Supplementary Information to accompany

# Back to the future: asymmetrical $D\pi A$ 2,2'-bipyridine ligands for homoleptic copper(I)-based dyes in dye-sensitized solar cells

Guglielmo Risi, Mike Devereux, Alessandro Prescimone, Catherine E. Housecroft, and Edwin C. Constable\*

Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland

#### **Experimental section**

#### Syntheses



**8** 4,4'-Dibromo-6,6'-dimethyl-2,2'-bipyridine (**7**) (941 mg, 2.75 mmol, 3.0 eq), diethyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenylphosphonate (312 mg, 917  $\mu$ mol, 1.0 eq), Pd(PPh3)4 (20.1 mg, 17.4  $\mu$ mol, 1.9 mol%) and Na<sub>2</sub>CO<sub>3</sub> (389 mg, 3.67 mmol, 4.0 eq) were loaded into a microwave vial. After three vacuum-N<sub>2</sub> cycles, the solids were dissolved in N<sub>2</sub>-degassed mixture Toluene/H<sub>2</sub>O N<sub>2</sub>-degassed mixture (9:1, 13.2 mL). The reaction vessel was sealed and set under stirring at 90 °C overnight. After cooling to room temperature, the reaction mixture was poured into water (20 mL) and extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 × 20 mL). The organic layers were combined, washed with brine (10 mL), dried over MgSO<sub>4</sub>, and then dried by rotavaporation. The excess of 4,4'-Dibromo-6,6'-dimethyl-2,2'-bipyridine was removed and recovered by recrystallization from EtOAc. The crude product was purified by column chromatography (SiO<sub>2</sub>, CH<sub>2</sub>Cl<sub>2</sub>:EtOAc in 2:1 ratio). The product was further recrystallized from Et<sub>2</sub>O, collected and dried *in vacuo*. The product was isolated as white crystals (278 mg, 585  $\mu$ mol, 63.8%).

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub> + d-TFA) δ/ ppm 8.25 (s, 1H, H<sup>A3</sup>), 8.33 (s, 1H, H<sup>B3</sup>), 8.05 (dd, *J* = 13.4, 7.9 Hz, 2H, H<sup>C2</sup>), 7.94 – 7.88 (overlapping m, 3H, H<sup>B5+C3</sup>), 7.77 (d, *J* = 1.4 Hz, 1H, H<sup>A5</sup>), 4.23 (m, 4H, H<sup>Et-CH2</sup>), 2.97 (s, 3H, H<sup>CH3-b</sup>), 2.73 (s, 3H, H<sup>CH3-a</sup>), 1.39 (t, *J* = 7.0 Hz,6H, H<sup>Het-CH3</sup>).

<sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub> + d-TFA)  $\delta$ / ppm 160.3 (C<sup>A6</sup>), 156.9 (C<sup>B6</sup>), 146.4 (C<sup>B2</sup>), 145.8 (C<sup>A2</sup>), 139.1 (d, <sup>4</sup>J<sub>CP</sub> = 3.32 Hz, C<sup>C4</sup>), 138.4 (C<sup>A4</sup>), 133.3 (d, <sup>2</sup>J<sub>CP</sub> = 10.6 Hz, C<sup>C2</sup>), 131.1 (C<sup>A5</sup>), 131.1 (C<sup>B4</sup>), 130.3 (d, <sup>1</sup>J<sub>CP</sub> = 193.6 Hz, C<sup>C1</sup>), 128.2 (d, <sup>3</sup>J<sub>CP</sub> = 15.8 Hz, C<sup>C3</sup>), 126.1 (C<sup>B5</sup>), 124.4 (C<sup>A3</sup>), 120.0 (C<sup>B3</sup>), 64.2 (d, <sup>2</sup>J<sub>CP</sub> = 6.1 Hz, C<sup>Et-CH2</sup>), 22.6 (C<sup>CH3a</sup>), 21.0 (C<sup>CH3b</sup>), 16.22 (d, <sup>3</sup>J<sub>CP</sub> = 6.4 Hz, C<sup>Et-CH3</sup>).

<sup>31</sup>P{<sup>1</sup>H} NMR (202 MHz, 298 K, CDCl<sub>3</sub> + d-TFA) δ/ppm 17.0 (s, P).

HR ESI-MS *m/z* 475.0774 [M+H]<sup>+</sup> (calc. 475.0781).

Found: C 55.47, H 4.840, N 5.79; C<sub>22</sub>H<sub>24</sub>BrN<sub>2</sub>O<sub>3</sub>P requires C 55.59, H 5.09, N 5.89.



**3e** Compound **8** (259 mg, 545  $\mu$ mol, 1.0 eq), 4-(Diphenylamino)phenylboronic acid (189 mg, 654  $\mu$ mol, 1.2 eq), Pd(PPh<sub>3</sub>)<sub>4</sub> (12.0 mg, 10.4  $\mu$ mol, 1.9 mol%) and Na<sub>2</sub>CO<sub>3</sub> (231 mg, 2.18 mmol, 4.0 eq) were loaded into a microwave vial. After three vacuum-N2 cycles, the solids were dissolved in N<sub>2</sub>-degassed Toluene/H<sub>2</sub>O mixture (9:1, 9.25 mL). The reaction vessel was sealed and set under stirring at 90 °C overnight. After cooling to room temperature, the reaction mixture was poured into water (20 mL) and extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 × 20 mL). The organic layers were combined, washed with brine (10 mL), dried over MgSO<sub>4</sub>, and then dried by rotavaporation. The product was recrystallized from EtOAc,

filtered and rinsed with small portions of EtOAc, then dried *in vacuo*. Product was isolated as canary yellow crystals. (228 mg, 356 µmol, 65.4%).

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub> + d-TFA) δ/ ppm 8.57 (s, 1H, H<sup>G3</sup>), 8.54 (s, 1H, H<sup>B3</sup>), 8.01 – 7.90 (overlapping m, 4H, H<sup>A2+A3</sup>), 7.72 (d, *J* = 8.6 Hz, 2H, H<sup>D2</sup>), 7.67 (s, 1H, H<sup>C5</sup>), 7.60 (s, 1H, H<sup>B5</sup>), 7.36 (t, *J* = 7.8 Hz, 4H, H<sup>E3</sup>), 7.20 (overlapping m, 6H, H<sup>E2+E4</sup>), 7.14 (d, *J* = 8.6 Hz, 2H, H<sup>D3</sup>), 4.17 (m, 4H, H<sup>E-CH2</sup>), 2.99 (s, 3H, H<sup>CH3c</sup>), 2.76 (s, 3H, H<sup>CH3b</sup>), 1.36 (t, *J* = 7.0 Hz, 6H, H<sup>E-CH3</sup>).

<sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub> + d-TFA) δ/ ppm 160.3 (C<sup>86</sup>), 156.2 (C<sup>C4</sup>), 154.7 (C<sup>C6</sup>), 152.1 (C<sup>B4</sup>), 151.9 (C<sup>D1</sup>), 149.9 (C<sup>C2</sup>), 147.8 (C<sup>B2</sup>), 146.3 (C<sup>E1</sup>), 141.4 (C<sup>A4</sup>), 140.0 (d, C<sup>A1</sup>), 132.9 (d, <sup>2</sup>J<sub>CP</sub> = 11 Hz, C<sup>A2</sup>), 129.9 (C<sup>E3</sup>), 129.0 (C<sup>D3</sup>), 127.8 (d, <sup>3</sup>J<sub>CP</sub> = 15 Hz, C<sup>A3</sup>), 126.2 (C<sup>E2</sup>), 125.8 (C<sup>D4</sup>), 125.2 (C<sup>E4</sup>), 124.3 (C<sup>B5</sup>), 122.2 (C<sup>C5</sup>), 121.0 (C<sup>D2</sup>), 119.3 (C<sup>B3</sup>), 118.9 (C<sup>C3</sup>), 63.2 (d, <sup>2</sup>J<sub>CP</sub> = 5.7 Hz, C<sup>E1-CH2</sup>), 24.3 (C<sup>CH3b</sup>), 20.5 (C<sup>CH3c</sup>), 16.4 (d, <sup>3</sup>J<sub>CP</sub> = 6.5 Hz, C<sup>E1-CH3</sup>). <sup>31</sup>P{<sup>1</sup>H} NMR (202 MHz, 298 K, CDCl<sub>3</sub> + d-TFA) δ/ppm 17.9 (s, P).

UV-VIS (CH<sub>2</sub>Cl<sub>2</sub>,  $10^{-5}$  mol dm<sup>-3</sup>)  $\lambda$ /nm 246 ( $\epsilon$ /dm<sup>-3</sup> mol<sup>-1</sup> cm<sup>-1</sup> 45,650), 298 (27,840); 353 (23,740).

HR ESI-MS *m/z* 640.2721 [M+H]<sup>+</sup> (calc. 640.2724).

Found: C 73.97, H 5.946, N 6.25; C<sub>40</sub>H<sub>38</sub>N<sub>3</sub>O<sub>3</sub>P requires C 75.10, H 5.99, N 6.27.



 $[Cu(3e)_2][PF_6]$  Compound **3e** (10.6 mg, 16.6 µmol, 2.0 eq) was loaded in a round bottom flask and dissolved in CH<sub>2</sub>Cl<sub>2</sub> (5 mL). After addition of  $[Cu(CH_3CN)_4][PF_6]$  (3.09 mg, 8.28 µmol, 1.0 eq), the mixture was set under stirring overnight. The solvent was removed by rotavaporation, the solids dried in *in vacuo*. The product was isolated as a red solid (12.3 mg, 8.27 µmol, >99%).

<sup>1</sup>H NMR (500 MHz, acetone-d<sub>6</sub>)  $\delta$ / ppm 9.08 (s, 2H, H<sup>B3</sup>), 9.00 (s, 2H, H<sup>C3</sup>), 8.17 (dd, *J* = 8.2, 3.6 Hz, 4H, H<sup>A3</sup>), 8.07 (s, 2H, H<sup>B5</sup>), 8.02 – 7.94 (overlapping m, 10H, H<sup>A2+C5+D3</sup>), 7.39 (m, 8H, H<sup>E3</sup>), 7.21 – 7.12 (overlapping m, 16H, H<sup>E2+E4+D2</sup>), 4.14 (m, 8H, H<sup>Et-CH2</sup>), 2.48 (s, 6H, H<sup>CH3b</sup>), 2.45 (s, 6H, H<sup>CH3c</sup>), 1.32 (t, *J* = 7.1 Hz, 12H, H<sup>Et-CH3</sup>).

<sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, acetone-d<sub>6</sub>)  $\delta$ / ppm 158.8 (C<sup>86</sup>), 158.5 (C<sup>C6</sup>), 153.8 (C<sup>82</sup>), 153.3 (C<sup>22</sup>), 150.7 (C<sup>D1</sup>), 150.1 (C<sup>84</sup>), 148.0 (C<sup>E1</sup>), 141.7 (d, <sup>4</sup>J<sub>CP</sub> = 3.2 Hz, H<sup>A4</sup>), 133.3 (d, <sup>2</sup>J<sub>CP</sub> = 9.9 Hz, H<sup>A2</sup>), 131.8 (d, <sup>1</sup>J<sub>CP</sub> = 187.4 Hz, C<sup>A1</sup>), 130.6 (C<sup>E3</sup>), 130.4 (C<sup>E4</sup>), 130.4 (C<sup>D4</sup>), 129.3 (C<sup>D3</sup>), 128.5 (d, <sup>3</sup>J<sub>CP</sub> = 14.9 Hz, H<sup>A3</sup>), 126.1 (C<sup>D2</sup>), 124.8 (C<sup>B5</sup>), 123.6 (C<sup>C5</sup>), 123.0 (C<sup>E2</sup>), 119.0 (C<sup>B3</sup>), 118 (C<sup>C3</sup>), 62.7 (d, <sup>2</sup>J<sub>CP</sub> = 5.5 Hz, H<sup>Et-CH2</sup>), 25.4 (C<sup>CH3b</sup>), 25.1 (C<sup>CH3c</sup>), 16.7 (d, <sup>3</sup>J<sub>CP</sub> = 6.0 Hz, H<sup>Et-CH3</sup>); C<sup>C4</sup> not resolved in HMBC.

<sup>31</sup>P{<sup>1</sup>H} NMR (202 MHz, 298 K, acetone-d<sub>6</sub>) δ/ppm 16.7 (s, P<sup>PO3Et2</sup>), -144.2 (hept, <sup>1</sup>*J*<sub>PF</sub> = 707.4 Hz, P<sup>PF6</sup>). UV-VIS (CH<sub>2</sub>Cl<sub>2</sub>, 10<sup>-5</sup> mol dm<sup>-3</sup>) λ/nm 259 (ε/dm<sup>-3</sup> mol<sup>-1</sup> cm<sup>-1</sup> 62,130), 321 (47,890), 494 (33,630).

HR ESI-MS *m/z* 1341.4587 [M-PF<sub>6</sub>]<sup>+</sup> (calc. 1341.4592).

Found: C 63.16, H 5.48, N 5.21; C<sub>80</sub>H<sub>76</sub>CuF<sub>6</sub>N<sub>6</sub>O<sub>6</sub>P<sub>3</sub> requires C 64.58, H 5.15, N 5.65.



