, *Angew. Chem. Int. Ed.*, 2012, **51**, 9385-9388.
- C. Peng, G. Yan, Y. Wang, Y. Jiang, Y. Zhang and J. Wang, Palladium-Catalyzed Coupling Reaction of α-Diazocarbonyl Compounds with Aromatic Boronic Acids or Halides, *Synthesis*, 2010, 4154-4168.
- 4. J. Barluenga, M. Tomás-Gamasa, F. Aznar and C. Valdés, Synthesis of 2-Arylacrylates from Pyruvate by Tosylhydrazide-Promoted Pd-Catalyzed Coupling with Aryl Halides, *Chem. Eur. J.*, 2010, **16**, 12801-12803.
- S. Watanabe, T. Fujita, M. Sakamoto, H. Endo and T. Kitazume, Fluorination of aromatic α-hydroxyesters with N,N-diethyl-1,1,2,3,3,3-hexafluoropropaneamine, *J. Fluorine Chem.*, 1990, 47, 187-192.
- F. Berthiol, H. Doucet and M. Santelli, Synthesis of Polysubstituted Alkenes by Heck Vinylation or Suzuki Cross-Coupling Reactions in the Presence of a Tetraphosphane-Palladium Catalyst, *Eur. J. Org. Chem.*, 2003, 1091-1096.
- D. Yi, Q. Fu, S.-Y. Chen, M. Gao, L. Yang, Z.-J. Zhang, W. Liang, Q. Zhang, J.-X. Ji and W. Wei, Copper-catalyzed direct hydroxyphosphorylation of electrondeficient alkenes with H-phosphine oxides and dioxygen, *Tetrahedron Lett.*, 2017, 58, 2058-2061.
- 8. R. J. Sullivan, G. P. R. Freure and S. G. Newman, Overcoming Scope Limitations in Cross-Coupling of Diazo Nucleophiles by Manipulating Catalyst Speciation and Using Flow Diazo Generation, *ACS Catal.*, 2019, **9**, 5623–5630.
- Q. Zhao, J. Wang, T. Besset, X. Pannecoucke, J.-P. Bouillon and T. Poisson, Palladium-catalyzed synthesis of 3-trifluoromethylated 1,3-dienes from acrylate derivatives and BTP, *Tetrahedron*, 2018, 74, 6033-6040.
- A. Gualandi, D. Mazzarella, A. Ortega-Martínez, L. Mengozzi, F. Calcinelli, E. Matteucci, F. Monti, N. Armaroli, L. Sambri and P. G. Cozzi, Photocatalytic

Radical Alkylation of Electrophilic Olefins by Benzylic and Alkylic Zinc-Sulfinates, *ACS Catal.*, 2017, **7**, 5357–5362.

- D. Yang, L. Liu, D.-L. Wang, Y. Lu, X.-L. Zhao and Y. Liu, Novel multi-dentate phosphines for Pd-catalyzed alkoxycarbonylation of alkynes promoted by H₂O additive, *J. Catal.*, 2019, **371**, 236-244.
- T. Tsuda, T. Yoshida and T. Saegusa, Palladium(0)-Catalyzed Coupling Reaction of Lithium (α-Carbalkoxyviny1)cuprates with Organic Halides, J. Org. Chem., 1988, 53, 607-610.
- A. Mital, R. Lad, A. Thakur, V. S. Negi and U. Ramachandran, Synthesis of novel 2-substituted 1,4-naphthoquinones using Heck reaction in 'green' reaction media, *ARKIVOC*, 2006, 99-106.
- 14. L. Zhou, Y. Liu, Y. Zhang and J. Wang, Pd-catalyzed coupling of β-hydroxy αdiazocarbonyl compounds with aryl iodides: a migratory insertion/β-hydroxy elimination sequence, *Chem. Commun.*, 2011, 47, 3622-3624.
- M. V. Popescu, A. Mekereeya, J. V. Alegre-Requena, R. S. Paton and M. D. Smith, Visible-Light-Mediated Heterocycle Functionalization via Geometrically Interrupted [2+2] Cycloaddition, *Angew. Chem. Int. Ed.*, 2020, **59**, 23020-23024.
- M. I. Dawson, L. Jong, P. D. Hobbs, J. F. Cameron, W.-R. Chao, M. Pfahl, M.-O. Lee, B. Shroot and M. Pfahl, Conformational Effects on Retinoid Receptor Selectivity. 2. Effects of Retinoid Bridging Group on Retinoid X Receptor Activity and Selectivity, *J. Med. Chem.*, 1995, **38**, 3368–3383.
- J. Zhang, Y. Li, R. Xu and Y. Chen, Donor–Acceptor Complex Enables Alkoxyl Radical Generation for Metal-Free C(sp³)–C(sp³) Cleavage and Allylation/Alkenylation, *Angew. Chem. Int. Ed.*, 2017, 56, 12619-12623.

