Supplementary Information to accompany
 Back to the future: asymmetrical $\operatorname{D\pi A}$ 2,2'-bipyridine ligands for homoleptic copper(I)based dyes in dye-sensitized solar cells

Guglielmo Risi, Mike Devereux, Alessandro Prescimone, Catherine E. Housecroft, and Edwin C. Constable*
Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland

Experimental section

Syntheses

8 4,4'-Dibromo-6,6'-dimethyl-2,2'-bipyridine (7) (941 mg, $2.75 \mathrm{mmol}, 3.0 \mathrm{eq}$), diethyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)phenylphosphonate ($312 \mathrm{mg}, 917 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$), $\mathrm{Pd}(\mathrm{PPh} 3) 4\left(20.1 \mathrm{mg}, 17.4 \mu \mathrm{~mol}, 1.9 \mathrm{~mol} \%\right.$) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(389 \mathrm{mg}, 3.67 \mathrm{mmol}, 4.0 \mathrm{eq})$ were loaded into a microwave vial. After three vacuum- N_{2} cycles, the solids were dissolved in N_{2}-degassed mixture Toluene/ $\mathrm{H}_{2} \mathrm{O} \quad \mathrm{N}_{2}$-degassed mixture ($9: 1,13.2 \mathrm{~mL}$). The reaction vessel was sealed and set under stirring at $90^{\circ} \mathrm{C}$ overnight. After cooling to room temperature, the reaction mixture was poured into water (20 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The organic layers were combined, washed with brine (10 mL), dried over MgSO_{4}, and then dried by rotavaporation. The excess of 4, 4^{\prime}-Dibromo-6,6'-dimethyl-2, 2^{\prime}-bipyridine was removed and recovered by recrystallization from EtOAc. The crude product was purified by column chromatography ($\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{EtOAc}^{2}$ in $2: 1$ ratio). The product was further recrystallized from $\mathrm{Et}_{2} \mathrm{O}$, collected and dried in vacuo. The product was isolated as white crystals ($278 \mathrm{mg}, 585 \mu \mathrm{~mol}$, 63.8\%).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{d}-\mathrm{TFA}$) $\delta / \mathrm{ppm} 8.25\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{A} 3}\right.$), $8.33\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{B3}}\right.$), 8.05 (dd, J=13.4,7.9 Hz,2H, $\mathrm{H}^{\mathrm{C} 2}$), $7.94-7.88$ (overlapping m, $\left.3 \mathrm{H}, \mathrm{H}^{\mathrm{BS}+\mathrm{C} 3}\right), 7.77\left(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{A5}}\right), 4.23\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{Et}-\mathrm{CH}}\right), 2.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}^{\mathrm{CH3}-\mathrm{b}}\right), 2.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}^{\mathrm{CH} 3-\mathrm{a}}\right), 1.39\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{H}^{\mathrm{Het}-\mathrm{CH}}\right)$.
$\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{d}$-TFA) $\delta / \mathrm{ppm} 160.3\left(\mathrm{C}^{\mathrm{A6}}\right), 156.9\left(\mathrm{C}^{\mathrm{B}}\right), 146.4\left(\mathrm{C}^{\mathrm{B} 2}\right), 145.8\left(\mathrm{C}^{\mathrm{A} 2}\right), 139.1\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{CP}}=3.32 \mathrm{~Hz}, \mathrm{C}^{\mathrm{C} 4}\right), 138.4\left(\mathrm{C}^{\mathrm{A} 4}\right), 133.3$ $\left(d^{2} J_{C P}=10.6 \mathrm{~Hz}, C^{C 2}\right), 131.1\left(C^{A 5}\right), 131.1\left(C^{B 4}\right), 130.3\left(d,{ }^{1} J_{C P}=193.6 \mathrm{~Hz}, C^{C 1}\right), 128.2\left(d,{ }^{3} J_{C P}=15.8 \mathrm{~Hz}, C^{C 3}\right), 126.1\left(C^{B 5}\right), 124.4\left(C^{A 3}\right), 120.0\left(C^{B 3}\right)$, 64.2 (d, $\left.{ }^{2} J_{\mathrm{CP}}=6.1 \mathrm{~Hz}, \mathrm{C}^{\mathrm{Et}-\mathrm{CH} 2}\right), 22.6\left(\mathrm{C}^{\mathrm{CH3a}}\right), 21.0\left(\mathrm{C}^{\mathrm{CH3b}}\right), 16.22\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CP}}=6.4 \mathrm{~Hz}, \mathrm{C}^{\mathrm{Et}-\mathrm{CH}}\right)$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($202 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}+\mathrm{d}-\mathrm{TFA}$) 8/ppm 17.0 (s, P).
HR ESI-MS m/z $475.0774[\mathrm{M}+\mathrm{H}]^{+}$(calc. 475.0781).
Found: C 55.47, H 4.840, N 5.79 ; $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{BrN}_{2} \mathrm{O}_{3} \mathrm{P}$ requires $\mathrm{C} 55.59, \mathrm{H} 5.09, \mathrm{~N} 5.89$.

$3 e$ Compound 8 ($259 \mathrm{mg}, 545 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$), 4-(Diphenylamino)phenylboronic acid ($189 \mathrm{mg}, 654 \mu \mathrm{~mol}, 1.2 \mathrm{eq}$), $\mathrm{Pd}(\mathrm{PPh} 3)_{4}(12.0 \mathrm{mg}, 10.4$ $\mu \mathrm{mol}, 1.9 \mathrm{~mol} \%$) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(231 \mathrm{mg}, 2.18 \mathrm{mmol}, 4.0 \mathrm{eq})$ were loaded into a microwave vial. After three vacuum-N2 cycles, the solids were dissolved in N_{2}-degassed Toluene/ $\mathrm{H}_{2} \mathrm{O}$ mixture ($9: 1,9.25 \mathrm{~mL}$). The reaction vessel was sealed and set under stirring at $90{ }^{\circ} \mathrm{C}$ overnight. After cooling to room temperature, the reaction mixture was poured into water (20 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The organic layers were combined, washed with brine (10 mL), dried over MgSO_{4}, and then dried by rotavaporation. The product was recrystallized from EtOAc,
filtered and rinsed with small portions of EtOAc, then dried in vacuo. Product was isolated as canary yellow crystals. ($228 \mathrm{mg}, 356 \mu \mathrm{~mol}$, 65.4\%).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{d}\right.$-TFA) $\delta / \mathrm{ppm} 8.57\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{c} 3}\right), 8.54\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{B} 3}\right), 8.01-7.90$ (overlapping $\left.\mathrm{m}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{A} 2+\mathrm{A} 3}\right), 7.72(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.H^{\mathrm{D} 2}\right), 7.67\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{C5}}\right), 7.60\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{B5}}\right), 7.36\left(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{E} 3}\right), 7.20$ (overlapping m, 6H, $\left.\mathrm{H}^{\mathrm{E} 2+\mathrm{E} 4}\right), 7.14\left(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{D} 3}\right), 4.17(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{H}^{\mathrm{Et}-\mathrm{CH} 2}\right), 2.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}^{\mathrm{CH3c}}\right), 2.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}^{\mathrm{CH3b}}\right), 1.36\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{H}^{\mathrm{Et}-\mathrm{CH}}\right)$.
$\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{d}-\mathrm{TFA}\right) \delta / \mathrm{ppm} 160.3\left(\mathrm{C}^{\mathrm{B} 6}\right), 156.2\left(\mathrm{C}^{\mathrm{C} 4}\right), 154.7\left(\mathrm{C}^{\mathrm{C} 6}\right), 152.1\left(\mathrm{C}^{B 4}\right), 151.9\left(\mathrm{C}^{\mathrm{D} 1}\right), 149.9\left(\mathrm{C}^{\mathrm{C}}\right), 147.8\left(\mathrm{C}^{\mathrm{B} 2}\right), 146.3\left(\mathrm{C}^{\mathrm{E} 1}\right)$,
 $124.3\left(C^{B 5}\right), 122.2\left(C^{C 5}\right), 121.0\left(C^{\mathrm{D} 2}\right), 119.3\left(C^{\mathrm{B} 3}\right), 118.9\left(\mathrm{C}^{\mathrm{C}}\right), 63.2\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CP}}=5.7 \mathrm{~Hz}, \mathrm{C}^{\mathrm{Et}-\mathrm{CH}^{2}}\right), 24.3\left(\mathrm{C}^{\mathrm{CH} 3 \mathrm{~b}}\right), 20.5\left(\mathrm{C}^{\mathrm{CH3C}}\right), 16.4\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=6.5 \mathrm{~Hz}, \mathrm{C}^{\mathrm{Et}-\mathrm{CH} 3}\right)$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($202 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}+\mathrm{d}-\mathrm{TFA}$) 8/ppm 17.9 (s, P).
UV-VIS ($\mathrm{CH}_{2} \mathrm{Cl}_{2}, 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$) $\lambda / \mathrm{nm} 246\left(\varepsilon / \mathrm{dm}^{-3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 45,650\right)$, $298(27,840) ; 353(23,740)$.
HR ESI-MS m/z $640.2721[\mathrm{M}+\mathrm{H}]^{+}$(calc. 640.2724).
Found: C 73.97, H 5.946, N 6.25; $\mathrm{C}_{40} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{P}$ requires $\mathrm{C} 75.10, \mathrm{H} 5.99, \mathrm{~N} 6.27$.