**3** Compound **3e** (99.8 mg, 156 µmol, 1.0 eq) was loaded in a round bottom flask and dissolved in anhydrous CH<sub>2</sub>Cl<sub>2</sub> (3 mL). TMSBr (82.4 µL, 624 µmol, 4.0 eq) was added dropwise into the reaction mixture and stirred under nitrogen at rt overnight. The solvent was removed by rotavaporation and the residue redissolved in the smallest amount of MeOH. Addition of Et<sub>2</sub>O afforded precipitation of the product, which was filtered and rinsed with small portions of Et<sub>2</sub>O, then dried *in vacuo*. The product was isolated as a red solid (71.7 mg, 123 µmol, 78.8%). <sup>1</sup>H NMR (500 MHz, CD<sub>3</sub>OD)  $\delta$ / ppm 8.79 (s, 1H, H<sup>C3</sup>), 8.65 (s, 1H, H<sup>83</sup>), 8.13 (s, 1H, H<sup>C5</sup>), 8.07 (dd, J = 8.3, 3.4 Hz, 2H, H<sup>A3</sup>), 8.03 (d, J = 9.0 Hz, 2H, H<sup>D3</sup>), 7.99 (m, 2H, H<sup>A2</sup>), 7.95 (d, J = 1.4 Hz, 1H, H<sup>B5</sup>), 7.39 (m, 4H, H<sup>E3</sup>), 7.20 (overlapping m, 6H, H<sup>E2+E4</sup>), 7.12 (d, J = 8.9 Hz, 2H, H<sup>D2</sup>), 2.91 (s, 3H, H<sup>CH3c</sup>), 2.83 (s, 3H, H<sup>CH3b</sup>).

<sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CD<sub>3</sub>OD)  $\delta$ / ppm 161.2 (C<sup>86</sup>), 157.7 (C<sup>4</sup>), 156.1 (C<sup>c6</sup>), 153.2 (C<sup>D1</sup>), 152.4 (C<sup>84</sup>), 149.6 (C<sup>c2</sup>), 149.3 (C<sup>82</sup>), 147.8 (C<sup>E1</sup>), 141.2 (C<sup>44</sup>), 135.2 (d, <sup>1</sup><sub>JCP</sub> = 188.8 Hz, C<sup>A1</sup>), 132.9 (d, <sup>2</sup><sub>JCP</sub> = 10.3 Hz, C<sup>A2</sup>), 130.9 (C<sup>E3</sup>), 130.5 (C<sup>D2</sup>), 128.5 (d, <sup>3</sup><sub>JCP</sub> = 14.9 Hz, C<sup>A3</sup>), 127.3 (C<sup>D4</sup>), 127.3 (C<sup>E2</sup>), 126.2 (C<sup>E4</sup>), 125.5 (C<sup>85</sup>), 123.7 (C<sup>C5</sup>), 121.7 (C<sup>D2</sup>), 119.6 (C<sup>83</sup>), 118.9 (C<sup>C3</sup>), 23.8 (C<sup>C13b</sup>), 20.5 (C<sup>C13c</sup>).

 $^{31}P{^{1}H} NMR (202 MHz, 298 K, CD_{3}OD) \delta/ppm 14.9 (s, P).$ 

HR ESI-MS *m/z* 582.1958 [M–H]<sup>-</sup> (calc. 582.1952).



 $[Cu(3)_2]$  Compound 3 (60.3 mg, 103 µmol, 2.0 eq) was loaded in a round bottom flask and dissolved in MeOH (4 mL). After addition of  $[Cu(CH_3CN)_4][PF_6]$  (19.3 mg, 51.7 µmol, 1.0 eq), the mixture was set under stirring for 1 h. The solvent was reduced to a minimum volume by rotavaporation. Et<sub>2</sub>O was added to the reaction mixture to afford precipitation. The precipitate was filtered, rinsed with small portions of Et<sub>2</sub>O, then dried *in vacuo*. The product was isolated as a red solid (52.3 mg, 42.5 µmol, 82.3%).

<sup>1</sup>H NMR (500 MHz, acetone-d<sub>6</sub>) δ/ ppm 9.00 (d, *J* = 1.8 Hz, 2H, H<sup>C3</sup>), 8.89 (s, 2H, H<sup>B3</sup>), 8.25 (s, 2H, H<sup>C5</sup>), 8.09 – 8.03 (overlapping m, 8H, H<sup>A3+D3</sup>), 8.01 (s, 2H, H<sup>B5</sup>), 7.93 (dd, *J* = 12.9, 8.1 Hz, 4H, H<sup>A2</sup>), 7.43 (m, 8H, H<sup>E3</sup>), 7.27 – 7.19 (overlapping m, 12H, H<sup>E2+E4</sup>), 7.10 (d, *J* = 8.9 Hz, 4H, H<sup>D2</sup>), 2.98 (s, 6H, H<sup>CH3c</sup>), 2.78 (s, 6H, H<sup>CH3b</sup>).

<sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, acetone-d<sub>6</sub>)  $\delta$ / ppm 160.3 (C<sup>86</sup>), 156.9 (C<sup>C4</sup>), 155.9 (C<sup>C6</sup>), 152.0 (C<sup>B4</sup>), 151.6 (C<sup>D1</sup>), 148.2 (C<sup>C2</sup>), 147.7 (C<sup>B2</sup>), 147.2 (C<sup>E1</sup>), 140.2 (C<sup>A4</sup>), 135.3 (d, <sup>1</sup>J<sub>CP</sub> = 191.2 Hz, C<sup>A1</sup>), 132.6 (d, <sup>2</sup>J<sub>CP</sub> = 10.3 Hz, C<sup>A2</sup>), 130.8 (C<sup>E3</sup>), 130.4 (C<sup>D3</sup>), 128.3 (d, <sup>3</sup>J<sub>CP</sub> = 14.5 Hz, C<sup>A3</sup>), 127.0 (C<sup>E2</sup>), 126.8(C<sup>D4</sup>), 126.1(C<sup>E4</sup>), 125.5(C<sup>B5</sup>), 123.8(C<sup>C5</sup>), 121.2(C<sup>D2</sup>), 119.4 (C<sup>B3</sup>), 118.5 (C<sup>C3</sup>), 23.6 (C<sup>CH3b</sup>), 20.9 (C<sup>CH3c</sup>).

 ${}^{31}\text{P}\{{}^{1}\text{H}\}$  NMR (202 MHz, 298 K, acetone-d\_6)  $\delta/\text{ppm}$  14.6 (s, P).

HR ESI-MS *m/z* 1227.3244 [M–H]<sup>-</sup> (calc. 1227.3195).



**10** The procedure was adapted from literature.<sup>1</sup> Compound **9** (2.580 g, 5.22 mmol, 1.0 eq), 4-(diphenylamino)benzaldehyde (5.707 g, 20.9 mmol, 4.0 eq) were loaded in an autoclave vessel. After sequential addition of anhydrous DMF (100 mL) and TMSCI (3.0 mL, 23.5 mmol, 4.5 eq), the reaction vessel was sealed and heated at 173 °C for 48 h. After allowing the vessel to cool down to 4 °C ca. (easing of internal pressure), the reaction mixture was slowly added to water (1 L ca.) while stirring homogeneously. The aqueous phase was filtered and the precipitate was redissolved in CH<sub>2</sub>Cl<sub>2</sub> and collected in a round-bottom flask, then removed the organic phase by rotavaporation. After addition of CH<sub>2</sub>Cl<sub>2</sub> (20 mL), the suspension was filtered and dried *in vacuo*. The product was isolated as yellow powder (1.657 g, 1.65 mmol, 31.6 %). Alternatively, the product could be purified by column chromatography (SiO2, CH<sub>2</sub>Cl<sub>2</sub>/CHX, 3:1). Crystals for X-ray diffraction were grown by slow CH<sub>2</sub>Cl<sub>2</sub> evaporation.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$ / ppm 8.61 (d, *J* = 1.6 Hz, 2H, H<sup>B3</sup>), 7.76 (d, *J* = 16.0 Hz, 2H, H<sup>c</sup>), 7.70 – 7.65 (overlapping m, 8H, H<sup>A2+A3</sup>), 7.58 (d, *J* = 1.6 Hz, 2H, H<sup>B5</sup>), 7.50 (d, *J* = 8.5 Hz, 4H, H<sup>C3</sup>), 7.29 (m, 8H, H<sup>D3</sup>), 7.22 (d, *J* = 16.0 Hz, 2H, H<sup>b</sup>), 7.14 (d, *J* = 7.3 Hz, 8H, H<sup>D2</sup>), 7.10 – 7.04 (overlapping m, 8H, H<sup>D4+C2</sup>).

 $^{13}C{^{1}H} NMR (126 MHz, CDCl_3) \delta / ppm 156.8 (C^{B2}), 156.3 (C^{B6}), 148.8 (C^{B4}), 148.3 (C^{C1}), 147.5 (C^{D1}), 138.0 (C^{A8}), 132.4 (C^{A2}), 130.6 (C^{C4}), 129.5 (C^{D3}), 129.0 (C^{A3}), 128.3 (C^{C3}), 125.0 (C^{D2}), 123.5 (C^{D4}), 123.5 (C^{D4}), 123.1 (C^{C2}), 119.7 (C^{B5}), 117.6 (C^{B3}).$ 

UV-VIS (CH<sub>2</sub>Cl<sub>2</sub>,  $10^{-5}$  mol dm<sup>-3</sup>)  $\lambda$ /nm 295 ( $\epsilon$ /dm<sup>-3</sup> mol<sup>-1</sup> cm<sup>-1</sup> 90,705), 398 (76,104)

HR ESI-MS *m/z* 1005.1976 [M+H]<sup>+</sup> (calc. 1005.1985).

Found: C 73.35, H 4.28, N 5.67; C<sub>62</sub>H<sub>44</sub>Br<sub>2</sub>N<sub>4</sub> requires C 74.11, H 4.41, N 5.58.



**4e** Compound **10** (601 mg, 598 μmol, 1.0 eq), HPO<sub>3</sub>Et<sub>2</sub> (309 μL, 330 mg, 2.39 mmol, 4.0 eq), Cs<sub>2</sub>CO<sub>3</sub> (487 mg, 1.49 mmol, 2.5 eq), Pd(dba)<sub>2</sub> (34.4 mg, 59.8 μmol, 10 mol%), Ruphos (56.9 mg, 120 μmol, 20 mol%) were loaded in a microwave vial. After three cycles of vacuum-N2, the reaction mixture was dissolved with N2-degassed THF (8 mL), then set at 90 °C for 18 h. The reaction vessel was allowed to cool down to rt. The reaction mixture was transferred in a separatory funnel and water added. The aqueous layer was extracted with CH<sub>2</sub>Cl<sub>2</sub> (3x 20 mL). The organic layers were washed with Brine (20 mL), back-extracted with an additional portion of CH<sub>2</sub>Cl<sub>2</sub>. After drying over MgSO<sub>4</sub>, the crude mixture was brought to dryness by rotavaporation. The crude product was purified by column chromatography (SiO<sub>2</sub>, CH<sub>2</sub>Cl<sub>2</sub> with Ethyl Acetate gradient changing from 19:1 to 9:1 to 4:1 to 2:1). The product was further purified by recrystallization from CHX/CHCl<sub>3</sub> solvent mixture, then dried *in vacuo*. Isolated as yellow powder (382 mg, 341 μmol, 57.1%).

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$ / ppm 8.67 (d, *J* = 1.6 Hz, 2H, H<sup>B3</sup>), 7.99 (m, 4H, H<sup>A2</sup>), 7.91 (m, 4H, H<sup>A3</sup>), 7.78 (d, *J* = 16.0 Hz, 2H, H<sup>c</sup>), 7.63 (d, *J* = 1.6 Hz, 2H, H<sup>B5</sup>), 7.51 (d, *J* = 8.7 Hz, 4H, H<sup>C3</sup>), 7.28 (m, 8H, H<sup>D3</sup>), 7.23 (d, *J* = 16.0 Hz, 2H, H<sup>b</sup>), 7.14 (m, 8H, H<sup>D2</sup>), 7.10 – 7.04 (overlapping m, 8H, H<sup>C2+D4</sup>), 4.17 (m, 8H, H<sup>Et-CH2</sup>), 1.37 (t, *J* = 7.1 Hz, 12H, H<sup>Et-CH3</sup>).

<sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$ / ppm 156.7 (C<sup>B2</sup>), 156.4 (C<sup>B6</sup>), 148.9 (C<sup>B4</sup>), 148.4 (C<sup>C4</sup>), 147.5 (C<sup>D1</sup>), 143.1 (C<sup>A4</sup>), 133.1 (C<sup>c</sup>), 132.7 (d, <sup>2</sup>*J*<sub>CP</sub> = 10.0 Hz, C<sup>A2</sup>), 130.5 (C<sup>C1</sup>), 129.5 (C<sup>D3</sup>), 129.1 (d, <sup>1</sup>*J*<sub>CP</sub> = 188.4 Hz, C<sup>A1</sup>), 128.3 (C<sup>C3</sup>), 127.5 (d, <sup>3</sup>*J*<sub>CP</sub> = 15.63 Hz, C<sup>A3</sup>), 126.3 (C<sup>b</sup>), 125.0 (C<sup>D2</sup>), 123.5 (C<sup>D4</sup>), 123.1 (C<sup>C2</sup>), 120.1 (C<sup>B5</sup>), 117.9 (C<sup>B3</sup>), 62.4 (d, <sup>2</sup>*J*<sub>CP</sub> = 5.37 Hz, C<sup>E1-CH2</sup>), 16.6 (d, <sup>3</sup>*J*<sub>CP</sub> = 6.52 Hz, C<sup>E1-CH3</sup>).