5 NMR Spectra of New Compounds

2a to b -lo -zo -ka -bo -bo -ro -ka -ba -loa -ta -12o -13o -14o -ta -ta -ta -17o -1ko -19o -200 -21a -2: f1 (ppm)

fl (ppm) 170 160 140 130 120

2a to b -to -2o -3a -4a -5o -6o -7o -8a -9a -10a -11a -12o -13o -14a -16a -16a -17o -18o -19a -20a -21a -2: f1 (ppm)

00 190 f1 (ppm) 180 170 160 150 140 .

课题2数据. 272. fid

1e

2a to b -to -2o -3a -4a -5o -6o -7o -8a -9a -10a -11a -12o -13o -14a -16a -16a -17o -18o -19a -20a -21a -2: f1 (ppm)

- 5 f1 (ppm)

2a to b -to -2o -3a -4a -5o -5o -7o -8a -9a -toa -11a -12o -13o -14a -16a -16a -17o -18o -19a -2oa -21a -2: f1 (ppm)

00 190 180 fl (ppm)

2a to b -lo -zo -ka -bo -bo -ro -ka -ba -loa -ta -12o -13o -14o -ta -ta -ta -17o -1ko -19o -200 -21a -2: f1 (ppm)

- T fl (ppm)

2a to b -to -2o -3a -4a -5o -6o -7o -8a -9a -10a -11a -12o -13o -14a -16a -16a -17o -18o -19a -20a -21a -2: f1 (ppm)

2a to b -to -2o -3a -4a -5o -6o -7o -8a -9a -toa -11a -12o -13o -14a -16a -16a -17o -18o -19a -2oa -21a -2: f1 (ppm)

f1 (ppm)

2a to b -to -2o -3a -4a -6o -6o -7o -8a -9a -toa -11a -12o -13o -14a -16a -16a -17o -18o -19a -2oa -21a -2: f1 (ppm)

- - 1 f1 (ppm)

2a fo b -1o -2o -3a -4a -5o -5o -7o -8a -6a -1o -1a -12o -13o -14a -16a -16a -17o -18o -19a -2oa -21a -2: f1 (ppa)

<u>b</u> so f1 (ppm)

2a to b -to -2o -3a -4a -5o -5o -7o -8a -9a -toa -11a -12o -13o -14a -16a -16a -17o -18o -19a -2oa -21a -2: f1 (ppm)

140 130 _ f1 (ppm)

Jun13-2022. 172. fid

20 10 b -10 -20 -30 -40 -60 -60 -70 -80 -90 -100 -110 -120 -130 -140 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

200 190 180 170 160 -40 f1 (ppm)

fl (ppm)

f1 (ppm)

50 190 f1 (ppm) _

. . . f1 (ppm)

f1 (ppm) .

210 2bo 190 180 170 180 160 140 180 120 110 1bo 50 80 70 60 60 40 30 20 10 b -10 f1 (ppn)

____ 160 150 fl (ppm)