[$\left.\mathrm{Cu}(3 e)_{2}\right]\left[\mathrm{PF}_{6}\right]$ Compound $3 \mathrm{e}(10.6 \mathrm{mg}, 16.6 \mu \mathrm{~mol}, 2.0 \mathrm{eq})$ was loaded in a round bottom flask and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. After addition of $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]\left[\mathrm{PF}_{6}\right](3.09 \mathrm{mg}, 8.28 \mu \mathrm{~mol}, 1.0 \mathrm{eq})$, the mixture was set under stirring overnight. The solvent was removed by rotavaporation, the solids dried in in vacuo. The product was isolated as a red solid ($12.3 \mathrm{mg}, 8.27 \mu \mathrm{~mol},>99 \%$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone- d_{6}) $\delta / \mathrm{ppm} 9.08\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{B3}}\right), 9.00\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{C3}}\right), 8.17\left(\mathrm{dd}, \mathrm{J}=8.2,3.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{A} 3}\right), 8.07\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{B5}}\right), 8.02-7.94$ (overlapping $\mathrm{m}, 10 \mathrm{H}, \mathrm{H}^{\mathrm{A} 2+\mathrm{C} 5+\mathrm{D} 3}$), $7.39\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}^{\mathrm{E} 3}\right), 7.21-7.12$ (overlapping $\left.\mathrm{m}, 16 \mathrm{H}, \mathrm{H}^{\mathrm{E} 2+\mathrm{E} 4+\mathrm{D} 2}\right), 4.14\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}^{\mathrm{Et}-\mathrm{CH} 2}\right), 2.48\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}^{\mathrm{CH} 3 \mathrm{~b}}\right), 2.45(\mathrm{~s}$, $\left.6 \mathrm{H}, \mathrm{H}^{\mathrm{CH3c}}\right), 1.32\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{H}^{\mathrm{Et}-\mathrm{CH} 3}\right)$.
${ }^{13}{ }^{1}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , acetone- $\left.\mathrm{d}_{6}\right) \delta / \mathrm{ppm} 158.8\left(\mathrm{C}^{\mathrm{B6}}\right), 158.5\left(\mathrm{C}^{\mathrm{C} 6}\right), 153.8\left(\mathrm{C}^{\mathrm{B2}}\right), 153.3\left(\mathrm{C}^{\mathrm{C} 2}\right), 150.7\left(\mathrm{C}^{\mathrm{D1}}\right), 150.1\left(\mathrm{C}^{\mathrm{B} 4}\right), 148.0\left(\mathrm{C}^{\mathrm{E} 1}\right), 141.7\left(\mathrm{~d},{ }^{4} \mathrm{ClP}_{\mathrm{CP}}=\right.$ $\left.3.2 \mathrm{~Hz}, \mathrm{H}^{\mathrm{A} 4}\right), 133.3\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CP}}=9.9 \mathrm{~Hz}, \mathrm{H}^{\mathrm{A} 2}\right), 131.8\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=187.4 \mathrm{~Hz}, \mathrm{C}^{\mathrm{A} 1}\right), 130.6\left(\mathrm{C}^{E 3}\right), 130.4\left(\mathrm{C}^{E 4}\right), 130.4\left(\mathrm{C}^{\mathrm{D} 4}\right), 129.3\left(\mathrm{C}^{D^{3}}\right), 128.5\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CP}}=14.9 \mathrm{~Hz}\right.$, $\left.\mathrm{H}^{\mathrm{A3}}\right), 126.1\left(\mathrm{C}^{\mathrm{D} 2}\right), 124.8\left(\mathrm{C}^{\mathrm{B5}}\right), 123.6\left(\mathrm{C}^{\mathrm{C} 5}\right), 123.0\left(\mathrm{C}^{\mathrm{E} 2}\right), 119.0\left(\mathrm{C}^{\mathrm{B} 3}\right), 118\left(\mathrm{C}^{\mathrm{C}}\right), 62.7\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CP}}=5.5 \mathrm{~Hz}, \mathrm{H}^{\mathrm{Et}-\mathrm{CH}^{2}}\right), 25.4\left(\mathrm{C}^{\mathrm{CH3b}}\right), 25.1\left(\mathrm{C}^{\mathrm{CH} 3 \mathrm{C}}\right), 16.7\left(\mathrm{~d}, 3_{\mathrm{CP}}\right.$ $\left.=6.0 \mathrm{~Hz}, \mathrm{H}^{\mathrm{Et}-\mathrm{CH}}\right) ; \mathrm{C}^{\mathrm{C4}}$ not resolved in HMBC .
 $\left(\varepsilon / \mathrm{dm}^{-3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 62,130\right), 321(47,890), 494(33,630)$.
HR ESI-MS m/z 1341.4587 [$\mathrm{M}_{\left.-\mathrm{PF}_{6}\right]^{+} \text {(calc. 1341.4592). }}^{\text {1 }}$
Found: C 63.16, H 5.48, N 5.21; $\mathrm{C}_{80} \mathrm{H}_{76} \mathrm{CuF}_{6} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{P}_{3}$ requires $\mathrm{C} 64.58, \mathrm{H} 5.15, \mathrm{~N} 5.65$.

3 Compound $3 \mathbf{e}(99.8 \mathrm{mg}, 156 \mu \mathrm{~mol}, 1.0 \mathrm{eq})$ was loaded in a round bottom flask and dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL}) . \mathrm{TMSBr}(82.4 \mu \mathrm{~L}$, $624 \mu \mathrm{~mol}, 4.0 \mathrm{eq}$) was added dropwise into the reaction mixture and stirred under nitrogen at rt overnight. The solvent was removed by rotavaporation and the residue redissolved in the smallest amount of MeOH . Addition of $\mathrm{Et}_{2} \mathrm{O}$ afforded precipitation of the product, which was filtered and rinsed with small portions of $\mathrm{Et}_{2} \mathrm{O}$, then dried in vacuo. The product was isolated as a red solid ($71.7 \mathrm{mg}, 123 \mu \mathrm{~mol}, 78.8 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta / \mathrm{ppm} 8.79\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{C3}}\right), 8.65\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{B3}}\right), 8.13\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{C5}}\right), 8.07\left(\mathrm{dd}, \mathrm{J}=8.3,3.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{A 3}\right), 8.03(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{H}^{\mathrm{D} 3}\right), 7.99\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{A} 2}\right), 7.95\left(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{B5}}\right), 7.39\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{E}}\right), 7.20$ (overlapping $\left.\mathrm{m}, 6 \mathrm{H}, \mathrm{H}^{\mathrm{E} 2+\mathrm{E} 4}\right), 7.12\left(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{D} 2}\right), 2.91(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{H}^{\mathrm{CH3c}}\right), 2.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}^{\mathrm{CH3b}}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta / \mathrm{ppm} 161.2\left(\mathrm{C}^{\mathrm{B6}}\right), 157.7\left(\mathrm{C}^{\mathrm{C} 4}\right), 156.1\left(\mathrm{C}^{\mathrm{C} 6}\right), 153.2\left(\mathrm{C}^{\mathrm{D} 1}\right), 152.4\left(\mathrm{C}^{\mathrm{B} 4}\right), 149.6\left(\mathrm{C}^{\mathrm{C} 2}\right), 149.3\left(\mathrm{C}^{\mathrm{B} 2}\right), 147.8\left(\mathrm{C}^{\mathrm{E} 1}\right), 141.2$ $\left(C^{A 4}\right), 135.2\left(d^{1}{ }^{1}{ }_{C P}=188.8 \mathrm{~Hz}, C^{A 1}\right), 132.9\left(d^{2}{ }^{2}{ }_{C P}=10.3 \mathrm{~Hz}, C^{A 2}\right), 130.9\left(C^{E 3}\right), 130.5\left(C^{D 2}\right), 128.5\left(d^{3} J_{C P}=14.9 \mathrm{~Hz}, C^{A 3}\right), 127.3\left(C^{D 4}\right), 127.3\left(C^{E 2}\right)$,

${ }^{31}$ P $\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($202 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta / \mathrm{ppm} 14.9$ (s, P).
HR ESI-MS m/z 582.1958 [$\mathrm{M}-\mathrm{H}]^{-}$(calc. 582.1952).

[$\mathrm{Cu}(3)_{2}$] Compound $3(60.3 \mathrm{mg}, 103 \mu \mathrm{~mol}, 2.0 \mathrm{eq}$) was loaded in a round bottom flask and dissolved in $\mathrm{MeOH}(4 \mathrm{~mL})$. After addition of $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]\left[\mathrm{PF}_{6}\right](19.3 \mathrm{mg}, 51.7 \mu \mathrm{~mol}, 1.0 \mathrm{eq})$, the mixture was set under stirring for 1 h . The solvent was reduced to a minimum volume by rotavaporation. $\mathrm{Et}_{2} \mathrm{O}$ was added to the reaction mixture to afford precipitation. The precipitate was filtered, rinsed with small portions of $\mathrm{Et}_{2} \mathrm{O}$, then dried in vacuo. The product was isolated as a red solid ($52.3 \mathrm{mg}, 42.5 \mu \mathrm{~mol}, 82.3 \%$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone- d_{6}) $\delta / \mathrm{ppm} 9.00\left(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{C} 3}\right.$), $8.89\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{83}\right), 8.25\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{C5}}\right), 8.09-8.03$ (overlapping $\mathrm{m}, 8 \mathrm{H}, \mathrm{H}^{\mathrm{A} 3+\mathrm{D} 3}$), $8.01\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{B5}}\right), 7.93\left(\mathrm{dd}, \mathrm{J}=12.9,8.1 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{A} 2}\right.$), $7.43\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}^{\mathrm{E}}\right), 7.27-7.19$ (overlapping $\mathrm{m}, 12 \mathrm{H}, \mathrm{H}^{\mathrm{E} 2+E 4}$), $7.10\left(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{D} 2}\right.$), $2.98\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}^{\text {сн3c }}\right), 2.78\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}^{\text {снзb }}\right)$.
${ }^{13} C\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , acetone- d_{6}) $\delta / \mathrm{ppm} 160.3\left(\mathrm{C}^{\mathrm{B6}}\right)$, $156.9\left(\mathrm{C}^{\mathrm{C} 4}\right)$, $155.9\left(\mathrm{C}^{\mathrm{C} 6}\right)$, $152.0\left(\mathrm{C}^{\mathrm{B4}}\right)$, $151.6\left(\mathrm{C}^{\mathrm{D} 1}\right), 148.2\left(\mathrm{C}^{\mathrm{C} 2}\right), 147.7\left(\mathrm{C}^{\mathrm{B} 2}\right), 147.2\left(\mathrm{C}^{\mathrm{E} 1}\right)$, $140.2\left(\mathrm{C}^{\mathrm{A} 4}\right), 135.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=191.2 \mathrm{~Hz}, \mathrm{C}^{\mathrm{A} 1}\right), 132.6\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CP}}=10.3 \mathrm{~Hz}, \mathrm{C}^{\mathrm{A} 2}\right), 130.8\left(\mathrm{C}^{\mathrm{E}}\right), 130.4\left(\mathrm{C}^{\mathrm{D} 3}\right), 128.3\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CP}}=14.5 \mathrm{~Hz}, \mathrm{C}^{\mathrm{A} 3}\right), 127.0\left(\mathrm{C}^{\mathrm{E} 2}\right)$, $126.8\left(C^{D 4}\right), 126.1\left(C^{\text {E4 }}\right), 125.5\left(\mathrm{C}^{B 5}\right), 123.8\left(\mathrm{C}^{\mathrm{C5}}\right), 121.2\left(\mathrm{C}^{\mathrm{D} 2}\right), 119.4\left(\mathrm{C}^{\mathrm{B} 3}\right), 118.5\left(\mathrm{C}^{\mathrm{C} 3}\right), 23.6\left(\mathrm{C}^{\mathrm{CH} 3 \mathrm{~b}}\right), 20.9\left(\mathrm{C}^{\mathrm{CH3C}}\right)$.
${ }^{31}$ P $\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($202 \mathrm{MHz}, 298 \mathrm{~K}$, acetone $-\mathrm{d}_{6}$) $\delta / \mathrm{ppm} 14.6$ (s, P).
HR ESI-MS m/z $1227.3244\left[\mathrm{M}^{-H}\right]^{-}$(calc. 1227.3195).