 $^{31}P\{^{1}H\}$  NMR (202 MHz, 298 K, CDCl3)  $\delta/ppm$  18.2 (s, P).

UV-VIS (CH\_2Cl\_2, 10^{-5} mol dm^{-3})  $\lambda$ /nm 267 ( $\epsilon$ /dm<sup>-3</sup> mol<sup>-1</sup> cm<sup>-1</sup> 71,150), 401 (59,850).

HR ESI-MS *m*/z 1119.4361 [M+H]<sup>+</sup> (calc. 1119.4374).

Found: C 74.65, H 5.78, N 5.29; C<sub>62</sub>H<sub>44</sub>Br<sub>2</sub>N<sub>4</sub> requires C 75.12, H 5.76, N 5.01.



**4** Compound **4e** (122 mg, 109  $\mu$ mol, 1.0 eq) was loaded in a round-bottom flask and dissolved with anhydrous CH<sub>2</sub>Cl<sub>2</sub> (20 mL). TMSBr (575  $\mu$ L, 4.36 mmol, 40 eq) was added dropwise into the reaction mixture and stirred under N<sub>2</sub> at room temperature for 7 h. The solvent was removed by rotavaporation and the residue was redissolved with the smallest amount of MeOH. Addition of Et<sub>2</sub>O afforded precipitation of the product, which was filtered and rinsed with small portions of Et<sub>2</sub>O, then dried *in vacuo*. The product was isolated as a deep purple solid (65.8 mg, 65.3  $\mu$ mol, 59.9%).

<sup>1</sup>H NMR (500 MHz, DMSO-d<sub>6</sub>) δ/ppm 8.72 (d, *J* = 1.6 Hz, 2H, H<sup>B3</sup>), 8.20 (s, 2H, H<sup>B5</sup>), 8.11 (dd, *J* = 8.3, 3.1 Hz, 4H, H<sup>A3</sup>), 8.00 (d, *J* = 16.1 Hz, 2H, H<sup>c</sup>), 7.89 (m, 4H, H<sup>A2</sup>), 7.66 (m, 4H, H<sup>C3</sup>), 7.46 (d, *J* = 16.1 Hz, 2H, H<sup>b</sup>), 7.36 (m, 8H, H<sup>D3</sup>), 7.16 – 7.08 (overlapping m, 12H, H<sup>D2+D4</sup>), 7.00 (m, 4H, H<sup>C3</sup>).

 $^{13}C{^1H}$  NMR (126 MHz, DMSO-d<sub>6</sub>)  $\delta$ / ppm 149.3 (C<sup>84</sup>), 147.9 (C<sup>C1</sup>), 146.7 (C<sup>D1</sup>), 139.1 (C<sup>44</sup>), 135.4 (d,  $^{1}J_{CP}$  = 175.5 Hz, C<sup>A1</sup>), 134.4 (C<sup>c</sup>), 131.4 (C<sup>42</sup>), 129.7 (C<sup>D3</sup>), 129.6 (C<sup>C4</sup>), 128.7 (C<sup>C3</sup>), 127.1 (C<sup>A3</sup>), 124.8 (C<sup>D2</sup>), 124.5 (C<sup>b</sup>), 123.8 (C<sup>D4</sup>), 122.0 (C<sup>C2</sup>), 120.2 (C<sup>B5</sup>), 117.4 (C<sup>B3</sup>); C<sup>B2</sup>, C<sup>B6</sup> not resolved in HMBC.

<sup>31</sup>P{<sup>1</sup>H} NMR (202 MHz, 298 K, DMSO-d<sub>6</sub>) δ/ppm 11.9 (s, P).

HR ESI-MS *m/z* 1005.2972 [M–H]<sup>-</sup> (calc. 1005.2976).



**5** Compound **10** (300 mg, 299 μmol, 1.0 eq), 4,4'-Dimethoxydiphenylamine (171 mg, 747 μmol, 2.5 eq), NaOtBu (172 mg, 1.79 mmol, 6.0 eq), Pd(dba)<sub>2</sub> (17.2 mg, 29.9 μmol, 10 mol%), Ruphos (28.5 mg, 59.8 μmol, 20 mol%) were loaded in a microwave vial. After three cycles of vacuum-N2, the reaction mixture was dissolved with N2-degassed THF (4 mL), then set at 90 °C for 18 h. The reaction vessel was allowed to cool down to rt. The reaction mixture was transferred into a separatory funnel and water (20 mL) added. The aqueous layer was extracted with CH<sub>2</sub>Cl<sub>2</sub> (3x 20 mL). The organic layers were washed with Brine (20 mL), back-extracted with an additional portion of CH2Cl2. After drying over MgSO<sub>4</sub>, the crude mixture was brought to dryness by rotavaporation. The crude product was purified by column chromatography (SiO<sub>2</sub>, CH<sub>2</sub>Cl<sub>2</sub>/CHX, from 3:1 to CH<sub>2</sub>Cl<sub>2</sub>), then dried *in vacuo*. The product was isolated as orange crystalline powder (351.2 mg, 270 μmol, 90.2%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ/ppm 8.60 (s, 2H, H<sup>A3</sup>), 7.75 (d, *J* = 16.0 Hz, 2H, H<sup>4</sup>), 7.66 (d, *J* = 8.3 Hz, 4H, H<sup>83</sup>), 7.57 (s, 2H, H<sup>A5</sup>), 7.50 (m, 4H, H<sup>O3</sup>),

7.27 (m, 8H, H<sup>E3</sup>), 7.21 (d, *J* = 16.0 Hz, 2H, H<sup>a</sup>), 7.15 – 7.10 (overlapping m, 16H, H<sup>C2+E2</sup>), 7.09 – 7.02 (overlapping m, 12H, H<sup>B2+D2+E4</sup>), 6.87 (m, 8H, H<sup>C3</sup>), 3.81 (s, 12H, H<sup>OCH3</sup>).

 $^{13}C{^{1H}}$  NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$ / ppm 156.9 (C<sup>2</sup>), 156.4 (C<sup>2</sup>), 155.8 (C<sup>46</sup>), 149.8 (C<sup>B1</sup>), 148.0 (C<sup>D1</sup>), 147.6 (C<sup>E1</sup>), 140.6 (C<sup>C1</sup>), 132.1 (C<sup>d</sup>), 131.1 (C<sup>D4</sup>), 130.0 (C<sup>B4</sup>), 129.5 (C<sup>E3</sup>), 128.2 (C<sup>D3</sup>), 127.9 (C<sup>B3</sup>), 127.2 (C<sup>3</sup>), 127.2 (C<sup>2</sup>), 124.9 (C<sup>E2</sup>), 123.3 (C<sup>D2</sup>), 123.3 (C<sup>E4</sup>), 120.1 (C<sup>B2</sup>), 119.1 (C<sup>A5</sup>), 117.1 (C<sup>A3</sup>), 115.0 (C<sup>C3</sup>); C<sup>A4</sup> not resolved in HMBC.

UV-VIS (CH<sub>2</sub>Cl<sub>2</sub>,  $10^{-5}$  mol dm<sup>-3</sup>)  $\lambda$ /nm 298 ( $\epsilon$ /dm<sup>-3</sup> mol<sup>-1</sup> cm<sup>-1</sup> 69,600), 385 (91,570).

HR ESI-MS *m/z* 1301.5699 [M+H]<sup>+</sup> (calc. 1301.5688).

Found: C 82.71, H 5.91, N 6.38; C<sub>90</sub>H<sub>72</sub>BrN<sub>6</sub>O<sub>4</sub> requires C 83.05, H 5.58, N 6.46.



[*Cu(5)*<sub>2</sub>][*PF*<sub>6</sub>] Compound 5 (82.0 mg, 63.0 µmol, 2.0 eq) was loaded in a round-bottom flask and dissolved in CH<sub>2</sub>Cl<sub>2</sub>/CH<sub>3</sub>CN mixture (10 mL). After addition of [Cu(CH<sub>3</sub>CN)<sub>4</sub>][PF<sub>6</sub>] (11.7 mg, 31.5 µmol, 0.5 eq) the mixture was set under stirring for 2 h. The reaction mixture was dried by rotavaporation and redissolved in the minimal amount of CH<sub>2</sub>Cl<sub>2</sub>. Then Et<sub>2</sub>O was added to the reaction mixture to afford precipitation of the product. The precipitate was collected, washed with small amounts of Et<sub>2</sub>O and dried *in vacuo*. Isolated as brown solid (63.9 mg, 31.5 µmol, 72.1%).

<sup>1</sup>H NMR (500 MHz, acetone-d<sub>6</sub>)  $\delta$ /ppm 8.64 (d, *J* = 1.6 Hz, 4H, H<sup>A3</sup>), 8.09 (d, *J* = 1.7 Hz, 4H, H<sup>A5</sup>), 7.68 (d, *J* = 8.9 Hz, 8H, H<sup>B3</sup>), 7.54 (d, *J* = 16.4 Hz, 4H, H<sup>d</sup>), 7.22 (m, 16H, H<sup>E3</sup>), 7.08 (d, *J* = 9.0 Hz, 16H, H<sup>C2</sup>), 7.07 – 7.03 (overlapping m, 6H, H<sup>a+E4</sup>), 6.95 (d, *J* = 9.0 Hz, 8H, H<sup>C3</sup>), 6.89 – 6.84 (overlapping m, 32H, H<sup>B2+D2+E2</sup>), 6.70 (m, 8H, H<sup>D3</sup>), 3.83 (s, 24H, H<sup>OCH3</sup>).

<sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, acetone-d<sub>6</sub>) δ/ ppm 158.0 (C<sup>C4</sup>), 156.0 (C<sup>A6</sup>), 154.3 (C<sup>A2</sup>), 151.4 (C<sup>A4</sup>), 150.5 (C<sup>B1</sup>), 149.2 (C<sup>D1</sup>), 148.0 (C<sup>E1</sup>), 140.5 (C<sup>C1</sup>), 134.6 (C<sup>d</sup>), 130.4 (C<sup>E3</sup>), 130.2 (C<sup>D4</sup>), 129.0 (C<sup>B3</sup>), 128.7 (C<sup>D2</sup>), 128.7 (C<sup>D3</sup>), 128.2 (C<sup>B4</sup>), 126.3 (C<sup>3</sup>), 125.8 (C<sup>E2</sup>), 124.6 (C<sup>E4</sup>), 122.7 (C<sup>D2</sup>), 119.2 (C<sup>B2</sup>), 119.1 (C<sup>A5</sup>), 118.5 (C<sup>A3</sup>), 115.9 (C<sup>C3</sup>).

 $^{31}P{^{1}H} NMR (202 MHz, 298 K, acetone-d_6) \delta/ppm -142.5 (hept, <math>^{1}J_{PF} = 703.3 Hz, P^{PF6}$ ).

UV-VIS (CH\_2Cl\_2, 10^{-5} mol dm^{-3})  $\lambda/nm$  299 ( $\epsilon/dm^{-3} \, mol^{-1} \, cm^{-1}$  141,040), 413 (141,040).

HR ESI-MS m/z 2664.0470 [M-PF<sub>6</sub>]<sup>+</sup> (calc. 2664.0521).

Found: C 71.64, H 5.20, N 5.18;  $C_{160}H_{136}N_{10}O_{10}P_3$  requires C 73.09, H 5.21, N 5.33.



*GeBr* Compound **10** (901 mg, 897  $\mu$ mol, 3.0 eq), HPO<sub>3</sub>Et<sub>2</sub> (46.3  $\mu$ L, 49.6 mg, 359  $\mu$ mol, 1.2 eq), Cs<sub>2</sub>CO<sub>3</sub> (195 mg, 598  $\mu$ mol, 2.0 eq), Pd(dppf)Cl<sub>2</sub> (17.5 mg, 23.9  $\mu$ mol, 6.66 mol%) were loaded in a microwave vial. After three vacuum-N<sub>2</sub> cycles, the reaction mixture was dissolved in N<sub>2</sub>-degassed Toluene (24.8 mL), then set at 110 °C for 18 h. The reaction vessel was allowed to cool down to rt. The crude mixture was brought to dryness by rotavaporation, then redissolved in CHCl<sub>3</sub> and filtered through a celite plug. The crude mixture was dried again and purified by column chromatography (SiO<sub>2</sub>, CH<sub>2</sub>Cl<sub>2</sub> with EtOAc gradient changing from 19:1 to 9:1 to 4:1 to 2:1), then dried *in vacuo*. The product was isolated as yellow powder (202 mg, 190  $\mu$ mol, 63.6%).