10 The procedure was adapted from literature. ${ }^{1}$ Compound $9(2.580 \mathrm{~g}, 5.22 \mathrm{mmol}, 1.0 \mathrm{eq})$, 4 -(diphenylamino)benzaldehyde ($5.707 \mathrm{~g}, 20.9$ $\mathrm{mmol}, 4.0 \mathrm{eq}$) were loaded in an autoclave vessel. After sequential addition of anhydrous DMF (100 mL) and TMSCl ($3.0 \mathrm{~mL}, 23.5 \mathrm{mmol}, 4.5$ eq), the reaction vessel was sealed and heated at $173{ }^{\circ} \mathrm{C}$ for 48 h . After allowing the vessel to cool down to $4{ }^{\circ} \mathrm{C}$ ca. (easing of internal pressure), the reaction mixture was slowly added to water (1 L ca.) while stirring homogeneously. The aqueous phase was filtered and the precipitate was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and collected in a round-bottom flask, then removed the organic phase by rotavaporation. After addition of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, the suspension was filtered and dried in vacuo. The product was isolated as yellow powder ($1.657 \mathrm{~g}, 1.65 \mathrm{mmol}$, 31.6%). Alternatively, the product could be purified by column chromatography ($\mathrm{SiO} 2, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CHX}, 3: 1$). Crystals for X-ray diffraction were grown by slow $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ evaporation.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm} 8.61\left(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{B} 3}\right), 7.76\left(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{c}}\right), 7.70-7.65$ (overlapping m, $\left.8 \mathrm{H}, \mathrm{H}^{\mathrm{A} 2+\mathrm{A} 3}\right), 7.58(\mathrm{~d}, \mathrm{~J}$ $\left.=1.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{B5}}\right), 7.50\left(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{C} 3}\right), 7.29\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}^{\mathrm{D} 3}\right), 7.22\left(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{b}}\right), 7.14\left(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{H}^{\mathrm{D} 2}\right), 7.10-7.04$ (overlapping $\mathrm{m}, 8 \mathrm{H}, \mathrm{H}^{\mathrm{D}+\mathrm{C} 2}$).
${ }^{13}{ }^{1}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm} 156.8\left(\mathrm{C}^{\mathrm{B} 2}\right), 156.3\left(\mathrm{C}^{\mathrm{B} 6}\right), 148.8\left(\mathrm{C}^{\mathrm{B4}}\right), 148.3\left(\mathrm{C}^{\mathrm{C} 1}\right), 147.5\left(\mathrm{C}^{\mathrm{D} 1}\right), 138.0\left(\mathrm{C}^{\mathrm{A} 8}\right), 132.4\left(\mathrm{C}^{\mathrm{A} 2}\right), 130.6\left(\mathrm{C}^{\mathrm{C4}}\right), 129.5$ $\left(\mathrm{C}^{\mathrm{D} 3}\right), 129.0\left(\mathrm{C}^{\mathrm{A3}}\right), 128.3\left(\mathrm{C}^{\mathrm{C}}\right)$, $125.0\left(\mathrm{C}^{\mathrm{D} 2}\right), 123.5\left(\mathrm{C}^{\mathrm{D}}\right), 123.5\left(\mathrm{C}^{\mathrm{D} 4}\right), 123.1\left(\mathrm{C}^{\mathrm{C} 2}\right), 119.7\left(\mathrm{C}^{\mathrm{B5}}\right), 117.6\left(\mathrm{C}^{\mathrm{B} 3}\right)$.
UV-VIS ($\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}\right) \lambda / \mathrm{nm} 295\left(\varepsilon / \mathrm{dm}^{-3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 90,705\right), 398(76,104)$
HR ESI-MS $m / z 1005.1976[\mathrm{M}+\mathrm{H}]^{+}$(calc. 1005.1985).
Found: C 73.35, H 4.28, N 5.67; $\mathrm{C}_{62} \mathrm{H}_{44} \mathrm{Br}_{2} \mathrm{~N}_{4}$ requires $\mathrm{C} 74.11, \mathrm{H} 4.41, \mathrm{~N} 5.58$.

$4 e$ Compound 10 ($601 \mathrm{mg}, 598 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$), $\mathrm{HPO}_{3} \mathrm{Et}_{2}(309 \mu \mathrm{~L}, 330 \mathrm{mg}, 2.39 \mathrm{mmol}, 4.0 \mathrm{eq}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(487 \mathrm{mg}, 1.49 \mathrm{mmol}, 2.5 \mathrm{eq}), \mathrm{Pd}(\mathrm{dba})_{2}$ ($34.4 \mathrm{mg}, 59.8 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$), Ruphos ($56.9 \mathrm{mg}, 120 \mu \mathrm{~mol}, 20 \mathrm{~mol} \%$) were loaded in a microwave vial. After three cycles of vacuum- N 2 , the reaction mixture was dissolved with N2-degassed THF (8 mL), then set at $90^{\circ} \mathrm{C}$ for 18 h . The reaction vessel was allowed to cool down to rt . The reaction mixture was transferred in a separatory funnel and water added. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The organic layers were washed with Brine (20 mL), back-extracted with an additional portion of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After drying over MgSO_{4}, the crude mixture was brought to dryness by rotavaporation. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ with Ethyl Acetate gradient changing from 19:1 to $9: 1$ to $4: 1$ to $2: 1$). The product was further purified by recrystallization from $\mathrm{CHX} / \mathrm{CHCl}_{3}$ solvent mixture, then dried in vacuo. Isolated as yellow powder ($382 \mathrm{mg}, 341 \mu \mathrm{~mol}, 57.1 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm} 8.67\left(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{B}}\right), 7.99\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{A} 2}\right), 7.91\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{A} 3}\right), 7.78\left(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{c}}\right), 7.63(\mathrm{~d}, \mathrm{~J}=1.6$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{B5}}\right), 7.51\left(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{C} 3}\right), 7.28\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}^{\mathrm{D} 3}\right), 7.23\left(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{b}}\right), 7.14\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}^{\mathrm{D} 2}\right), 7.10-7.04$ (overlapping $\mathrm{m}, 8 \mathrm{H}$, $\left.\mathrm{H}^{\mathrm{C} 2+\mathrm{D} 4}\right), 4.17\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}^{\mathrm{Et}-\mathrm{CH} 2}\right), 1.37\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{H}^{\mathrm{Et}-\mathrm{CH} 3}\right)$.
${ }^{13}{ }^{1}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm} 156.7\left(\mathrm{C}^{\mathrm{B2}}\right)$, $156.4\left(\mathrm{C}^{\mathrm{B6}}\right)$, $148.9\left(\mathrm{C}^{\mathrm{B4}}\right), 148.4\left(\mathrm{C}^{\mathrm{C4}}\right)$, $147.5\left(\mathrm{C}^{\mathrm{D} 1}\right), 143.1\left(\mathrm{C}^{\mathrm{A} 4}\right), 133.1\left(\mathrm{C}^{\mathrm{C}}\right), 132.7\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CP}}=10.0\right.$ $\left.\mathrm{Hz}, \mathrm{C}^{\mathrm{A}^{2}}\right), 130.5\left(\mathrm{C}^{\mathrm{C} 1}\right), 129.5\left(\mathrm{C}^{\mathrm{D} 3}\right), 129.1\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=188.4 \mathrm{~Hz}, \mathrm{C}^{\mathrm{A} 1}\right), 128.3\left(\mathrm{C}^{\mathrm{C} 3}\right), 127.5\left(\mathrm{~d}, 3_{\mathrm{CP}}=15.63 \mathrm{~Hz}, \mathrm{C}^{\mathrm{A} 3}\right), 126.3\left(\mathrm{C}^{\mathrm{b}}\right), 125.0\left(\mathrm{C}^{\mathrm{D} 2}\right), 123.5\left(\mathrm{C}^{\mathrm{D} 4}\right)$, $123.1\left(\mathrm{C}^{\mathrm{C} 2}\right), 120.1\left(\mathrm{C}^{\mathrm{B5}}\right), 117.9\left(\mathrm{C}^{\mathrm{B} 3}\right), 62.4\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CP}}=5.37 \mathrm{~Hz}, \mathrm{C}^{\mathrm{Et}-\mathrm{CH} 2}\right), 16.6\left(\mathrm{~d},{ }^{3}{ }_{\mathrm{CP}}=6.52 \mathrm{~Hz}, \mathrm{C}^{\mathrm{Et}-\mathrm{CH} 3}\right)$.
${ }^{31}{ }^{31}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($202 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm} 18.2$ (s, P).
UV-VIS ($\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}\right) \lambda / \mathrm{nm} 267\left(\varepsilon / \mathrm{dm}^{-3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 71,150\right)$, $401(59,850)$.
HR ESI-MS m/z 1119.4361 [$\mathrm{M}+\mathrm{H}]^{+}$(calc. 1119.4374).
Found: C 74.65, H 5.78, N 5.29; $\mathrm{C}_{62} \mathrm{H}_{44} \mathrm{Br}_{2} \mathrm{~N}_{4}$ requires $\mathrm{C} 75.12, \mathrm{H} 5.76, \mathrm{~N} 5.01$.

4 Compound 4 e ($122 \mathrm{mg}, 109 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$) was loaded in a round-bottom flask and dissolved with anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}) . \mathrm{TMSBr}(575$ $\mu \mathrm{L}, 4.36 \mathrm{mmol}, 40 \mathrm{eq}$) was added dropwise into the reaction mixture and stirred under N_{2} at room temperature for 7 h . The solvent was removed by rotavaporation and the residue was redissolved with the smallest amount of MeOH . Addition of $\mathrm{Et}_{2} \mathrm{O}$ afforded precipitation of the product, which was filtered and rinsed with small portions of $\mathrm{Et}_{2} \mathrm{O}$, then dried in vacuo. The product was isolated as a deep purple solid ($65.8 \mathrm{mg}, 65.3 \mu \mathrm{~mol}, 59.9 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta / \mathrm{ppm} 8.72\left(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{B} 3}\right), 8.20\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{B} 5}\right), 8.11\left(\mathrm{dd}, J=8.3,3.1 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{A} 3}\right), 8.00(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.H^{c}\right), 7.89\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{A} 2}\right), 7.66\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{C}}\right), 7.46\left(\mathrm{~d}, \mathrm{~J}=16.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{b}}\right), 7.36\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}^{\mathrm{D} 3}\right), 7.16-7.08$ (overlapping $\left.\mathrm{m}, 12 \mathrm{H}, \mathrm{H}^{\mathrm{D} 2+\mathrm{D} 4}\right), 7.00(\mathrm{~m}, 4 \mathrm{H}$, H^{C}).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}$) $\delta / \mathrm{ppm} 149.3\left(\mathrm{C}^{\mathrm{B} 4}\right), 147.9\left(\mathrm{C}^{\mathrm{C} 1}\right), 146.7\left(\mathrm{C}^{\mathrm{D} 1}\right), 139.1\left(\mathrm{C}^{\mathrm{A} 4}\right), 135.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=175.5 \mathrm{~Hz}, \mathrm{C}^{\mathrm{A} 1}\right), 134.4\left(\mathrm{C}^{\mathrm{C}}\right), 131.4$ $\left(C^{A 2}\right), 129.7\left(C^{D 3}\right), 129.6\left(C^{C 4}\right), 128.7\left(C^{C 3}\right), 127.1\left(C^{A 3}\right), 124.8\left(C^{D 2}\right), 124.5\left(C^{b}\right), 123.8\left(C^{D 4}\right), 122.0\left(C^{C 2}\right), 120.2\left(C^{B 5}\right), 117.4\left(C^{B 3}\right)$; $C^{B 2}, C^{B 6}$ not resolved in HMBC.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($202 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}-\mathrm{d}_{6}$) ס/ppm 11.9 (s, P).
HR ESI-MS m/z 1005.2972 [M-H] ${ }^{-}$(calc. 1005.2976).

5 Compound 10 ($300 \mathrm{mg}, 299 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$), 4,4'-Dimethoxydiphenylamine ($171 \mathrm{mg}, 747 \mu \mathrm{~mol}, 2.5 \mathrm{eq}$), NaOtBu ($172 \mathrm{mg}, 1.79 \mathrm{mmol}, 6.0$ eq), $\operatorname{Pd}(\mathrm{dba})_{2}(17.2 \mathrm{mg}, 29.9 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$), Ruphos ($28.5 \mathrm{mg}, 59.8 \mu \mathrm{~mol}, 20 \mathrm{~mol} \%$) were loaded in a microwave vial. After three cycles of vacuum-N2, the reaction mixture was dissolved with N2-degassed THF (4 mL), then set at $90^{\circ} \mathrm{C}$ for 18 h . The reaction vessel was allowed to cool down to rt. The reaction mixture was transferred into a separatory funnel and water (20 mL) added. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The organic layers were washed with Brine (20 mL), back-extracted with an additional portion of CH 2 Cl 2 . After drying over MgSO_{4}, the crude mixture was brought to dryness by rotavaporation. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CHX}$, from 3:1 to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), then dried in vacuo. The product was isolated as orange crystalline powder ($351.2 \mathrm{mg}, 270 \mu \mathrm{~mol}, 90.2 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm} 8.60\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{A} 3}\right), 7.75\left(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{d}}\right), 7.66\left(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{B} 3}\right), 7.57\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{A} 5}\right), 7.50\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{D} 3}\right)$, $7.27\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}^{\mathrm{E} 3}\right), 7.21\left(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{a}}\right.$), $7.15-7.10$ (overlapping $\mathrm{m}, 16 \mathrm{H}, \mathrm{H}^{\mathrm{C} 2+\mathrm{E} 2}$), $7.09-7.02$ (overlapping $\mathrm{m}, 12 \mathrm{H}, \mathrm{H}^{82+\mathrm{D} 2+\mathrm{E} 4}$), $6.87(\mathrm{~m}$, $8 \mathrm{H}, \mathrm{H}^{\mathrm{C3}}$), 3.81 (s, $12 \mathrm{H}, \mathrm{H}^{\mathrm{CCH}}$).
$\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm} 156.9\left(\mathrm{C}^{\mathrm{A} 2}\right), 156.4\left(\mathrm{C}^{\mathrm{C} 4}\right), 155.8\left(\mathrm{C}^{\mathrm{A} 6}\right), 149.8\left(\mathrm{C}^{\mathrm{B1} 1}\right), 148.0\left(\mathrm{C}^{\mathrm{D} 1}\right), 147.6\left(\mathrm{C}^{\mathrm{E} 1}\right), 140.6\left(\mathrm{C}^{\mathrm{C} 1}\right), 132.1\left(\mathrm{C}^{\mathrm{d}}\right), 131.1$ $\left(C^{D 4}\right), 130.0\left(C^{B 4}\right), 129.5\left(C^{E 3}\right), 128.2\left(C^{D 3}\right), 127.9\left(C^{B 3}\right), 127.2\left(C^{\mathrm{a}}\right), 127.2\left(C^{C 2}\right), 124.9\left(C^{E 2}\right), 123.3\left(C^{D 2}\right), 123.3\left(C^{E 4}\right), 120.1\left(C^{B 2}\right), 119.1\left(C^{A 5}\right), 117.1$ $\left(\mathrm{C}^{\mathrm{A}}\right), 115.0\left(\mathrm{C}^{\mathrm{C}}\right)$; C^{A4} not resolved in HMBC .
UV-VIS ($\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}\right) \lambda / \mathrm{nm} 298\left(\varepsilon / \mathrm{dm}^{-3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 69,600\right)$, 385 (91,570).
HR ESI-MS $m / z 1301.5699[\mathrm{M}+\mathrm{H}]^{+}$(calc. 1301.5688).
Found: C 82.71, H 5.91, N 6.38; $\mathrm{C}_{90} \mathrm{H}_{72} \mathrm{BrN}_{6} \mathrm{O}_{4}$ requires $\mathrm{C} 83.05, \mathrm{H} 5.58, \mathrm{~N} 6.46$.

[$\left.\mathrm{Cu}(5)_{2}\right]\left[\mathrm{PF}_{6}\right]$ Compound $5(82.0 \mathrm{mg}, 63.0 \mu \mathrm{~mol}, 2.0 \mathrm{eq})$ was loaded in a round-bottom flask and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{CN}$ mixture (10 mL). After addition of $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]\left[\mathrm{PF}_{6}\right](11.7 \mathrm{mg}, 31.5 \mu \mathrm{~mol}, 0.5 \mathrm{eq})$ the mixture was set under stirring for 2 h . The reaction mixture was dried by rotavaporation and redissolved in the minimal amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Then $\mathrm{Et}_{2} \mathrm{O}$ was added to the reaction mixture to afford precipitation of the product. The precipitate was collected, washed with small amounts of $\mathrm{Et}_{2} \mathrm{O}$ and dried in vacuo. Isolated as brown solid ($63.9 \mathrm{mg}, 31.5$ $\mu \mathrm{mol}, 72.1 \%)$.
${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone $-\mathrm{d}_{6}$) $\delta / \mathrm{ppm} 8.64\left(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{A} 3}\right), 8.09\left(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{A} 5}\right), 7.68\left(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{H}^{83}\right), 7.54(\mathrm{~d}, \mathrm{~J}=16.4$ $\left.\mathrm{Hz}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{d}}\right), 7.22\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{H}^{\mathrm{E} 3}\right), 7.08\left(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 16 \mathrm{H}, \mathrm{H}^{\mathrm{C}}\right.$), $7.07-7.03$ (overlapping m, 6H, $\mathrm{H}^{\mathrm{a}+\mathrm{E} 4}$), $6.95\left(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{H}^{\mathrm{C}}\right.$), $6.89-6.84$ (overlapping $\left.\mathrm{m}, 32 \mathrm{H}, \mathrm{H}^{\mathrm{B} 2+\mathrm{D} 2+\mathrm{E} 2}\right), 6.70\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}^{\mathrm{D} 3}\right), 3.83\left(\mathrm{~s}, 24 \mathrm{H}, \mathrm{H}^{\mathrm{OCH}}\right)$.
$\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , acetone- d_{6}) $\delta / \mathrm{ppm} 158.0\left(\mathrm{C}^{\mathrm{C4}}\right)$, $156.0\left(\mathrm{C}^{\mathrm{A} 6}\right)$, $154.3\left(\mathrm{C}^{\mathrm{A} 2}\right)$, $151.4\left(\mathrm{C}^{\mathrm{A} 4}\right), 150.5\left(\mathrm{C}^{\mathrm{B} 1}\right), 149.2\left(\mathrm{C}^{\mathrm{D} 1}\right), 148.0\left(\mathrm{C}^{\mathrm{E} 1}\right), 140.5\left(\mathrm{C}^{\mathrm{C} 1}\right)$, $134.6\left(C^{d}\right), 130.4\left(C^{E 3}\right), 130.2\left(C^{D 4}\right), 129.0\left(C^{B 3}\right), 128.7\left(C^{C 2}\right), 128.7\left(C^{D 3}\right), 128.2\left(C^{B 4}\right), 126.3\left(C^{\mathrm{a}}\right), 125.8\left(C^{E 2}\right), 124.6\left(C^{E 4}\right), 122.7\left(C^{D 2}\right), 119.2\left(C^{B 2}\right)$, 119.1 (C ${ }^{\text {A5 }}$), 118.5 ($\mathrm{C}^{\mathrm{A}^{3}}$), 115.9 (C^{C3}).
${ }^{31}$ P $\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($202 \mathrm{MHz}, 298 \mathrm{~K}$, acetone- d_{6}) $\delta /$ ppm - 142.5 (hept, ${ }^{1} \mathrm{~J}_{\text {PF }}=703.3 \mathrm{~Hz}, \mathrm{P}^{\text {PF6 }}$).
UV-VIS ($\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}\right) \lambda / \mathrm{nm} 299\left(\varepsilon / \mathrm{dm}^{-3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 141,040\right), 413$ (141,040).
HR ESI-MS m/z 2664.0470 [$\left.\mathrm{M}-\mathrm{PF}_{6}\right]^{+}$(calc. 2664.0521).
Found: C 71.64, H 5.20, N 5.18; $\mathrm{C}_{160} \mathrm{H}_{136} \mathrm{~N}_{10} \mathrm{O}_{10} \mathrm{P}_{3}$ requires $\mathrm{C} 73.09, \mathrm{H} 5.21, \mathrm{~N} 5.33$.