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$ /ppm 8.66 (d, J = 1.6 Hz, 1H, H<sup>B3</sup>), 8.62 (d, *J* = 1.6 Hz, 1H, H<sup>C3</sup>), 7.99 (dd, *J* = 12.9, 7.9 Hz, 2H, H<sup>A2</sup>), 7.91 (dd, *J* = 8.0, 3.8 Hz, 2H, H<sup>A3</sup>), 7.77 (overlapping d, 2H, H<sup>e+e</sup>), 7.71 – 7.65 (overlapping m, 4H, H<sup>D2+D3</sup>), 7.63 (d, *J* = 1.6 Hz, 1H, H<sup>B5</sup>), 7.59 (d, *J* = 1.6 Hz, 1H, H<sup>C5</sup>), 7.51 (d, *J* = 8.2 Hz, 4H, H<sup>E3+G3</sup>), 7.29 (t, *J* = 7.7 Hz, 8H, H<sup>E3+H3</sup>), 7.23 (overlapping d, 2H, H<sup>b+c</sup>), 7.14 (overlapping d, 8H, H<sup>F2+H2</sup>), 7.10 – 7.04 (overlapping m, 8H, H<sup>E2+G2+F4+H4</sup>), 4.18 (m, 4H, H<sup>Et-CH2</sup>), 1.37 (t, *J* = 7.1 Hz, 6H, H<sup>Et-CH3</sup>).

<sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>) δ/ ppm 156.8 (C<sup>B2</sup>), 156.7 (C<sup>C2</sup>), 156.3 (C<sup>B6</sup>), 156.3 (C<sup>B6</sup>), 148.9 (C<sup>C4</sup>), 148.8 (C<sup>B4</sup>), 148.4 (C<sup>E1/G1</sup>), 148.3 (C<sup>E1/G1</sup>), 147.5 (C<sup>F1+H1</sup>), 143.1 (d,  ${}^{4}J_{CP}$  = 3.11 Hz, C<sup>A4</sup>), 138.0 (C<sup>D4</sup>), 133.0 (C<sup>e+</sup>), 132.4 (C<sup>D2</sup>), 130.6 (C<sup>E4/G4</sup>), 130.5 (C<sup>E4/G4</sup>), 129.5 (C<sup>F3+H3</sup>), 129.4 (C<sup>b+c</sup>), 129.1 (d,  ${}^{1}J_{CP}$  = 181.01 Hz, C<sup>A1</sup>), 129.0 (C<sup>D3</sup>), 128.3 (C<sup>E3+G3</sup>), 127.5 (d,  ${}^{3}J_{CP}$  = 14.8 Hz, C<sup>A3</sup>), 125.0 (C<sup>F2+H2</sup>), 123.7 (d,  ${}^{2}J_{CP}$  = 10.0 Hz, C<sup>A2</sup>), 123.5 (C<sup>E4/H4</sup>), 123.5 (C<sup>D1</sup>), 123.1 (C<sup>E2+G2</sup>), 120.1 (C<sup>B5</sup>), 117.8 (C<sup>C5</sup>), 117.9 (C<sup>B3</sup>), 117.6 (C<sup>C3</sup>), 62.4 (d,  ${}^{2}J_{CP}$  = 5.40 Hz, C<sup>E1-CH2</sup>), 16.5 (d,  ${}^{3}J_{CP}$  = 6.47 Hz, C<sup>E1-CH3</sup>). <sup>31</sup>P{<sup>1</sup>H} NMR (202 MHz, 298 K, CDCl<sub>3</sub>) δ/ppm 18.2 (s, P).

UV-VIS (CH<sub>2</sub>Cl<sub>2</sub>,  $10^{-5}$  mol dm<sup>-3</sup>)  $\lambda$ /nm 271 ( $\epsilon$ /dm<sup>-3</sup> mol<sup>-1</sup> cm<sup>-1</sup> 65,930), 400 (56,860).

HR ESI-MS m/z 1063.3190 [M+H]<sup>+</sup> (calc. 1063.3190). Found: C 74.09, H 5.26, N 4.93; C<sub>66</sub>H<sub>54</sub>BrN<sub>4</sub>O<sub>3</sub>P requires C 74.64, H 5.13, N 5.28.



*Ge* Compound *GeBr* (155 mg, 146 μmol, 1.00 eq), 4,4'-Dimethoxydiphenylamine (41.8 mg, 183 μmol, 1.25 eq), NaOtBu (21.0 mg, 219 μmol, 1.50 eq), Pd(dba)2 (4.2 mg, 7.3 μmol, 5 mol%), Ruphos (6.95 mg, 14.6 μmol, 10 mol%) were loaded in a microwave vial. After three vacuum-N2 cycles, the reaction mixture was dissolved in N<sub>2</sub>-degassed Toluene (15 mL), then set at 90 °C for 18 h. The reaction vessel was allowed to cool down to rt. The reaction mixture was transferred in a separatory funnel and water added. The water emulsion containing most of the material was dissolved by addition of NaOH solution (3M, ca. 3 mL). The aqueous layer was extracted with CH<sub>2</sub>Cl<sub>2</sub> (3x 20 mL). The organic layers were brought to dryness by rotavaporation. The crude product was purified by column chromatography (SiO<sub>2</sub>, CH<sub>2</sub>Cl<sub>2</sub> with EtOAc, gradient from 39:1 to 29:1 after elution of main yellow band), then dried *in vacuo*. The product was isolated as deep orange crystalline powder (103 mg, 85.3 μmol, 58.4%).

<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$ /ppm 8.64 (d, *J* = 1.6 Hz, 1H, H<sup>B3</sup>), 8.62 (d, *J* = 1.6 Hz, 1H, H<sup>C3</sup>), 7.98 (dd, *J* = 12.9, 8.2 Hz, 2H, H<sup>A2</sup>), 7.90 (dd, *J* = 8.2, 3.6 Hz, H<sup>A3</sup>), 7.76 (overlapping d, 2H, H<sup>b+f</sup>), 7.66 (m, 2H, H<sup>D3</sup>), 7.60 (overlapping s, 2H, H<sup>B5+C5</sup>), 7.51 (overlapping m, 4H, H<sup>F3+H3</sup>), 7.30 – 7.27 (overlapping t, 8H, H<sup>G3+I3</sup>), 7.22 (overlapping d, 2H, H<sup>b+c</sup>), 7.16 – 7.11 (overlapping m, 12H, H<sup>G2+I2+E2</sup>), 7.10 – 7.02 (overlapping m, 10H, H<sup>D2+F2+G4+H2+I4</sup>), 6.87 (m, 4H, H<sup>E1</sup>), 4.16 (m, 4H, H<sup>E1-CH2</sup>), 3.82 (s, 6H, H<sup>OCH3</sup>), 1.36 (t, *J* = 7.1 Hz, 6H, H<sup>E1-CH3</sup>).

 $^{13}C{^{1}H}$  NMR (151 MHz, CDCl<sub>3</sub>)  $\delta/$  ppm 157.2 (C<sup>82</sup>), 156.4 (C<sup>E4</sup>), 156.2 (C<sup>86</sup>), 156.2 (C<sup>C2</sup>), 155.9 (C<sup>C6</sup>), 149.8 (C<sup>D1</sup>), 148.8 (C<sup>B4</sup>), 148.0 (C<sup>F1</sup>), 148.0 (C<sup>F1</sup>), 147.5 (C<sup>G1</sup>), 147.5 (C<sup>G1</sup>), 147.5 (C<sup>G1</sup>), 143.14 (d, <sup>4</sup>J<sub>CP</sub> = 2.74 Hz, C<sup>A4</sup>), 140.5 (C<sup>E1</sup>), 132.9 (C<sup>f</sup>), 132.7 (d, <sup>2</sup>J<sub>CP</sub> = 10.2 Hz, C<sup>A2</sup>), 132.4 (C<sup>h</sup>), 130.8 (C<sup>F4/H4</sup>), 130.7 (C<sup>F4/H4</sup>), 129.8 (C<sup>D4</sup>), 129.5 (C<sup>G3</sup>), 129.5 (C<sup>G3</sup>), 128.8 (d, <sup>1</sup>J<sub>CP</sub> = 174.5 Hz, C<sup>A1</sup>), 128.3 (C<sup>F3/H3</sup>), 128.2 (C<sup>F3/H3</sup>), 127.5 (C<sup>D3</sup>), 127.5 (d, <sup>3</sup>J<sub>CP</sub> = 15.2 Hz, C<sup>A3</sup>),

127.2 (C<sup>E2</sup>), 126.9 (C<sup>c</sup>), 126.5 (C<sup>b</sup>), 124.9 (C<sup>G2</sup>), 124.9 (C<sup>I2</sup>), 123.4 (C<sup>G4</sup>), 123.4 (C<sup>I4</sup>), 123.2 (C<sup>E2</sup>), 123.2 (C<sup>H2</sup>), 120.0 (C<sup>D2</sup>), 119.9 (C<sup>C5</sup>), 119.3 (C<sup>B5</sup>), 117.9 (C<sup>B3</sup>), 117.0 (C<sup>C3</sup>), 115.0 (C<sup>C3</sup>), 55.7 (C<sup>OCH3</sup>),

62.4 (d,  ${}^{2}J_{CP}$  = 5.4 Hz, C<sup>Et-CH2</sup>), 16.6 (d,  ${}^{3}J_{CP}$  = 6.3 Hz, C<sup>Et-CH3</sup>); C4 not resolved in HMBC.

 $^{31}\text{P}\{^1\text{H}\}$  NMR (202 MHz, 298 K, CDCl\_3)  $\delta/\text{ppm}$  18.3 (s, P).

UV-VIS (CH<sub>2</sub>Cl<sub>2</sub>,  $10^{-5}$  mol dm<sup>-3</sup>)  $\lambda$ /nm 298 ( $\epsilon$ /dm<sup>-3</sup> mol<sup>-1</sup> cm<sup>-1</sup> 69,600), 385 (91,570).

HR ESI-MS *m/z* 1210.5025 [M+H]<sup>+</sup> (calc. 1210.5031).

Found: C 78.90, H 5.73, N 5.77;  $C_{80}H_{68}N_5O_5P$  requires C 79.38, H 5.66, N 5.79.



**6** Compound **6e** (52.7 mg, 43.6  $\mu$ mol, 1.0 eq) was loaded in a round-bottom flask and dissolved in anhydrous CH<sub>2</sub>Cl<sub>2</sub> (5 mL). TMSBr (46.0  $\mu$ L, 53.4 mg, 349  $\mu$ mol, 8.0 eq) was added dropwise into the reaction mixture and stirred under N<sub>2</sub> at rt overnight. The solvent was removed by rotavaporation and the residue was redissolved with the smallest amount of MeOH/ CH<sub>2</sub>Cl<sub>2</sub> (9:1). Addition of Et<sub>2</sub>O afforded precipitation of the product, which was filtered and rinsed with small portions of Et<sub>2</sub>O, then dried *in vacuo*. The product is isolated as a deep purple solid (41.85 mg, 36.3  $\mu$ mol, 83.2%).

<sup>1</sup>H NMR (500 MHz, DMSO-d<sub>6</sub>)  $\delta$ /ppm 8.66 (overlapping s, 2H, H<sup>83+C3</sup>), 8.35 (s, 1H, H<sup>85</sup>), 8.21 (s, 1H, H<sup>C5</sup>), 8.09 (overlapping m, 4H, H<sup>A3+f+h</sup>), 8.00 (d, *J* = 8.3 Hz, 2H, H<sup>D3</sup>), 7.88 (dd, *J* = 12.6, 7.9 Hz, 2H, H<sup>A2</sup>), 7.62 (overlapping t, *J* = 8.6 Hz, 4H, H<sup>F3+H3</sup>), 7.55 (d, *J* = 16.2 Hz, 1H, H<sup>b/c</sup>), 7.43 (d, *J* = 16.1 Hz, 1H, H<sup>b/c</sup>), 7.36 (overlapping t, 8H, H<sup>G3+H3</sup>), 7.17 – 7.07 (overlapping m, 16H, H<sup>E2+G2+G4+I2+I4</sup>), 6.99 (overlapping m, 8H, H<sup>E3+F2+H2</sup>), 6.87 (d, *J* = 8.5 Hz, 2H, H<sup>D2</sup>), 3.77 (s, 6H, H<sup>OCH3</sup>).

<sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, DMSO-d<sub>6</sub>) δ/ ppm 156.6 (C<sup>E4</sup>), 156.3 (C<sup>B6</sup>), 155.8 (C<sup>C6</sup>), 150.7 (C<sup>D1</sup>), 149.4 (C<sup>B4</sup>), 148.7 (C<sup>F1/H1</sup>), 148.1 (C<sup>F1/H1</sup>), 146.6 (C<sup>G1</sup>), 146.6 (C<sup>I1</sup>), 138.9 (C<sup>E1</sup>), 138.9 (C<sup>E1</sup>), 138.8 (C<sup>A4</sup>), 135.6 (d, <sup>1</sup>J<sub>CP</sub> = 180.95 Hz, C<sup>A1</sup>) 134.9 (C<sup>f</sup>), 134.9 (C<sup>f</sup>), 131.2 (d, <sup>2</sup>J<sub>CP</sub> = 9.63 Hz, C<sup>A2</sup>), 129.8 (C<sup>G3/I3</sup>), 129.7 (C<sup>G3/I3</sup>), 129.6 (C<sup>F4</sup>), 129.6 (C<sup>F4</sup>), 129.2 (C<sup>D3</sup>), 129.0 (C<sup>F3/H3</sup>), 128.6 (C<sup>F3/H3</sup>), 127.6 (C<sup>E2</sup>), 127.1 (d, <sup>3</sup>J<sub>CP</sub> = 14.3 Hz, C<sup>A3</sup>), 125.5 (C<sup>D4</sup>), 125.4 (C<sup>G4/I4</sup>), 124.8 (C<sup>G2/I2</sup>), 124.3 (C<sup>b/c</sup>), 124.3 (C<sup>b/c</sup>), 124.2 (C<sup>G4/I4</sup>), 123.9 (C<sup>G2/I2</sup>), 121.9 (C<sup>F2</sup>), 121.9 (C<sup>H2</sup>), 120.8 (C<sup>C5</sup>), 118.0 (C<sup>B3</sup>), 117.7 (C<sup>D2</sup>), 117.6 (C<sup>B5</sup>), 117.1 (C<sup>G3</sup>), 115.2 (C<sup>E3</sup>), 55.3 (C<sup>OCH3</sup>); B2, C2 and C4 not resolved in HMBC.