$6 e B r$ Compound 10 ($901 \mathrm{mg}, 897 \mu \mathrm{~mol}, 3.0 \mathrm{eq}$), $\mathrm{HPO}_{3} \mathrm{Et}_{2}(46.3 \mu \mathrm{~L}, 49.6 \mathrm{mg}, 359 \mu \mathrm{~mol}, 1.2 \mathrm{eq}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(195 \mathrm{mg}, 598 \mu \mathrm{~mol}, 2.0 \mathrm{eq}), \mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl} 2$ $\left(17.5 \mathrm{mg}, 23.9 \mu \mathrm{~mol}, 6.66 \mathrm{~mol} \%\right.$) were loaded in a microwave vial. After three vacuum- N_{2} cycles, the reaction mixture was dissolved in $\mathrm{N}_{2}-$ degassed Toluene (24.8 mL), then set at $110^{\circ} \mathrm{C}$ for 18 h . The reaction vessel was allowed to cool down to rt. The crude mixture was brought to dryness by rotavaporation, then redissolved in CHCl_{3} and filtered through a celite plug. The crude mixture was dried again and purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ with EtOAc gradient changing from 19:1 to $9: 1$ to $4: 1$ to $\left.2: 1\right)$, then dried in vacuo. The product was isolated as yellow powder ($202 \mathrm{mg}, 190 \mu \mathrm{~mol}, 63.6 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm} 8.66\left(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{B} 3}\right), 8.62\left(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{C} 3}\right), 7.99\left(\mathrm{dd}, J=12.9,7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{A} 2}\right), 7.91(\mathrm{dd}, J=8.0$, $3.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{A} 3}$), 7.77 (overlapping $\mathrm{d}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{e}+\mathrm{g}}$), $7.71-7.65$ (overlapping $\mathrm{m}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{D} 2+\mathrm{D} 3}$), $7.63\left(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{B5}}\right.$), $7.59(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}$, H^{C5}), $7.51\left(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{E} 3+\mathrm{G} 3}\right), 7.29\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{H}^{\mathrm{F} 3+\mathrm{H} 3}\right.$), 7.23 (overlapping $\mathrm{d}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{b}+\mathrm{c}}$), 7.14 (overlapping $\mathrm{d}, 8 \mathrm{H}, \mathrm{H}^{\mathrm{F} 2+\mathrm{H} 2}$), $7.10-7.04$ (overlapping $\mathrm{m}, 8 \mathrm{H}, \mathrm{H}^{\mathrm{E} 2+\mathrm{G} 2+\mathrm{F} 4+\mathrm{H} 4}$), $4.18\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{Et}-\mathrm{CH} 2}\right), 1.37\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{H}^{\mathrm{Et}-\mathrm{CH} 3}\right.$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm} 156.8\left(\mathrm{C}^{\mathrm{B} 2}\right), 156.7\left(\mathrm{C}^{\mathrm{C} 2}\right), 156.3\left(\mathrm{C}^{\mathrm{B6}}\right), 156.3\left(\mathrm{C}^{\mathrm{B6}}\right), 148.9\left(\mathrm{C}^{\mathrm{C4}}\right), 148.8\left(\mathrm{C}^{\mathrm{B4}}\right), 148.4\left(\mathrm{C}^{\mathrm{E} 1 / \mathrm{G} 1}\right), 148.3\left(\mathrm{C}^{\mathrm{E} 1 / \mathrm{G} 1}\right)$, $147.5\left(C^{F 1+H 1}\right), 143.1\left(d,{ }^{4} J_{C P}=3.11 \mathrm{~Hz}, C^{A 4}\right), 138.0\left(C^{D 4}\right), 133.0\left(C^{e+g}\right), 132.4\left(C^{D 2}\right), 130.6\left(C^{E 4 / G 4}\right), 130.5\left(C^{E 4 / G 4}\right), 129.5\left(C^{F 3+H 3}\right), 129.4\left(C^{b+c}\right), 129.1$ $\left(\mathrm{d},{ }^{1} J_{\mathrm{CP}}=181.01 \mathrm{~Hz}, \mathrm{C}^{\mathrm{A} 1}\right), 129.0\left(\mathrm{C}^{\mathrm{D} 3}\right), 128.3\left(\mathrm{C}^{\mathrm{E} 3+\mathrm{G} 3}\right), 127.5\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CP}}=14.8 \mathrm{~Hz}, \mathrm{C}^{\mathrm{A} 3}\right), 125.0\left(\mathrm{C}^{\mathrm{F} 2+\mathrm{H} 2}\right), 123.7\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CP}}=10.0 \mathrm{~Hz}, \mathrm{C}^{\mathrm{A} 2}\right), 123.5\left(\mathrm{C}^{\mathrm{F} 4+\mathrm{H} 4}\right)$, $123.5\left(\mathrm{C}^{\mathrm{D} 1}\right), 123.1\left(\mathrm{C}^{\mathrm{E} 2+\mathrm{G} 2}\right), 120.1\left(\mathrm{C}^{\mathrm{B5}}\right), 119.8\left(\mathrm{C}^{\mathrm{C}}\right), 117.9\left(\mathrm{C}^{\mathrm{B3}}\right), 117.6\left(\mathrm{C}^{\mathrm{C} 3}\right), 62.4\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CP}}=5.40 \mathrm{~Hz}, \mathrm{C}^{\mathrm{Et}-\mathrm{CH} 2}\right), 16.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=6.47 \mathrm{~Hz}, \mathrm{C}^{\mathrm{Et}-\mathrm{CH} 3}\right)$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(202 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$ ס/ppm 18.2 (s, P).
UV-VIS ($\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}\right) \lambda / \mathrm{nm} 271\left(\varepsilon / \mathrm{dm}^{-3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 65,930\right), 400(56,860)$.
HR ESI-MS m/z 1063.3190 [$\mathrm{M}+\mathrm{H}]^{+}$(calc. 1063.3190).
Found: C 74.09, H 5.26, N 4.93; $\mathrm{C}_{66} \mathrm{H}_{54} \mathrm{BrN}_{4} \mathrm{O}_{3} \mathrm{P}$ requires $\mathrm{C} 74.64, \mathrm{H} 5.13, \mathrm{~N} 5.28$.

$6 e$ Compound 6 eBr ($155 \mathrm{mg}, 146 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$), 4,4'-Dimethoxydiphenylamine ($41.8 \mathrm{mg}, 183 \mu \mathrm{~mol}, 1.25 \mathrm{eq}$), $\mathrm{NaOtBu}(21.0 \mathrm{mg}, 219 \mu \mathrm{~mol}$, 1.50 eq), $\mathrm{Pd}(\mathrm{dba}) 2(4.2 \mathrm{mg}, 7.3 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%)$, Ruphos ($6.95 \mathrm{mg}, 14.6 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$) were loaded in a microwave vial. After three vacuumN 2 cycles, the reaction mixture was dissolved in N_{2}-degassed Toluene (15 mL), then set at $90^{\circ} \mathrm{C}$ for 18 h . The reaction vessel was allowed to cool down to $r t$. The reaction mixture was transferred in a separatory funnel and water added. The water emulsion containing most of the material was dissolved by addition of NaOH solution (3 M , ca. 3 mL). The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 x 20 \mathrm{~mL}$). The organic layers were brought to dryness by rotavaporation. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ with $\mathrm{EtOAc} \mathrm{K}^{2}$ gradient from 39:1 to $29: 1$ after elution of main yellow band), then dried in vacuo. The product was isolated as deep orange crystalline powder ($103 \mathrm{mg}, 85.3 \mu \mathrm{~mol}, 58.4 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm} 8.64\left(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{B} 3}\right), 8.62\left(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{C}}\right), 7.98\left(\mathrm{dd}, J=12.9,8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{A} 2}\right), 7.90(\mathrm{dd}, J=8.2$, $3.6 \mathrm{~Hz}, \mathrm{H}^{\mathrm{A} 3}$), 7.76 (overlapping $\mathrm{d}, 2 \mathrm{H}, \mathrm{H}^{h+f}$), $7.66\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{D} 3}\right.$), 7.60 (overlapping $\mathrm{s}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{B5}+\mathrm{C} 5}$), 7.51 (overlapping $\mathrm{m}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{F3}+\mathrm{H} 3}$), $7.30-7.27$ (overlapping $\mathrm{t}, 8 \mathrm{H}, \mathrm{H}^{\mathrm{G} 3+13}$), 7.22 (overlapping $\mathrm{d}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{b}+\mathrm{c}}$), $7.16-7.11$ (overlapping $\mathrm{m}, 12 \mathrm{H}, \mathrm{H}^{\mathrm{G} 2+12+E 2}$), $7.10-7.02$ (overlapping m, 10 H , $\left.\mathrm{H}^{\mathrm{D} 2+\mathrm{F} 2+\mathrm{G} 4+\mathrm{H} 2+14}\right), 6.87\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{E} 3}\right), 4.16\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{Et}-\mathrm{CH} 2}\right), 3.82\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}^{0 \mathrm{CH} 3}\right), 1.36\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{H}^{\mathrm{Et}-\mathrm{CH} 3}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm} 157.2\left(\mathrm{C}^{\mathrm{B} 2}\right)$, $156.4\left(\mathrm{C}^{\mathrm{E} 4}\right)$, $156.2\left(\mathrm{C}^{\mathrm{B6}}\right)$, $156.2\left(\mathrm{C}^{\mathrm{C} 2}\right), 155.9\left(\mathrm{C}^{\mathrm{C} 6}\right), 149.8\left(\mathrm{C}^{\mathrm{D} 1}\right), 148.8\left(\mathrm{C}^{\mathrm{B4}}\right), 148.0\left(\mathrm{C}^{\mathrm{F} 1}\right), 148.0$ $\left(\mathrm{C}^{\mathrm{H} 1}\right), 147.5\left(\mathrm{C}^{\mathrm{G} 1}\right), 147.5\left(\mathrm{C}^{11}\right), 143.14\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{CP}}=2.74 \mathrm{~Hz}, \mathrm{C}^{\mathrm{A} 4}\right), 140.5\left(\mathrm{C}^{\mathrm{E} 1}\right), 132.9\left(\mathrm{C}^{\mathrm{f}}\right), 132.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=10.2 \mathrm{~Hz}, \mathrm{C}^{\mathrm{A} 2}\right), 132.4\left(\mathrm{C}^{\mathrm{h}}\right), 130.8\left(\mathrm{C}^{\mathrm{F} 4 / \mathrm{H} 4}\right), 130.7$ $\left(\mathrm{C}^{\mathrm{F4/H4}}\right), 129.8\left(\mathrm{C}^{\mathrm{D} 4}\right), 129.5\left(\mathrm{C}^{\mathrm{G3}}\right), 129.5\left(\mathrm{C}^{13}\right), 128.8\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=174.5 \mathrm{~Hz}, \mathrm{C}^{\mathrm{A} 1}\right), 128.3\left(\mathrm{C}^{\mathrm{F} 3 / \mathrm{H} 3}\right), 128.2\left(\mathrm{C}^{\mathrm{F} 3 / \mathrm{H} 3}\right), 127.8\left(\mathrm{C}^{\mathrm{D} 3}\right), 127.5\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CP}}=15.2 \mathrm{~Hz}, \mathrm{C}^{\mathrm{A3}}\right)$,
$127.2\left(C^{E 2}\right), 126.9\left(C^{c}\right), 126.5\left(C^{b}\right), 124.9\left(C^{62}\right), 124.9\left(C^{12}\right), 123.4\left(C^{64}\right), 123.4\left(C^{14}\right), 123.2\left(C^{F 2}\right), 123.2\left(C^{H 2}\right), 120.0\left(C^{D 2}\right), 119.9\left(C^{C 5}\right), 119.3\left(C^{B 5}\right)$, $117.9\left(\mathrm{C}^{\mathrm{B3}}\right), 117.0\left(\mathrm{C}^{\mathrm{C} 3}\right), 115.0\left(\mathrm{C}^{\mathrm{E} 3}\right), 55.7$ ($\left.\mathrm{C}^{\mathrm{OCH}}\right)$,
$62.4\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=5.4 \mathrm{~Hz}, \mathrm{C}^{\mathrm{Et}-\mathrm{CH}}\right.$), 16.6 ($\left.\mathrm{d},{ }^{3}{ }_{\mathrm{CP}}=6.3 \mathrm{~Hz}, \mathrm{C}^{\mathrm{Et}-\mathrm{CH} 3}\right)$; C 4 not resolved in HMBC .
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($202 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) 8/ppm 18.3 (s, P).
UV-VIS ($\mathrm{CH}_{2} \mathrm{Cl}_{2}, 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$) $\lambda / \mathrm{nm} 298\left(\varepsilon / \mathrm{dm}^{-3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 69,600\right)$, 385 (91,570).
HR ESI-MS $m / z 1210.5025[\mathrm{M}+\mathrm{H}]^{+}$(calc. 1210.5031).
Found: C 78.90, H 5.73, N 5.77; $\mathrm{C}_{80} \mathrm{H}_{68} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{P}$ requires C 79.38, H 5.66, N 5.79.