<sup>31</sup>P{<sup>1</sup>H} NMR (202 MHz, 298 K, DMSO-d<sub>6</sub>) δ/ppm 11.9 (s, P).

HR ESI-MS *m/z* 1152.4263 [M–H]<sup>–</sup> (calc. 1152.4259).



[Cu(6)(6–H)] Compound 6 (37.9 mg, 32.8  $\mu$ mol, 2.0 eq) was loaded in a round bottom flask and dissolved in a CH<sub>2</sub>Cl<sub>2</sub>/MeOH mixture (8 mL). After addition of [Cu(CH<sub>3</sub>CN)<sub>4</sub>][PF<sub>6</sub>] (3.65 mL of a 4.49 mM solution, 16.4  $\mu$ mol, 1.0 eq) the mixture was set under stirring overnight. The reaction mixture was dried by rotavaporation and redissolved in minimum amount of CH<sub>2</sub>Cl<sub>2</sub>/MeOH mixture. Then n-Hexane was added to the reaction mixture to afford precipitation of the product. The precipitate was filtered, washed with small amounts of n-hexane, then dried *in vacuo*. The product was isolated as a dark red powder (31.2 mg, 13.1  $\mu$ mol, 80.1%).

<sup>1</sup>H NMR (500 MHz, DMSO-d<sub>6</sub>) δ/ppm 8.87 (s, 2H, H<sup>B3</sup>), 8.81 (s, 2H, H<sup>C3</sup>), 8.35 (s, 2H, H<sup>B5</sup>), 8.18 (s, 2H, H<sup>C5</sup>), 7.98 (dd, *J* = 8.1, 3.0 Hz, 4H, H<sup>A3</sup>), 7.80 (dd, *J* = 12.6, 7.7 Hz, 4H, H<sup>A2</sup>), 7.74 (d, *J* = 8.4 Hz, 4H, H<sup>D3</sup>), 7.61 (overlapping d, 4H, H<sup>f+h</sup>), 7.22 (overlapping t, 16H, H<sup>G3+I3</sup>), 7.07 – 7.01

(overlapping m, 12H, H<sup>E2+G4+I4</sup>), 6.97 (m, 8H, H<sup>E3</sup>), 6.91 – 6.81 (overlapping m, 20H, H<sup>b+c+G2+I2</sup>), 6.76 (d, *J* = 8.3 Hz, 4H, H<sup>D2</sup>), 6.72 (overlapping d, 8H, H<sup>F2+H2</sup>), 3.77 (d, *J* = 3.4 Hz, 12H, H<sup>OCH3</sup>).

<sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, DMSO-d<sub>6</sub>) δ/ ppm 156.5 (C<sup>E4</sup>), 154.6 (C<sup>B6</sup>), 154.5 (C<sup>C6</sup>), 149.8 (C<sup>D1</sup>), 148.6 (C<sup>B4</sup>), 147.8 (C<sup>F1</sup>), 147.8 (C<sup>H1</sup>), 146.4 (C<sup>G1</sup>), 146.4 (C<sup>G1</sup>), 146.4 (C<sup>G1</sup>), 139.1 (C<sup>E1</sup>), 138.6 (C<sup>A4</sup>), 135.5 (d, <sup>1</sup><sub>JCP</sub> = 186.4 Hz, C<sup>A1</sup>), 134.4 (C<sup>f/h</sup>), 134.0 (C<sup>f/h</sup>), 131.2 (C<sup>A2</sup>), 129.6 (C<sup>G3</sup>), 129.6 (C<sup>I3</sup>), 128.7 (C<sup>F4</sup>), 128.7 (C<sup>H4</sup>), 128.3 (C<sup>D3</sup>), 127.6 (C<sup>F3</sup>), 127.4 (C<sup>E2</sup>), 127.1 (C<sup>A3</sup>), 126.7 (C<sup>D4</sup>), 126.6 (C<sup>b</sup>), 126.6 (C<sup>c</sup>), 124.7 (C<sup>G2</sup>), 124.7 (C<sup>I2</sup>), 123.8 (C<sup>G4</sup>), 123.8 (C<sup>I4</sup>), 121.3 (C<sup>F2</sup>), 121.3 (C<sup>H2</sup>), 119.7 (C<sup>B5</sup>), 118.8 (C<sup>B3</sup>), 118.5 (C<sup>C5</sup>), 118.1 (C<sup>C3</sup>), 117.8 (C<sup>D2</sup>), 115.1 (C<sup>E3</sup>), 55.3 (C<sup>OCH3</sup>); B2, C2 and C4 not resolved in HMBC.

<sup>31</sup>P{<sup>1</sup>H} NMR (202 MHz, 298 K, DMSO-d<sub>6</sub>) δ/ppm 12.2 (s, P).

HR MALDI-ToF-MS *m/z* 2369.7939 [M+H]<sup>+</sup> (calc. 2369.7955), m/z 2391.7764 [M+Na]<sup>+</sup> (calc. 2391.7774).



 $[Cu(6e)_2][PF_6]$  Compound **6e** (109.4 mg, 90.4 µmol, 2.0 eq) was loaded in a round-bottom flask and dissolved in CH<sub>2</sub>Cl<sub>2</sub> (8 mL). After addition of  $[Cu(CH_3CN)_4][PF_6]$  (16.8 mg, 45.2 µmol, 1.0 eq), the mixture was set under stirring overnight. The reaction mixture was dried by rotavaporation and redissolved in Acetone (1 mL). Then n-hexane was added to the reaction mixture to afford precipitation of the product. This was collected, washed with small amounts of n-hexane and Et<sub>2</sub>O, then dried *in vacuo*. The product was isolated as a red powder (91.2 mg, 34.7 µmol, 76.7%).

<sup>1</sup>H NMR (500 MHz, acetone-d<sub>6</sub>)  $\delta$ /ppm 8.80 (d, *J* = 1.5 Hz, 2H, H<sup>B3</sup>), 8.71 (d, *J* = 1.6 Hz, 2H, H<sup>C3</sup>), 8.28 (s, 2H, H<sup>B5</sup>), 8.13 (d, *J* = 1.5 Hz, 2H, H<sup>C5</sup>), 7.99 (dd, *J* = 8.1, 3.5 Hz, 4H, H<sup>A3</sup>), 7.91 (dd, *J* = 12.8, 7.9 Hz, 4H, H<sup>A2</sup>), 7.68 (m, 4H, H<sup>D3</sup>), 7.62 (d, *J* = 16.3 Hz, 2H, H<sup>f</sup>), 7.58 (d, *J* = 16.3 Hz, 2H, H<sup>h</sup>), 7.28 – 7.23 (overlapping t, 16H, H<sup>G3+i3</sup>), 7.11 – 7.05 (overlapping m, 16H, H<sup>b+c+E2+G4+i4</sup>), 6.97 (m, 8H, H<sup>E3</sup>), 6.91 – 6.85 (overlapping m, 28H, H<sup>D2+E3+G2+H3+i2</sup>), 6.69 (overlapping d, 8H, H<sup>E2+H2</sup>), 4.09 (m, 8H, H<sup>E1-CH2</sup>), 3.83 (s, 12H, H<sup>OCH3</sup>), 1.29 (t, *J* = 7.0 Hz, 12H, H<sup>E1-CH3</sup>).

 $^{13}C{^{1}H}$  NMR (126 MHz, acetone-d<sub>6</sub>)  $\delta$ / ppm 158.1 (C<sup>E4</sup>), 156.7 (C<sup>86</sup>), 156.2 (C<sup>C6</sup>), 154.6 (C<sup>82</sup>), 153.4 (C<sup>C2</sup>), 151.5 (C<sup>D1</sup>), 150.8 (C<sup>C4</sup>), 149.8 (C<sup>84</sup>), 149.4 (C<sup>F1</sup>), 149.4 (C<sup>F1</sup>), 147.9 (C<sup>G1</sup>), 147.9 (C<sup>11</sup>), 141.9 (C<sup>A4</sup>), 140.5 (C<sup>E1</sup>), 135.7 (C<sup>1</sup>), 135.2 (C<sup>h</sup>), 132.2 (d,  $^{1}J_{CP}$  = 188.8 Hz, C<sup>A1</sup>), 130.4 (C<sup>E4</sup>), 130.0 (C<sup>E4/H4</sup>), 129.0 (C<sup>D3</sup>), 128.8 (C<sup>E3/H3</sup>), 128.7 (C<sup>E2</sup>), 128.4 (C<sup>F3/H3</sup>), 128.2 (C<sup>A3</sup>), 128.1 (C<sup>D4</sup>), 126.2 (C<sup>C</sup>), 126.0 (C<sup>G2/I2</sup>), 125.9 (C<sup>G2/I2</sup>), 125.4 (C<sup>b</sup>), 124.8 (C<sup>G4/I4</sup>), 124.7 (C<sup>G4/I4</sup>), 123.3 (C<sup>A2</sup>), 122.4 (C<sup>F2</sup>), 122.4 (C<sup>F2</sup>), 121.1 (C<sup>B5</sup>), 120.4 (C<sup>G3</sup>), 120.1 (C<sup>B3</sup>), 119.8 (C<sup>C5</sup>), 119.1 (C<sup>C3</sup>), 119.1 (C<sup>D2</sup>), 115.9 (C<sup>E3</sup>), 62.7 (d, <sup>2</sup>J<sub>CP</sub> = 5.5 Hz, C<sup>E1-CH2</sup>), 55.9 (C<sup>OCH3</sup>), 16.8 (d, <sup>3</sup>J<sub>CP</sub> = 6.1 Hz, C<sup>E1-CH3</sup>).

<sup>31</sup>P{<sup>1</sup>H} NMR (202 MHz, 298 K, acetone-d<sub>6</sub>) δ/ppm 21.9 (s, P<sup>PO3Et2</sup>), -139.0 (hept, <sup>1</sup>J<sub>PF</sub> = 707.4 Hz, P<sup>PF6</sup>).

UV-VIS (CH<sub>2</sub>Cl<sub>2</sub>,  $10^{-5}$  mol dm<sup>-3</sup>)  $\lambda$ /nm 297 ( $\epsilon$ /dm<sup>-3</sup> mol<sup>-1</sup> cm<sup>-1</sup> 124,240), 414 (134,030).

HR ESI-MS *m*/z 1240.9583 [M–PF<sub>6</sub>]<sup>2+</sup> (calc. 1240.9601).

Found: C 71.64, H 5.20, N 5.18;  $C_{160}H_{136}N_{10}O_{10}P_3$  requires C 73.09, H 5.21, N 5.33.

## NMR Spectra



Figure S1: <sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub> + d-TFA, 298 K) of 8. \* = CHCl<sub>3</sub>, § =  $H^{TFA}$ 



Fig. S2 The aromatic region of the HMQC spectrum (500 MHz  $^{1}$ H, 126 MHz  $^{13}$ C{ $^{1}$ H}, CDCI<sub>3</sub> + d-TFA, 298 K) of 8.



Fig. S3 Part of the HMBC spectrum (500 MHz  $^{1}$ H, 126 MHz  $^{13}$ C{ $^{1}$ H}, CDCl<sub>3</sub> + d-TFA, 298 K) of 8. \* = CHCl<sub>3</sub>.





Fig. S5 The aromatic region of the HMQC spectrum (500 MHz  $^{1}$ H, 126 MHz  $^{13}$ C{ $^{1}$ H}, CDCl<sub>3</sub> + d-TFA, 298 K) of 3e. \* = CHCl<sub>3</sub>.





M -115 -116 I -117 -118 -119 -120 P -121 -122 -123 -124 -125 -126 -127 -128 -129 . -130 -131 -132 -133 -134 -135 -136 -137 9.2 9.1 9.0 8.9 8.8 8.7 8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0

Fig. S8 The aromatic region of the HMQC spectrum (500 MHz <sup>1</sup>H, 126 MHz <sup>13</sup>C{<sup>1</sup>H}, acetone-d<sub>6</sub>, 298 K) of [Cu(3e)<sub>2</sub>][PF<sub>6</sub>].



Fig. S9 Part of the HMBC spectrum (500 MHz, acetone-d<sub>6</sub>, 298 K) of  $[Cu(3e)_2][PF_6]$ . \* = acetone-d<sub>5</sub>, \*\* = H<sub>2</sub>O and HDO, § = CH<sub>2</sub>Cl<sub>2</sub>.



Fig. S10 <sup>1</sup>H NMR spectrum (500 MHz, CH<sub>3</sub>OD, 298 K) of 3. \* = CH<sub>3</sub>OD, \*\* = H2O,  $\S$  = CH<sub>2</sub>Cl<sub>2</sub>.



Fig. S12 Part of the HMBC spectrum (500 MHz <sup>1</sup>H, 126 MHz <sup>13</sup>C{<sup>1</sup>H}, CD<sub>3</sub>OD, 298 K) of 3. \* = CH<sub>3</sub>OD, \*\* = H2O, § = CH<sub>2</sub>Cl<sub>2</sub>.



Fig. S13 <sup>1</sup>H NMR spectrum (500 MHz, acetone-d<sub>6</sub>, 298 K) of [Cu(3)(3-H)]. \* = acetone-d<sub>5</sub>.



Fig. S14 The aromatic region of the HMQC spectrum (500 MHz <sup>1</sup>H, 126 MHz <sup>13</sup>C{<sup>1</sup>H}, acetone-d<sub>6</sub>, 298 K) of [Cu(3)(3-H)].



Fig. S15 Part of the HMBC spectrum (500 MHz <sup>1</sup>H, 126 MHz <sup>13</sup>C{<sup>1</sup>H}, acetone-d<sub>6</sub>, 298 K) of [Cu(3)(3-H)]. \* = acetone-d<sub>5</sub>.



Fig. S16 <sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub>, 298 K) of 10. \* = CHCl<sub>3</sub>, \*\* = H<sub>2</sub>O, § = TMS, §§ = CH<sub>2</sub>Cl<sub>2</sub>.



Fig. S17 The aromatic region of the HMQC spectrum (500 MHz  $^{1}$ H, 126 MHz  $^{13}$ C{ $^{1}$ H}, CDCl<sub>3</sub>, 298 K) of 10. \* = CHCl<sub>3</sub>.



Fig. S18 Part of the HMBC spectrum (500 MHz  $^{1}$ H, 126 MHz  $^{13}$ C{ $^{1}$ H}, CDCl<sub>3</sub>, 298 K) of 10. \* = CHCl<sub>3</sub>.



Fig. S20 The aromatic region of the HMQC spectrum (500 MHz <sup>1</sup>H, 126 MHz <sup>13</sup>C{<sup>1</sup>H}, CDCl<sub>3</sub>, 298 K) of 4e. \* = CHCl<sub>3</sub>.



Fig. S21 Part of the HMBC spectrum (500 MHz <sup>1</sup>H, 126 MHz <sup>13</sup>C{<sup>1</sup>H}, CDCl<sub>3</sub>, 298 K) of 4e. \* = CHCl<sub>3</sub>, \*\* = H<sub>2</sub>O,  $\S$  = Et<sub>2</sub>O.



19



Fig. S23 The aromatic region of the HMQC spectrum (500 MHz  $^{1}$ H, 126 MHz  $^{13}$ C{ $^{1}$ H}, DMSO-d<sub>6</sub>, 298 K) of 4.



Fig. S24 The aromatic region of the HMBC spectrum (500 MHz  $^{1}$ H, 126 MHz  $^{13}$ C{<sup>1</sup>H}, DMSO-d<sub>6</sub>, 298 K) of 4.





Fig. S26 The aromatic region of the HMBC spectrum (500 MHz  $^{1}$ H, 126 MHz  $^{13}$ C{ $^{1}$ H}, CDCl<sub>3</sub>, 298 K) of 5. \* = CHCl<sub>3</sub>.



8.6 8.4 8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 Fig. S27 Part of the HMBC spectrum (500 MHz  $^{1}$ H, 126 MHz  $^{13}$ C{ $^{1}$ H}, CDCl<sub>3</sub>, 298 K) of 5. \* = CHCl<sub>3</sub>.



Fig. S28 <sup>1</sup>H NMR spectrum (500 MHz, acetone-d<sub>6</sub>, 298 K) of  $[Cu(5)_2][PF_6]$ . \* = acetone-d<sub>5</sub>, \*\* = H<sub>2</sub>O and HDO.



Fig. S29 The aromatic region of the HMBC spectrum (500 MHz  $^{1}$ H, 126 MHz  $^{13}$ C{ $^{1}$ H}, acetone-d<sub>6</sub>, 298 K) of [Cu(5)<sub>2</sub>][PF<sub>6</sub>].



Fig. S30 Part of the HMBC spectrum (500 MHz  $^{1}$ H, 126 MHz  $^{13}$ C{ $^{1}$ H}, acetone-d<sub>6</sub>, 298 K) of [Cu(5)<sub>2</sub>][PF<sub>6</sub>]. \* = acetone-d<sub>5</sub>, \*\* = H<sub>2</sub>O and HDO.





Fig. S32 The aromatic region of the HMBC spectrum (500 MHz  $^{1}$ H, 126 MHz  $^{13}$ C{ $^{1}$ H}, CDCl<sub>3</sub>, 298 K) of **6eBr**. \* = CHCl<sub>3</sub>



Fig. S33 Part of the HMBC spectrum (500 MHz <sup>1</sup>H, 126 MHz <sup>13</sup>C{<sup>1</sup>H}, CDCl<sub>3</sub>, 298 K) of 6eBr. \* = CHCl<sub>3</sub>, \*\* = H<sub>2</sub>O, § = CHX, §§ = H-grease.



Fig. S34 <sup>1</sup>H NMR spectrum (600 MHz, CDCl<sub>3</sub>, 298 K) of 6e. \* = CHCl<sub>3</sub>, \*\* = H<sub>2</sub>O, § = CHX, §§ = DMF, §§§ = H-grease.



Fig. S35 The aromatic region of the HMQC spectrum (600 MHz  $^{1}$ H, 151 MHz  $^{13}$ C{ $^{1}$ H}, CDCl<sub>3</sub>, 298 K) of 6e. \* = CHCl<sub>3</sub>



**Fig. S36** Part of the HMBC spectrum (500 MHz <sup>1</sup>H, 151 MHz <sup>13</sup>C{<sup>1</sup>H}, CDCl<sub>3</sub>, 298 K) of **6e**. \* = CHCl<sub>3</sub>, \*\* = H<sub>2</sub>O, § = CHX, §§ = DMF, §§§ = H-grease.





Fig. S38 The aromatic region of the HMQC spectrum (500 MHz  $^{1}$ H, 126 MHz  $^{13}$ C{<sup>1</sup>H}, DMSO-d<sub>6</sub>, 298 K) of 6.







Fig. S40: <sup>1</sup>H NMR spectrum (500 MHz, DMSO-d<sub>6</sub>, 298 K) of [Cu(6)(6-H)].\* = DMSO-d<sub>5</sub>, § = impurity.



Fig. S41 The aromatic region of the HMQC spectrum (500 MHz  $^{1}$ H, 126 MHz  $^{13}$ C{ $^{1}$ H}, DMSO-d<sub>6</sub>, 298 K) of [Cu(6)(6-H)].\* = impurity.



Fig. S42 Part of the HMBC spectrum (500 MHz <sup>1</sup>H, 126 MHz <sup>13</sup>C{<sup>1</sup>H}, DMSO-d<sub>6</sub>, 298 K) of [Cu(6)(6-H)].\* = DMSO-d<sub>5</sub>, § = impurity.



Fig. S43 <sup>1</sup>H NMR spectrum (500 MHz, acetone-d<sub>6</sub>, 298 K) of [Cu(6)<sub>2</sub>][PF<sub>6</sub>]. \* = acetone-d<sub>5</sub>, \*\* = H<sub>2</sub>O, § = Et<sub>2</sub>O.



Fig. S44 The aromatic region of the HMQC spectrum (500 MHz  $^{1}$ H, 126 MHz  $^{13}$ C{ $^{1}$ H}, acetone-d<sub>6</sub>, 298 K) of [Cu(6)<sub>2</sub>][PF<sub>6</sub>].



Fig. S45 Part of the HMBC spectrum (500 MHz  $^{1}$ H, 126 MHz  $^{13}$ C{ $^{1}$ H}, acetone-d<sub>6</sub>, 298 K) of [Cu(6)<sub>2</sub>][PF<sub>6</sub>]. \* = acetone-d<sub>5</sub>, \*\* = H<sub>2</sub>O, § = Et<sub>2</sub>O.

## FT-IR Spectra



Fig. S46 The solid state FT-IR spectrum of 8.



Fig. S47 The solid state FT-IR spectrum of 3e.







Fig. S49 The solid state FT-IR spectrum of 3.











Fig. S52 The solid state FT-IR spectrum of 4e.









Fig. S55 The solid state FT-IR spectrum of  $[Cu(5)_2][PF_6]$ .



Fig. S56 The solid state FT-IR spectrum of GeBr.











Fig. S59 The solid state FT-IR spectrum of [Cu(6)(6-H)].



Fig. S60 The solid state FT-IR spectrum of  $[Cu(6e)_2][PF_6]$ .

#### **HR-MS Spectra**



Figure S61 HR-ESI mass spectrum of 8 comparing the experimental isotope pattern for the base peak arising from [M+H]<sup>+</sup> (top) with the calculated isotope pattern (bottom).



Figure S62 HR-ESI mass spectrum of 3e comparing the experimental isotope pattern for the base peak arising from [M+H]<sup>+</sup> (top) with the calculated isotope pattern (bottom).



**Figure S63** HR-ESI mass spectrum of  $[Cu(3e)_2][PF_6]$  comparing the experimental isotope pattern for the base peak arising from  $[M-PF_6]^+$  (top) with the calculated isotope pattern (bottom).



Figure S64 HR-ESI mass spectrum of 3 comparing the experimental isotope pattern for the base peak arising from  $[M-H]^-$  (top) with the calculated isotope pattern (bottom).



Figure S65 HR-ESI mass spectrum of [Cu(3)(3-H)] comparing the experimental isotope pattern for the base peak arising from  $[M-H]^-$  (top) with the calculated isotope pattern (bottom).



Figure S66 HR-ESI mass spectrum of 10 comparing the experimental isotope pattern for the base peak arising from [M+H]<sup>+</sup> (top) with the calculated isotope pattern (bottom).



Figure S67 HR-ESI mass spectrum of 4e comparing the experimental isotope pattern for the base peak arising from [M+H]<sup>+</sup> (top) with the calculated isotope pattern (bottom).



Figure S68 HR-ESI mass spectrum of 4 comparing the experimental isotope pattern for the base peak arising from  $[M-H]^-$  (top) with the calculated isotope pattern (bottom).



Figure S69 HR-ESI mass spectrum of 5 comparing the experimental isotope pattern for the base peak arising from [M+H]<sup>+</sup> (top) with the calculated isotope pattern (bottom).



**Figure S70** HR-ESI mass spectrum of  $[Cu(5)_2][PF_6]$  comparing the experimental isotope pattern for the base peak arising from  $[M-PF_6]^+$  (top) with the calculated isotope pattern (bottom).



Figure S71 HR-ESI mass spectrum of 6eBr comparing the experimental isotope pattern for the base peak arising from [M+H]<sup>+</sup> (top) with the calculated isotope pattern (bottom).



Figure S72 HR-ESI mass spectrum of 6e comparing the experimental isotope pattern for the base peak arising from [M+H]<sup>+</sup> (top) with the calculated isotope patterns (bottom).



Figure S73 HR-ESI mass spectrum of 6 comparing the experimental isotope pattern for the base peak arising from  $[M-H]^-$  (top) with the calculated isotope pattern (bottom).



Figure S74 HR-MALDI-ToF-MS mass spectrum of [Cu(6)(6-H)] comparing the experimental isotope pattern for the base peak arising from  $[M+H]^+$  (top) with the calculated isotope pattern (bottom).



**Figure S75** HR-MALDI-ToF-MS mass spectrum of  $[Cu(6e)_2][PF_6]$  comparing the experimental isotope pattern for the base peak arising from  $[M - PF_6]^{2+}$  (top) with the calculated isotope pattern (bottom).

|                 | Diffusion<br>Coefficient/ m <sup>2</sup> s <sup>-1</sup> | Species          | Peak used for calculation |
|-----------------|----------------------------------------------------------|------------------|---------------------------|
| Neat ligand     | $5.037 \times 10^{\text{-10}}$                           | L                | 7.84                      |
| Ligand:Cu 1:0.5 | $4.466 \times 10^{\text{-10}}$                           | CuL <sub>2</sub> | 7.45                      |
| Ligand:Cu 1:1   | $4.455\times10^{\text{-10}}$                             | CuL <sub>2</sub> | 7.45                      |
| Ligand:Cu 1:2   | $4.535\times10^{\text{-10}}$                             | CuL <sub>2</sub> | 7.45                      |
| Ligand:Cu 1:2   | $4.929 \times 10^{\text{-10}}$                           | CuL              | 7.36                      |

Table S1 DOSY experiment data for ligand 5 and  $[Cu(CH_3CN)_4][PF_6]$  in different ratios.



Fig. S76 Cyclic voltammograms of the investigated compounds.