6 Compound 6 e ($52.7 \mathrm{mg}, 43.6 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$) was loaded in a round-bottom flask and dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL}) . \mathrm{TMSBr}(46.0 \mu \mathrm{~L}$, $53.4 \mathrm{mg}, 349 \mu \mathrm{~mol}, 8.0 \mathrm{eq}$) was added dropwise into the reaction mixture and stirred under N_{2} at rt overnight. The solvent was removed by rotavaporation and the residue was redissolved with the smallest amount of $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(9: 1)$. Addition of $\mathrm{Et}_{2} \mathrm{O}$ afforded precipitation of the product, which was filtered and rinsed with small portions of $\mathrm{Et}_{2} \mathrm{O}$, then dried in vacuo. The product is isolated as a deep purple solid ($41.85 \mathrm{mg}, 36.3 \mu \mathrm{~mol}, 83.2 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- d_{6}) $\delta / \mathrm{ppm} 8.66$ (overlapping $\mathrm{s}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{B}+\mathrm{C} 3}$), $8.35\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{B5}}\right), 8.21\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{C5}}\right), 8.09$ (overlapping $\mathrm{m}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{A} 3+f+\mathrm{h}}$), 8.00 $\left(\mathrm{d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{D} 3}\right.$), 7.88 ($\mathrm{dd}, J=12.6,7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{A} 2}$), 7.62 (overlapping $\mathrm{t}, \mathrm{J}=8.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{F} 3+\mathrm{H} 3}$), $7.55\left(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{b} / \mathrm{c}}\right.$), $7.43(\mathrm{~d}, J=$ $16.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{b} / \mathrm{c}}$), 7.36 (overlapping $\mathrm{t}, 8 \mathrm{H}, \mathrm{H}^{\mathrm{G} 3+13}$), $7.17-7.07$ (overlapping $\mathrm{m}, 16 \mathrm{H}, \mathrm{H}^{\mathrm{E} 2+62+64+12+14}$), 6.99 (overlapping $\mathrm{m}, 8 \mathrm{H}, \mathrm{H}^{\mathrm{E} 3+52+\mathrm{H} 2}$), $6.87(\mathrm{~d}$, $\left.J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{D} 2}\right), 3.77\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}^{\mathrm{OCH}}\right)$.
 $146.6\left(C^{11}\right), 138.9\left(C^{E 1}\right), 138.8\left(C^{A 4}\right), 135.6\left(d,{ }^{1} J_{C P}=180.95 \mathrm{~Hz}, C^{A 1}\right) 134.9\left(C^{f}\right), 134.9\left(C^{h}\right), 131.2\left(d,{ }^{2} J_{C P}=9.63 \mathrm{~Hz}, C^{A 2}\right), 129.8\left(C^{G 3 / 13}\right), 129.7$ $\left(\mathrm{C}^{\mathrm{G3} / 13}\right), 129.6\left(\mathrm{C}^{\mathrm{F} 4}\right), 129.6\left(\mathrm{C}^{\mathrm{H} 4}\right), 129.2\left(\mathrm{C}^{\mathrm{D} 3}\right), 129.0\left(\mathrm{C}^{\mathrm{F} / \mathrm{H}^{3}}\right), 128.6\left(\mathrm{C}^{\mathrm{F} 3 / \mathrm{H} 3}\right), 127.6\left(\mathrm{C}^{\mathrm{E} 2}\right), 127.1\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CP}}=14.3 \mathrm{~Hz}, \mathrm{C}^{\mathrm{A} 3}\right), 125.5\left(\mathrm{C}^{\mathrm{D} 4}\right), 125.4\left(\mathrm{C}^{64 / 4}\right)$, $124.8\left(C^{G 2 / 12}\right), 124.3\left(C^{b / c}\right), 124.3\left(C^{b / C}\right), 124.2\left(C^{G 4 / 4}\right), 123.9\left(C^{G 2 / 12}\right), 121.9\left(C^{F 2}\right), 121.9\left(C^{H 2}\right), 120.8\left(C^{C 5}\right), 118.0\left(C^{B 3}\right), 117.7\left(C^{D 2}\right), 117.6\left(C^{B 5}\right)$, $117.1\left(\mathrm{C}^{\mathrm{C}}\right)$, $115.2\left(\mathrm{C}^{\mathrm{E} 3}\right), 55.3\left(\mathrm{C}^{\mathrm{CH}}{ }^{\mathrm{CH}}\right) ; \mathrm{B} 2, \mathrm{C} 2$ and C 4 not resolved in HMBC .
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($202 \mathrm{MHz}, 298$ K, DMSO-d ${ }_{6}$) 8/ppm 11.9 (s, P).
HR ESI-MS m/z 1152.4263 [$\mathrm{M}^{-H]^{-}}$(calc. 1152.4259).

[Cu(6)(6-H)] Compound $6(37.9 \mathrm{mg}, 32.8 \mu \mathrm{~mol}, 2.0 \mathrm{eq})$ was loaded in a round bottom flask and dissolved in a $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ mixture (8 mL). After addition of $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}_{4}\right)_{4}\right]\left[\mathrm{PF}_{6}\right](3.65 \mathrm{~mL}$ of a 4.49 mM solution, $16.4 \mu \mathrm{~mol}, 1.0 \mathrm{eq})$ the mixture was set under stirring overnight. The reaction mixture was dried by rotavaporation and redissolved in minimum amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ mixture. Then n-Hexane was added to the reaction mixture to afford precipitation of the product. The precipitate was filtered, washed with small amounts of n-hexane, then dried in vacuo. The product was isolated as a dark red powder ($31.2 \mathrm{mg}, 13.1 \mu \mathrm{~mol}, 80.1 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta / \mathrm{ppm} 8.87\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{B} 3}\right), 8.81\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{C} 3}\right), 8.35\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{B5}}\right), 8.18\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{C5}}\right), 7.98\left(\mathrm{dd}, \mathrm{J}=8.1,3.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{A} 3}\right)$, $7.80\left(\mathrm{dd}, \mathrm{J}=12.6,7.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{A} 2}\right.$), $7.74\left(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{D} 3}\right.$), 7.61 (overlapping d, $4 \mathrm{H}, \mathrm{H}^{\mathrm{f+h}}$), 7.22 (overlapping t, $16 \mathrm{H}, \mathrm{H}^{63+13}$), $7.07-7.01$
(overlapping $\left.\mathrm{m}, 12 \mathrm{H}, \mathrm{H}^{\mathrm{E} 2+64+14}\right), 6.97\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}^{\mathrm{E} 3}\right.$), $6.91-6.81$ (overlapping $\mathrm{m}, 20 \mathrm{H}, \mathrm{H}^{\mathrm{b}+\mathrm{c}+62+12}$), $6.76\left(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{D} 2}\right.$), 6.72 (overlapping d, $8 \mathrm{H}, \mathrm{H}^{\mathrm{F}+\mathrm{H} 3}$), 6.61 (overlapping d, $8 \mathrm{H}, \mathrm{H}^{\mathrm{F} 2+\mathrm{H} 2}$), 3.77 ($\mathrm{d}, \mathrm{J}=3.4 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{H}^{0 \mathrm{CH}}$).
 $146.4\left(C^{11}\right), 139.1\left(C^{E 1}\right), 138.6\left(C^{A 4}\right), 135.5\left(d^{1} J_{C P}=186.4 \mathrm{~Hz}, C^{A 1}\right), 134.4\left(C^{f / h}\right), 134.0\left(C^{f / h}\right), 131.2\left(C^{A 2}\right), 129.6\left(C^{G 3}\right), 129.6\left(C^{13}\right), 128.7\left(C^{F 4}\right), 128.7$ $\left(\mathrm{C}^{\mathrm{H} 4}\right), 128.3\left(\mathrm{C}^{\mathrm{D} 3}\right), 127.6\left(\mathrm{C}^{F 3}\right), 127.6\left(\mathrm{C}^{H 3}\right), 127.4\left(\mathrm{C}^{\mathrm{E} 2}\right), 127.1\left(\mathrm{C}^{\mathrm{A} 3}\right), 126.7\left(\mathrm{C}^{\mathrm{D} 4}\right), 126.6\left(\mathrm{C}^{\mathrm{b}}\right), 126.6\left(\mathrm{C}^{\mathrm{C}}\right), 124.7\left(\mathrm{C}^{\mathrm{G} 2}\right), 124.7\left(\mathrm{C}^{12}\right), 123.8\left(\mathrm{C}^{\mathrm{G} 4}\right), 123.8$ $\left(\mathrm{C}^{14}\right), 121.3\left(\mathrm{C}^{\mathrm{F} 2}\right), 121.3\left(\mathrm{C}^{\mathrm{H} 2}\right), 119.7\left(\mathrm{C}^{\mathrm{B5}}\right), 118.8\left(\mathrm{C}^{\mathrm{B} 3}\right), 118.5\left(\mathrm{C}^{\mathrm{C5}}\right), 118.1\left(\mathrm{C}^{\mathrm{C}}\right), 117.8\left(\mathrm{C}^{\mathrm{D} 2}\right), 115.1\left(\mathrm{C}^{\mathrm{E} 3}\right), 55.3\left(\mathrm{C}^{\mathrm{OCH}}\right)$; $\mathrm{B} 2, \mathrm{C} 2$ and C 4 not resolved in HMBC.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($202 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}^{-d_{6}}$) 8/ppm 12.2 (s, P).
HR MALDI-ToF-MS m/z $2369.7939[\mathrm{M}+\mathrm{H}]^{+}$(calc. 2369.7955), m/z 2391.7764 [$\left.\mathrm{M}+\mathrm{Na}\right]^{+}$(calc. 2391.7774).