**Fig. S77** MOs character of investigated compounds. From LUMO+1 to HOMO-1 from top to bottom, respectively. Calculated at a DFT level 6-31G\* basis set in polar solvent with Spartan software.<sup>3</sup>



|        | [Cu( <b>6</b> ) <sub>2</sub> ] <sup>+</sup> | [Cu( <b>4</b> )( <b>5</b> )] <sup>+</sup> | [Cu( <b>3</b> ) <sub>2</sub> ] <sup>+</sup> | [Cu( <b>1</b> )( <b>2</b> )] <sup>+</sup> |
|--------|---------------------------------------------|-------------------------------------------|---------------------------------------------|-------------------------------------------|
|        | E/ eV                                       | E/ eV                                     | E/ eV                                       | E/ eV                                     |
| LUMO+9 | -0.93                                       | -0.66                                     | -0.52                                       | -0.52                                     |
| LUMO+8 | -1.00                                       | -0.91                                     | -0.52                                       | -0.56                                     |
| LUMO+7 | -1.10                                       | -1.07                                     | -0.64                                       | -0.64                                     |
| LUMO+6 | -1.15                                       | -1.16                                     | -0.64                                       | -0.66                                     |
| LUMO+5 | -1.23                                       | -1.19                                     | -1.09                                       | -1.03                                     |
| LUMO+4 | -1.31                                       | -1.31                                     | -1.10                                       | -1.11                                     |
| LUMO+3 | -1.54                                       | -1.55                                     | -1.50                                       | -1.45                                     |
| LUMO+2 | -1.62                                       | -1.66                                     | -1.50                                       | -1.59                                     |
| LUMO+1 | -1.89                                       | -1.81                                     | -1.90                                       | -1.77                                     |
| LUMO   | -1.99                                       | -2.03                                     | -1.90                                       | -1.97                                     |
| номо   | -4.76                                       | -4.81                                     | -4.86                                       | -4.86                                     |
| HOMO-1 | -4.83                                       | -4.85                                     | -4.87                                       | -4.87                                     |
| HOMO-2 | -4.90                                       | -4.90                                     | -5.19                                       | -5.18                                     |
| HOMO-3 | -4.96                                       | -4.94                                     | -5.20                                       | -5.21                                     |
| HOMO-4 | -5.10                                       | -5.11                                     | -5.48                                       | -5.48                                     |
| HOMO-5 | -5.11                                       | -5.13                                     | -5.72                                       | -5.72                                     |
| HOMO-6 | -5.15                                       | -5.15                                     | -6.19                                       | -6.18                                     |
| HOMO-7 | -5.15                                       | -5.17                                     | -6.70                                       | -6.66                                     |
| HOMO-8 | -5.50                                       | -5.54                                     | -6.71                                       | -6.75                                     |
| HOMO-9 | -5.75                                       | -5.81                                     | -6.78                                       | -6.78                                     |

Fig. S78 MOs character of  $[Cu(6)_2]^+$  and  $[Cu(4)(5)]^+$ . From HOMO–2 to HOMO–5 from top to bottom, respectively. Calculated at a DFT level 6-31G\* basis set in polar solvent with Spartan software.<sup>3</sup>

Table S2 MOs energy values from single point DFT calculations Calculated at a DFT level 6-31G\* basis set in polar solvent with Spartan software.<sup>3</sup>

| Dye              | J <sub>sc</sub> /mA<br>cm <sup>-2</sup> | V <sub>oc</sub> /mV | ′ <sub>oc</sub> /mV FF/% η/% |                | η <sub>rel.</sub> /% |
|------------------|-----------------------------------------|---------------------|------------------------------|----------------|----------------------|
| N719             | 15.02                                   | 615                 | 59                           | 5.42           | 100.0                |
| <b>3</b> c1      | 1.57                                    | 552                 | 64                           | 0.56           | 10.3                 |
| <b>3</b> c2      | 1.91                                    | 580                 | 62                           | 0.69           | 12.7                 |
| <b>3</b> c3      | 1.87                                    | 563                 | 64                           | 0.68           | 12.5                 |
| <b>3</b> c4      | 1.66                                    | 559                 | 64                           | 0.60           | 11.0                 |
| 3                | 1.75 ±                                  | 564 ±               | 64 + 1                       | 0.63 ±         | 11 6 + 1 3           |
| <b>3</b> average | 0.16                                    | 12                  | 04 I I                       | 0.06           | 11.0 ± 1.2           |
| <b>4</b> c1      | 4.30                                    | 551                 | 71                           | 1.69           | 31.1                 |
| <b>4</b> c2      | 4.18                                    | 543                 | 71                           | 1.62           | 30.0                 |
| <b>4</b> c3      | 3.98                                    | 541                 | 72                           | 1.54           | 28.5                 |
| <b>4</b> c4      | 4.08                                    | 534                 | 72                           | 1.56           | 28.8                 |
| 4 average        | 4.13 ±<br>0.14                          | 542 ±<br>7          | 72                           | 1.60 ± 0.7     | 29.6 ± 1.2           |
| <b>6</b> c1      | 4.68                                    | 598                 | 65                           | 1.83           | 33.7                 |
| <b>6</b> c2      | 4.99                                    | 610                 | 66                           | 2.00           | 36.9                 |
| <b>6</b> c3      | 5.01                                    | 595                 | 61                           | 1.80           | 33.3                 |
| <b>6</b> c4      | 4.79                                    | 600                 | 66                           | 1.90           | 35.1                 |
| 6 average        | 4.87 ±<br>0.16                          | 601 ±<br>6          | 64 ± 3                       | 1.88 ±<br>0.09 | 34.7 ± 1.6           |

Table S3 Day 3 J-V performance data for three sets of cells with dyes 3, 4 and 6.

| J <sub>sc</sub> /mA<br>cm <sup>-2</sup> | V <sub>oc</sub> /mV                                                                                                                                                                                                          | FF/%                                                                                                                                                                                                  | ŋ/%                                                                                                                                                                                                                                                                 | n <sub>rol</sub> /%                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15 02                                   |                                                                                                                                                                                                                              |                                                                                                                                                                                                       | •-                                                                                                                                                                                                                                                                  | Ther, 10                                                                                                                                                                                                                                                                                                                                   |
| 10.02                                   | 615                                                                                                                                                                                                                          | 59                                                                                                                                                                                                    | 5.42                                                                                                                                                                                                                                                                | 100.0                                                                                                                                                                                                                                                                                                                                      |
| 1.49                                    | 563                                                                                                                                                                                                                          | 64                                                                                                                                                                                                    | 0.54                                                                                                                                                                                                                                                                | 10.0                                                                                                                                                                                                                                                                                                                                       |
| 1.83                                    | 591                                                                                                                                                                                                                          | 61                                                                                                                                                                                                    | 0.66                                                                                                                                                                                                                                                                | 12.2                                                                                                                                                                                                                                                                                                                                       |
| 1.78                                    | 577                                                                                                                                                                                                                          | 64                                                                                                                                                                                                    | 0.65                                                                                                                                                                                                                                                                | 12.1                                                                                                                                                                                                                                                                                                                                       |
| 1.56                                    | 570                                                                                                                                                                                                                          | 63                                                                                                                                                                                                    | 0.56                                                                                                                                                                                                                                                                | 10.3                                                                                                                                                                                                                                                                                                                                       |
| 1.66 ±                                  | 575 ±                                                                                                                                                                                                                        | 63 ± 1                                                                                                                                                                                                | 0.60 ±                                                                                                                                                                                                                                                              | 11.1 ± 1.2                                                                                                                                                                                                                                                                                                                                 |
| 0.17                                    | 12                                                                                                                                                                                                                           |                                                                                                                                                                                                       | 0.06                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                            |
| 4.17                                    | 550                                                                                                                                                                                                                          | 70                                                                                                                                                                                                    | 1.60                                                                                                                                                                                                                                                                | 29.5                                                                                                                                                                                                                                                                                                                                       |
| 3.87                                    | 543                                                                                                                                                                                                                          | 72                                                                                                                                                                                                    | 1.51                                                                                                                                                                                                                                                                | 27.9                                                                                                                                                                                                                                                                                                                                       |
| 3.54                                    | 546                                                                                                                                                                                                                          | 72                                                                                                                                                                                                    | 1.39                                                                                                                                                                                                                                                                | 25.7                                                                                                                                                                                                                                                                                                                                       |
| 3.74                                    | 540                                                                                                                                                                                                                          | 72                                                                                                                                                                                                    | 1.45                                                                                                                                                                                                                                                                | 26.8                                                                                                                                                                                                                                                                                                                                       |
| 3.83 ±<br>0.26                          | 545 ±<br>5                                                                                                                                                                                                                   | 71±1                                                                                                                                                                                                  | 1.49 ±<br>0.09                                                                                                                                                                                                                                                      | 27.5 ± 1.6                                                                                                                                                                                                                                                                                                                                 |
| 4.73                                    | 606                                                                                                                                                                                                                          | 63                                                                                                                                                                                                    | 1.82                                                                                                                                                                                                                                                                | 33.5                                                                                                                                                                                                                                                                                                                                       |
| 4.28                                    | 616                                                                                                                                                                                                                          | 67                                                                                                                                                                                                    | 1.75                                                                                                                                                                                                                                                                | 32.4                                                                                                                                                                                                                                                                                                                                       |
| 4.87                                    | 606                                                                                                                                                                                                                          | 64                                                                                                                                                                                                    | 1.90                                                                                                                                                                                                                                                                | 35.1                                                                                                                                                                                                                                                                                                                                       |
| 4.75                                    | 608                                                                                                                                                                                                                          | 66                                                                                                                                                                                                    | 1.90                                                                                                                                                                                                                                                                | 35.1                                                                                                                                                                                                                                                                                                                                       |
| 4.66 ±<br>0.26                          | 609 ±<br>5                                                                                                                                                                                                                   | 65 ± 1                                                                                                                                                                                                | 1.84 ±<br>0.07                                                                                                                                                                                                                                                      | 34.0 ± 1.3                                                                                                                                                                                                                                                                                                                                 |
|                                         | 15.02<br>1.49<br>1.83<br>1.78<br>1.56<br><b>1.66 ±</b><br><b>0.17</b><br>4.17<br>3.87<br>3.54<br>3.74<br><b>3.83 ±</b><br><b>0.26</b><br>4.73<br>4.28<br>4.87<br>4.28<br>4.87<br><b>4.55</b><br><b>4.66 ±</b><br><b>0.26</b> | 15.02 615   1.49 563   1.83 591   1.78 577   1.56 570   1.66± 575±   0.17 12   4.17 550   3.87 543   3.54 546   3.74 540   3.83± 545±   0.26 5   4.73 606   4.87 606   4.75 608   4.66± 609±   0.26 5 | 15.02 615 59   1.49 563 64   1.83 591 61   1.78 577 64   1.56 570 63   1.66± 575± 63±1   0.17 12 12   4.17 550 70   3.87 543 72   3.54 546 72   3.74 540 72   3.83± 545± 71±1   0.26 5 63   4.73 606 63   4.28 616 67   4.87 606 64   4.75 608 66   4.66± 609± 65±1 | 15.02 615 59 5.42   1.49 563 64 0.54   1.83 591 61 0.66   1.78 577 64 0.65   1.56 570 63 0.56   1.66± 575± 63±1 0.60±   0.17 12 0.06   4.17 550 70 1.60   3.87 543 72 1.51   3.54 546 72 1.39   3.74 540 72 1.45   3.83± 545± 71±1 0.09   4.73 606 63 1.82   4.28 616 67 1.75   4.87 606 64 1.90   4.75 608 66 1.90   4.66± 609± 65±1 0.07 |

Table S4 Day 7 J-V performance data for three sets of cells with dyes 3, 4 and 6.

Table S5 Day 3 J-V performance data for sets of four or two cells for dyes [Cu(3)(3-H)],  $[Cu(1)(2)]^+$ , [Cu(6)(6-H)] and  $[Cu(4)(5)]^+$ .

| Dye                                               | Jsc/mA cm <sup>-2</sup> | V <sub>oc</sub> /mV | FF/%   | η/%         | η <sub>rel.</sub> /% |
|---------------------------------------------------|-------------------------|---------------------|--------|-------------|----------------------|
| N719                                              | 15.02                   | 615                 | 59     | 5.42        | 100.0                |
| [Cu( <b>3</b> )( <b>3</b> –H)] <sup>a</sup> c1    | 4.81                    | 639                 | 59     | 1.81        | 33.4                 |
| [Cu( <b>3</b> )( <b>3</b> –H)] <sup>a</sup> c2    | 3.77                    | 634                 | 63     | 1.51        | 27.8                 |
| [Cu( <b>3</b> )( <b>3</b> –H)] <sup>a</sup> c3    | 4.31                    | 639                 | 62     | 1.70        | 31.4                 |
| [Cu( <b>3</b> )( <b>3</b> –H)] <sup>a</sup> c4    | 4.61                    | 636                 | 63     | 1.85        | 34.1                 |
| [Cu( <b>3</b> )( <b>3</b> –H)] average            | 4.37 ± 0.45             | 637 ± 3             | 62 ± 2 | 1.72 ± 0.15 | 31.7 ± 2.8           |
| [Cu( <b>1</b> )( <b>2</b> )] <sup>+b,c</sup> c1   | 3.86                    | 553                 | 64     | 1.36        | 25.0                 |
| [Cu( <b>1</b> )( <b>2</b> )] <sup>+b,c</sup> c2   | 4.49                    | 539                 | 62     | 1.51        | 27.9                 |
| [Cu( <b>1</b> )( <b>2</b> )] <sup>+b,c</sup> c3   | 3.61                    | 542                 | 63     | 1.22        | 22.6                 |
| [Cu(1)(2)] <sup>+b,c</sup> c4                     | 4.07                    | 546                 | 59     | 1.32        | 24.4                 |
| [Cu( <b>1</b> )( <b>2</b> )]⁺ average             | 4.01 ± 0.37             | 545 ± 6             | 62 ± 2 | 1.35 ± 0.12 | 25.0 ± 2.2           |
| [Cu( <b>6</b> )( <b>6</b> –H)] <sup>a</sup> c1    | 6.24                    | 607                 | 61     | 2.31        | 42.6                 |
| [Cu( <b>6</b> )( <b>6</b> –H)] <sup>a</sup> c2    | 6.00                    | 609                 | 66     | 2.43        | 44.8                 |
| [Cu( <b>6</b> )( <b>6</b> –H)] average            | 6.12 ± 0.17             | 608 ± 2             | 64 ± 4 | 2.37 ± 0.09 | 43.7 ± 1.6           |
| [Cu( <b>4</b> )( <b>5</b> )] <sup>+c</sup> c1     | 4.55                    | 532                 | 70     | 1.71        | 31.5                 |
| [Cu( <b>4</b> )( <b>5</b> )] <sup>+c</sup> c2     | 4.47                    | 525                 | 71     | 1.67        | 30.8                 |
| [Cu( <b>4</b> )( <b>5</b> )] <sup>+c</sup> c3     | 4.42                    | 523                 | 70     | 1.63        | 30.1                 |
| [Cu( <b>4</b> )( <b>5</b> )] <sup>+c</sup> c4     | 4.42                    | 523                 | 68     | 1.58        | 29.2                 |
| [Cu( <b>4</b> )( <b>5</b> )] <sup>+</sup> average | 4.47 ± 0.06             | 526 ± 4             | 70 ± 1 | 1.65 ± 0.05 | 30.4 ± 1.0           |

<sup>o</sup>From electrodes functionalised with method b, see Fig. 7. <sup>b</sup>Set and parameters from our previous work.<sup>2</sup> From electrodes functionalised with method a.

| Dye                                               | J <sub>sc</sub> /mA cm <sup>-2</sup> | V <sub>oc</sub> /mV | FF/%   | η/%         | η <sub>rel.</sub> /% |
|---------------------------------------------------|--------------------------------------|---------------------|--------|-------------|----------------------|
| N719                                              | 15.02                                | 615                 | 59     | 5.42        | 100.0                |
| [Cu( <b>3</b> )( <b>3</b> –H)] <sup>a</sup> c1    | 4.85                                 | 643                 | 59     | 1.84        | 34.0                 |
| [Cu( <b>3</b> )( <b>3</b> –H)] <sup>a</sup> c2    | 3.69                                 | 645                 | 62     | 1.47        | 27.2                 |
| [Cu( <b>3</b> )( <b>3</b> –H)] <sup>a</sup> c3    | 4.43                                 | 649                 | 62     | 1.78        | 32.8                 |
| [Cu( <b>3</b> )( <b>3</b> –H)] <sup>a</sup> c4    | 4.53                                 | 646                 | 62     | 1.82        | 33.7                 |
| [Cu( <b>3</b> )( <b>3</b> –H)] average            | 4.37 ± 0.49                          | 646 ± 3             | 61 ± 1 | 1.73 ± 0.17 | 31.9 ± 3.2           |
| [Cu( <b>1</b> )( <b>2</b> )] <sup>+b,c</sup> c1   | 4.16                                 | 567                 | 63     | 1.48        | 27.4                 |
| [Cu( <b>1</b> )( <b>2</b> )] <sup>+b,c</sup> c2   | 4.67                                 | 563                 | 63     | 1.65        | 30.5                 |
| [Cu( <b>1</b> )( <b>2</b> )] <sup>+b,c</sup> c3   | 3.79                                 | 560                 | 64     | 1.36        | 25.1                 |
| [Cu(1)(2)] <sup>+b,c</sup> c4                     | 4.12                                 | 569                 | 59     | 1.38        | 25.4                 |
| [Cu( <b>1</b> )( <b>2</b> )] <sup>+</sup> average | 4.18 ± 0.36                          | 565 ± 4             | 62 ± 2 | 1.47 ± 0.13 | 27.1 ± 2.5           |
| [Cu( <b>6</b> )( <b>6</b> –H)] <sup>a</sup> c1    | 5.65                                 | 618                 | 62     | 2.17        | 40.1                 |
| [Cu( <b>6</b> )( <b>6</b> –H)] <sup>a</sup> c2    | 5.73                                 | 627                 | 64     | 2.32        | 42.7                 |
| [Cu( <b>6</b> )( <b>6</b> –H)] average            | 5.69 ± 0.05                          | 622 ± 6             | 63 ± 2 | 2.24 ± 0.10 | 41.4 ± 1.9           |
| [Cu( <b>4</b> )( <b>5</b> )] <sup>+c</sup> c1     | 4.55                                 | 537                 | 71     | 1.73        | 32.0                 |
| [Cu( <b>4</b> )( <b>5</b> )] <sup>+c</sup> c2     | 4.44                                 | 533                 | 71     | 1.69        | 31.2                 |
| [Cu( <b>4</b> )( <b>5</b> )] <sup>+c</sup> c3     | 4.39                                 | 530                 | 71     | 1.64        | 30.3                 |
| [Cu( <b>4</b> )( <b>5</b> )] <sup>+c</sup> c4     | 4.55                                 | 522                 | 65     | 1.55        | 28.7                 |
| [Cu( <b>4</b> )( <b>5</b> )] <sup>+</sup> average | 4.48 ± 0.08                          | 531 ± 7             | 70 ± 3 | 1.65 ± 0.08 | 30.5 ± 1.4           |

Table S6 Day 7 J-V performance data for sets of four or two cells for dyes [Cu(3)(3-H)],  $[Cu(1)(2)]^+$ , [Cu(6)(6-H)] and  $[Cu(4)(5)]^+$ .

**Table S7** Day 3 J-V performance data for three or four sets of cells derived from dipping of **3**-functionalised and **6**-functionalised electrodesinto either 0.01, 0.1 or 1.0 mM solutions of  $[Cu(CH_3CN)_4][PF_6]$ .

| Dye and Cell | [Cu(CH <sub>3</sub> CN) <sub>4</sub> ][PF <sub>6</sub> ]/ | $1/m \Lambda \text{ cm}^{-2}$      | \/_ /m)/ | FF /0/ | ~ /0/       | ~ /0/      |
|--------------|-----------------------------------------------------------|------------------------------------|----------|--------|-------------|------------|
| number       | mM                                                        | J <sub>sc</sub> /mA cm <sup></sup> | Voc/mv   | FF/%   | η/%         | ηrel./%    |
| N719         | -                                                         | 15.02                              | 615      | 59     | 5.42        | 100.0      |
| <b>3</b> c1  | 0.01                                                      | 3.06                               | 583      | 69     | 1.23        | 22.7       |
| <b>3</b> c2  | 0.01                                                      | 3.60                               | 569      | 65     | 1.34        | 24.7       |
| <b>3</b> c3  | 0.01                                                      | 3.47                               | 578      | 69     | 1.38        | 25.5       |
| <b>3</b> c4  | 0.01                                                      | 3.38                               | 573      | 68     | 1.31        | 24.2       |
| average      | -                                                         | 3.38 ± 0.23                        | 576 ± 6  | 68 ± 2 | 1.32 ± 0.06 | 24.3 ± 1.2 |
| <b>3</b> c1  | 0.1                                                       | 4.11                               | 583      | 70     | 1.68        | 31.1       |
| <b>3</b> c2  | 0.1                                                       | 4.06                               | 581      | 72     | 1.69        | 31.2       |
| <b>3</b> c3  | 0.1                                                       | 4.03                               | 570      | 73     | 1.67        | 30.8       |
| <b>3</b> c4  | 0.1                                                       | 4.23                               | 602      | 70     | 1.79        | 33.0       |
| average      | -                                                         | 4.11 ± 0.09                        | 584 ± 13 | 71 ± 1 | 1.71 ± 0.05 | 31.5 ± 1.0 |
| <b>3</b> c1  | 1.0                                                       | 2.16                               | 542      | 65     | 0.76        | 14.0       |
| <b>3</b> c2  | 1.0                                                       | 2.87                               | 577      | 62     | 1.03        | 19.0       |
| <b>3</b> c3  | 1.0                                                       | 2.85                               | 573      | 61     | 0.99        | 18.2       |
| average      | -                                                         | 2.63 ± 0.41                        | 564 ± 19 | 62 ± 2 | 0.92 ± 0.15 | 17.0 ± 2.7 |
| <b>6</b> c1  | 0.1                                                       | 6.84                               | 580      | 64     | 2.53        | 46.8       |
| <b>6</b> c2  | 0.1                                                       | 6.86                               | 583      | 61     | 2.44        | 45.1       |
| <b>6</b> c3  | 0.1                                                       | 6.79                               | 579      | 61     | 2.40        | 44.3       |
| <b>6</b> c4  | 0.1                                                       | 6.45                               | 579      | 61     | 2.30        | 42.4       |
| average      | -                                                         | 6.74 ± 0.19                        | 580 ± 2  | 62 ± 1 | 2.42 ± 0.10 | 44.6 ± 1.8 |

| Dye and Cell | [Cu(CH₃CN)₄][PF <sub>6</sub> ]/ | J <sub>sc</sub> /mA cm <sup>-2</sup> | V <sub>oc</sub> /mV | FF/%   | η/%         | η <sub>rel.</sub> /% |
|--------------|---------------------------------|--------------------------------------|---------------------|--------|-------------|----------------------|
| N719         | 1111VI                          | 15.02                                | 615                 | 50     | 5 / 2       | 100.0                |
| N/13         |                                 | 13.02                                | 502                 | 33     | 5.42        | 100.0                |
| <b>3</b> C1  | 0.01                            | 3.05                                 | 583                 | 70     | 1.24        | 22.8                 |
| <b>3</b> c2  | 0.01                            | 3.41                                 | 568                 | 68     | 1.31        | 24.2                 |
| <b>3</b> c3  | 0.01                            | 3.39                                 | 574                 | 70     | 1.37        | 25.3                 |
| <b>3</b> c4  | 0.01                            | 3.41                                 | 565                 | 69     | 1.32        | 24.4                 |
| average      | -                               | 3.31 ± 0.18                          | 572 ± 8             | 69 ± 1 | 1.31 ± 0.06 | 24.2 ± 1.0           |
| <b>3</b> c1  | 0.1                             | 3.97                                 | 564                 | 73     | 1.62        | 30.0                 |
| <b>3</b> c2  | 0.1                             | 3.92                                 | 563                 | 73     | 1.62        | 29.9                 |
| <b>3</b> c3  | 0.1                             | 3.92                                 | 557                 | 74     | 1.62        | 30.0                 |
| <b>3</b> c4  | 0.1                             | 4.11                                 | 584                 | 72     | 1.74        | 32.1                 |
| average      | -                               | 3.98 ± 0.09                          | 567 ± 11            | 73 ± 1 | 1.65 ± 0.06 | 30.5 ± 1.1           |
| <b>3</b> c1  | 1.0                             | 2.07                                 | 556                 | 64.7   | 0.74        | 13.7                 |
| <b>3</b> c2  | 1.0                             | 2.82                                 | 591                 | 62.3   | 1.04        | 19.2                 |
| <b>3</b> c3  | 1.0                             | 2.10                                 | 558                 | 64.9   | 0.76        | 14.0                 |
| average      | -                               | 2.33 ± 0.43                          | 568 ± 20            | 64 ± 1 | 0.85 ± 0.17 | 15.7 ± 3.1           |
| <b>6</b> c1  | 0.1                             | 6.64                                 | 589                 | 64     | 2.51        | 46.4                 |
| <b>6</b> c2  | 0.1                             | 6.70                                 | 591                 | 61     | 2.43        | 44.9                 |
| <b>6</b> c3  | 0.1                             | 6.58                                 | 586                 | 61     | 2.37        | 43.7                 |
| <b>6</b> c4  | 0.1                             | 6.47                                 | 590                 | 61     | 2.32        | 42.9                 |
| average      | -                               | 6.60 ± 0.09                          | 589 ± 2             | 62 ± 2 | 2.41 ± 0.08 | 44.5 ± 1.5           |

**Table S8.** Day 7 J-V performance data for three or four sets of cells derived from dipping of **3**-functionalised and **6**-functionalised electrodes into either 0.01, 0.1 or 1.0 mM solutions of  $[Cu(CH_3CN)_4][PF_6]$ .

### References

- 1 S. Ashraf, R. Su, J. Akhtar, H. M. Siddiqi and A. El-Shafei, *Dyes Pigm.*, 2018, **150**, 347–353.
- 2 G. Risi, M. Becker, C. E. Housecroft and E. C. Constable, *Molecules*, 2020, **25**, 1528.
- 3 Spartan '20 version 1.1.2 Wavefunction INC., Irvine, CA 92612