[$\left.\mathrm{Cu}(6 e)_{2}\right]\left[\mathrm{PF}_{6}\right]$ Compound $\mathbf{6 e}(109.4 \mathrm{mg}, 90.4 \mu \mathrm{~mol}, 2.0 \mathrm{eq})$ was loaded in a round-bottom flask and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$. After addition of $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}_{4}\right)_{4}\right]\left[\mathrm{PF}_{6}\right](16.8 \mathrm{mg}, 45.2 \mu \mathrm{~mol}, 1.0 \mathrm{eq})$, the mixture was set under stirring overnight. The reaction mixture was dried by rotavaporation and redissolved in Acetone (1 mL). Then n -hexane was added to the reaction mixture to afford precipitation of the product. This was collected, washed with small amounts of n-hexane and $\mathrm{Et}_{2} \mathrm{O}$, then dried in vacuo. The product was isolated as a red powder (91.2 $\mathrm{mg}, 34.7 \mu \mathrm{~mol}, 76.7 \%)$.
${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone- d_{6}) $\delta / \mathrm{ppm} 8.80\left(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{B}}\right), 8.71\left(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{C} 3}\right), 8.28\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{B5}}\right), 8.13\left(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{C} 5}\right)$, $7.99\left(\mathrm{dd}, J=8.1,3.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}^{A 3}\right), 7.91\left(\mathrm{dd}, J=12.8,7.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{A} 2}\right), 7.68\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{D} 3}\right), 7.62\left(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{f}}\right), 7.58(\mathrm{~d}, \mathrm{~J}=16.3 \mathrm{~Hz}, 2 \mathrm{H}$, H^{h}), $7.28-7.23$ (overlapping $\mathrm{t}, 16 \mathrm{H}, \mathrm{H}^{63+13}$), $7.11-7.05$ (overlapping $\mathrm{m}, 16 \mathrm{H}, \mathrm{H}^{\mathrm{b}+\mathrm{c}+\mathrm{E}+6+64+14}$), $6.97\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}^{\mathrm{E}}\right.$), $6.91-6.85$ (overlapping $\mathrm{m}, 28 \mathrm{H}$, $\mathrm{H}^{\mathrm{D} 2+53+62+\mathrm{H}+12}$), 6.69 (overlapping d, $8 \mathrm{H}, \mathrm{H}^{\mathrm{F} 2+\mathrm{Hz}}$), $4.09\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}^{\mathrm{Et}-\mathrm{CH} 2}\right.$), $3.83\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{H}^{0 \mathrm{CH} 3}\right), 1.29\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{H}^{\mathrm{Et}-\mathrm{CH} 3}\right)$.
 $149.4\left(\mathrm{C}^{\mathrm{F} 1}\right), 149.4\left(\mathrm{C}^{\mathrm{H} 1}\right), 147.9\left(\mathrm{C}^{\mathrm{G} 1}\right), 147.9\left(\mathrm{C}^{11}\right), 141.9\left(\mathrm{C}^{\mathrm{A} 4}\right), 140.5\left(\mathrm{C}^{\mathrm{E} 1}\right), 135.7\left(\mathrm{C}^{\mathrm{f}}\right), 135.2\left(\mathrm{C}^{\mathrm{h}}\right), 132.2\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=188.8 \mathrm{~Hz}, \mathrm{C}^{\mathrm{A} 1}\right), 130.4\left(\mathrm{C}^{\mathrm{E} 4}\right), 130.0$ $\left(\mathrm{C}^{\mathrm{F} / / \mathrm{H} 4}\right), 129.0\left(\mathrm{C}^{\mathrm{D} 3}\right), 128.8\left(\mathrm{C}^{\left.\mathrm{F} 3 / \mathrm{H}^{3}\right)}\right.$), $128.7\left(\mathrm{C}^{\mathrm{E} 2}\right), 128.4\left(\mathrm{C}^{\mathrm{F} 3 / \mathrm{H} 3}\right), 128.2\left(\mathrm{C}^{\mathrm{A} 3}\right), 128.1\left(\mathrm{C}^{\mathrm{D} 4}\right), 126.2\left(\mathrm{C}^{\mathrm{C}}\right), 126.0\left(\mathrm{C}^{\mathrm{G} 2 / 12}\right), 125.9\left(\mathrm{C}^{\mathrm{G} 2 / 12}\right), 125.4\left(\mathrm{C}^{\mathrm{b}}\right), 124.8$ $\left(C^{G 4 / 4}\right), 124.7\left(C^{G 4 / 4}\right), 123.3\left(C^{A 2}\right), 122.4\left(C^{F 2}\right), 122.4\left(C^{H 2}\right), 121.1\left(C^{B 5}\right), 120.4\left(C^{G 3}\right), 120.4\left(C^{13}\right), 120.1\left(C^{B 3}\right), 119.8\left(C^{C 5}\right), 119.1\left(C^{C 3}\right), 119.1\left(C^{D 2}\right)$, 115.9 ($\mathrm{C}^{\mathrm{E} 3}$), 62.7 ($\left.\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{CP}}=5.5 \mathrm{~Hz}, \mathrm{C}^{\mathrm{Et}-\mathrm{CH} 2}\right), 55.9$ ($\mathrm{C}^{0 \mathrm{CH}}$), 16.8 ($\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{CP}}=6.1 \mathrm{~Hz}, \mathrm{C}^{\mathrm{Et}-\mathrm{CH} 3}$).
${ }^{31}$ P $\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($202 \mathrm{MHz}, 298 \mathrm{~K}$, acetone- d_{6}) $\delta / \mathrm{ppm} 21.9$ ($\mathrm{s}, \mathrm{P}^{\text {PO3Et2 }}$), -139.0 (hept, ${ }^{1} \mathrm{~J}_{\text {PF }}=707.4 \mathrm{~Hz}$, P $^{\text {PF6 }}$).
UV-VIS ($\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}\right) \lambda / \mathrm{nm} 297\left(\varepsilon / \mathrm{dm}^{-3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 124,240\right), 414(134,030)$.
HR ESI-MS $m / z 1240.9583\left[\mathrm{M}^{2} \mathrm{PF}_{6}\right]^{2+}$ (calc. 1240.9601).
Found: C 71.64, H5.20, N 5.18; $\mathrm{C}_{160} \mathrm{H}_{136} \mathrm{~N}_{10} \mathrm{O}_{10} \mathrm{P}_{3}$ requires $\mathrm{C} 73.09, \mathrm{H} 5.21, \mathrm{~N} 5.33$.

NMR Spectra

Figure S1: ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{d}$-TFA, 298 K) of 8. ${ }^{*}=\mathrm{CHCl}_{3}, \S=\mathrm{H}^{\mathrm{TFA}}$

Fig. S2 The aromatic region of the HMQC spectrum ($500 \mathrm{MHz}{ }^{1} \mathrm{H}, 126 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{CDCl}_{3}+\mathrm{d}-\mathrm{TFA}, 298 \mathrm{~K}$) of 8.

Fig. S3 Part of the HMBC spectrum ($500 \mathrm{MHz}{ }^{1} \mathrm{H}, 126 \mathrm{MHz}^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{CDCl}_{3}+\mathrm{d}-\mathrm{TFA}, 298 \mathrm{~K}$) of 8. ${ }^{*}=\mathrm{CHCl}_{3}$.

Figure $\mathbf{S 4}{ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{d}$-TFA, 298 K) of $\mathbf{3 e}$. ${ }^{*}=\mathrm{CHCl}_{3}, \S=\mathrm{H}^{\mathrm{TFA}}$.

Fig. S5 The aromatic region of the HMQC spectrum ($500 \mathrm{MHz}{ }^{1} \mathrm{H}, 126 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{CDCl}_{3}+\mathrm{d}-\mathrm{TFA}, 298 \mathrm{~K}$) of $\mathbf{3 e} .{ }^{*}=\mathrm{CHCl}_{3}$.

Fig. S6 Part of the HMBC spectrum ($500 \mathrm{MHz}{ }^{1} \mathrm{H}, 126 \mathrm{MHz}^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{CDCl}_{3}+\mathrm{d}-\mathrm{TFA}, 298 \mathrm{~K}$) of 3e. ${ }^{*}=\mathrm{CHCl}_{3}, \S=$ TFA.

Fig. $\mathbf{S 7}{ }^{1} \mathrm{H}$ NMR spectrum (500 MHz , acetone- $\mathrm{d}_{6}, 298 \mathrm{~K}$) of $\left[\mathrm{Cu}(3 \mathrm{e})_{2}\right]\left[\mathrm{PF}_{6}\right] . *=$ acetone- $\mathrm{d}_{5},{ }^{* *}=\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{HDO}, \S=\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Fig. S8 The aromatic region of the HMQC spectrum ($500 \mathrm{MHz}{ }^{1} \mathrm{H}, 126 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$, acetone- $\left.\mathrm{d}_{6}, 298 \mathrm{~K}\right)$ of $\left[\mathrm{Cu}(3 \mathrm{e})_{2}\right]\left[\mathrm{PF} \mathrm{F}_{6}\right]$.

Fig. S9 Part of the HMBC spectrum (500 MHz , acetone- $\mathrm{d}_{6}, 298 \mathrm{~K}$) of $\left[\mathrm{Cu}(3 \mathrm{e})_{2}\right]\left[\mathrm{PF}_{6}\right]$. $*=$ acetone- $\mathrm{d}_{5}, * *=\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{HDO}, \S=\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Fig. S10 ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CH}_{3} \mathrm{OD}, 298 \mathrm{~K}$) of 3. ${ }^{*}=\mathrm{CH}_{3} \mathrm{OD},{ }^{* *}=\mathrm{H} 2 \mathrm{O}, \S=\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Fig. S11 The aromatic region of the HMQC spectrum ($\left.500 \mathrm{MHz}{ }^{1} \mathrm{H}, 126 \mathrm{MHz}^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\}, \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}$) of 3 .

Fig. S12 Part of the HMBC spectrum ($500 \mathrm{MHz}{ }^{1} \mathrm{H}, 126 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}$) of 3. ${ }^{*}=\mathrm{CH}_{3} \mathrm{OD},{ }^{* *}=\mathrm{H} 2 \mathrm{O}, \S=\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	5

Fig. S13 ${ }^{1} \mathrm{H}$ NMR spectrum (500 MHz , acetone- $\mathrm{d}_{6}, 298 \mathrm{~K}$) of $[\mathrm{Cu}(3)(3-\mathrm{H})] .{ }^{*}=$ acetone- d_{5}.

Fig. S14 The aromatic region of the HMQC spectrum ($500 \mathrm{MHz}{ }^{1} \mathrm{H}, 126 \mathrm{MHz}^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$, acetone- $\mathrm{d}_{6}, 298 \mathrm{~K}$) of [Cu(3)(3-H)].

Fig. S15 Part of the HMBC spectrum ($500 \mathrm{MHz}{ }^{1} \mathrm{H}, 126 \mathrm{MHz}^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$, acetone $-\mathrm{d}_{6}, 298 \mathrm{~K}$) of $[\mathrm{Cu}(\mathbf{3})(3-\mathrm{H})]$. * $=$ acetone- d_{5}.

8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5
1.0														

Fig. S16 ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of 10. ${ }^{*}=\mathrm{CHCl}_{3},{ }^{* *}=\mathrm{H}_{2} \mathrm{O}, \S=\mathrm{TMS}, \S \S=\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Fig. S17 The aromatic region of the HMQC spectrum ($\left.\left.500 \mathrm{MHz}{ }^{1} \mathrm{H}, 126 \mathrm{MHz}^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ of 10. ${ }^{*}=\mathrm{CHCl}_{3}$.

Fig. S18 Part of the HMBC spectrum ($500 \mathrm{MHz}{ }^{1} \mathrm{H}, 126 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of 10. ${ }^{*}=\mathrm{CHCl}_{3}$.

Fig. $\mathbf{S 1 9}{ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of $\mathbf{4 e}$. ${ }^{*}=\mathrm{CHCl}_{3},{ }^{* *}=\mathrm{H}_{2} \mathrm{O}, \S=\mathrm{Et}_{2} \mathrm{O}$.

Fig. S20 The aromatic region of the HMQC spectrum ($500 \mathrm{MHz}{ }^{1} \mathrm{H}, 126 \mathrm{MHz}^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of $\mathbf{4 e} .^{*}=\mathrm{CHCl}_{3}$.

Fig. S21 Part of the HMBC spectrum ($500 \mathrm{MHz}{ }^{1} \mathrm{H}, 126 \mathrm{MHz}^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of $4 \mathrm{e} .{ }^{*}=\mathrm{CHCl}_{3},{ }^{* *}=\mathrm{H}_{2} \mathrm{O}, \S=\mathrm{Et}_{2} \mathrm{O}$.

Fig. S22 ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{DMSO}_{-} \mathrm{d}_{6}, 298 \mathrm{~K}$) of 4. ${ }^{*}=\mathrm{DMSO}^{2} \mathrm{~d}_{5}$.

Fig. S23 The aromatic region of the HMQC spectrum ($500 \mathrm{MHz}{ }^{1} \mathrm{H}, 126 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$, DMSO- $\mathrm{d}_{6}, 298 \mathrm{~K}$) of 4 .

Fig. S24 The aromatic region of the HMBC spectrum ($500 \mathrm{MHz}{ }^{1} \mathrm{H}, 126 \mathrm{MHz}^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$, DMSO- $\mathrm{d}_{6}, 298 \mathrm{~K}$) of 4.

Fig. $\mathbf{S 2 5}{ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of 5. ${ }^{*}=\mathrm{CHCl}_{3},{ }^{* *}=\mathrm{H}_{2} \mathrm{O}$.

Fig. S26 The aromatic region of the HMBC spectrum ($500 \mathrm{MHz}^{1} \mathrm{H}, 126 \mathrm{MHz}^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of $\mathbf{5}$. ${ }^{*}=\mathrm{CHCl}_{3}$.

Fig. S27 Part of the HMBC spectrum ($500 \mathrm{MHz}{ }^{1} \mathrm{H}, 126 \mathrm{MHz}^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of 5. ${ }^{*}=\mathrm{CHCl}_{3}$.

Fig. S28 ${ }^{1} \mathrm{H}$ NMR spectrum (500 MHz , acetone- $\mathrm{d}_{6}, 298 \mathrm{~K}$) of $\left[\mathrm{Cu}(5)_{2}\right]\left[\mathrm{PF}_{6}\right]$. ${ }^{*}=$ acetone- $\mathrm{d}_{5},{ }^{* *}=\mathrm{H}_{2} \mathrm{O}$ and HDO .

Fig. S29 The aromatic region of the HMBC spectrum ($500 \mathrm{MHz}{ }^{1} \mathrm{H}, 126 \mathrm{MHz}^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$, acetone- $\mathrm{d}_{6}, 298 \mathrm{~K}$) of $\left[\mathrm{Cu}(5)_{2}\right]\left[\mathrm{PF}_{6}\right]$.

Fig. S30 Part of the HMBC spectrum ($500 \mathrm{MHz}{ }^{1} \mathrm{H}, 126 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$, acetone- $\mathrm{d}_{6}, 298 \mathrm{~K}$) of $\left[\mathrm{Cu}(5)_{2}\right]\left[\mathrm{PF}_{6}\right]$. * $=$ acetone- d_{5}, ** $=\mathrm{H}_{2} \mathrm{O}$ and HDO .

Fig. S31 ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of $6 \mathrm{eBr} .{ }^{*}=\mathrm{CHCl}_{3},{ }^{* *}=\mathrm{H}_{2} \mathrm{O}, \S=\mathrm{CHX}, \S \S=\mathrm{H}$-grease.

Fig. S32 The aromatic region of the HMBC spectrum ($500 \mathrm{MHz}{ }^{1} \mathrm{H}, 126 \mathrm{MHz}^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of 6 eBr . ${ }^{*}=\mathrm{CHCl}_{3}$

Fig. S33 Part of the HMBC spectrum ($500 \mathrm{MHz}{ }^{1} \mathrm{H}, 126 \mathrm{MHz}^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of $6 \mathrm{eBr} .{ }^{*}=\mathrm{CHCl}_{3},{ }^{* *}=\mathrm{H}_{2} \mathrm{O}, \S=\mathrm{CHX}, \S \S=\mathrm{H}$-grease.

Fig. $\mathbf{S 3 4}{ }^{1} \mathrm{H}$ NMR spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of $\mathbf{6 e}$. ${ }^{*}=\mathrm{CHCl}_{3},{ }^{* *}=\mathrm{H}_{2} \mathrm{O}, \S=\mathrm{CHX}, \S \S=\mathrm{DMF}, \S \S \S=\mathrm{H}$-grease.

Fig. S35 The aromatic region of the HMQC spectrum ($\left.600 \mathrm{MHz}^{1} \mathrm{H}, 151 \mathrm{MHz}^{13} \mathrm{C}^{1} \mathrm{H}\right\}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of $\mathbf{6 e}$. ${ }^{*}=\mathrm{CHCl}_{3}$

Fig. S36 Part of the HMBC spectrum ($500 \mathrm{MHz}{ }^{1} \mathrm{H}, 151 \mathrm{MHz}^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of $6 \mathbf{e} .{ }^{*}=\mathrm{CHCl}_{3},{ }^{* *}=\mathrm{H}_{2} \mathrm{O}, \S=\mathrm{CHX}, \S \S=\mathrm{DMF}, \S \S \S=\mathrm{H}-$ grease.

Fig. $\mathbf{S 3 7}{ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{DMSO}_{-} \mathrm{d}_{6}, 298 \mathrm{~K}$) of 6. ${ }^{*}=\mathrm{DMSO}^{2} \mathrm{~d}_{5}$.

Fig. S38 The aromatic region of the HMQC spectrum ($500 \mathrm{MHz}{ }^{1} \mathrm{H}, 126 \mathrm{MHz}^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$, DMSO- $\mathrm{d}_{6}, 298 \mathrm{~K}$) of 6 .

Fig. S39 Part of the HMBC spectrum ($500 \mathrm{MHz}{ }^{1} \mathrm{H}, 126 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$, DMSO- $\mathrm{d}_{6}, 298 \mathrm{~K}$) of 6 . * = DMSO- d_{5}.

Fig. S41 The aromatic region of the HMQC spectrum ($500 \mathrm{MHz}{ }^{1} \mathrm{H}, 126 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$, DMSO- $\mathrm{d}_{6}, 298 \mathrm{~K}$) of $[\mathrm{Cu}(6)(6-\mathrm{H})] . *=$ impurity.

Fig. S42 Part of the HMBC spectrum ($500 \mathrm{MHz}{ }^{1} \mathrm{H}, 126 \mathrm{MHz}^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{DMSO}^{-} \mathrm{d}_{6}, 298 \mathrm{~K}$) of $[\mathrm{Cu}(6)(6-\mathrm{H})] .{ }^{*}=\mathrm{DMSO}-\mathrm{d}_{5}, \S=$ impurity.

Fig. S43 ${ }^{1} \mathrm{H}$ NMR spectrum (500 MHz , acetone- $\mathrm{d}_{6}, 298 \mathrm{~K}$) of $\left[\mathrm{Cu}(6)_{2}\right]\left[\mathrm{PF}_{6}\right] .{ }^{*}=$ acetone- $\mathrm{d}_{5},{ }^{* *}=\mathrm{H}_{2} \mathrm{O}, \S=\mathrm{Et}_{2} \mathrm{O}$.

Fig. S44 The aromatic region of the HMQC spectrum $\left(500 \mathrm{MHz}{ }^{1} \mathrm{H}, 126 \mathrm{MHz}^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\right.$, acetone- $\left.\mathrm{d}_{6}, 298 \mathrm{~K}\right)$ of $\left[\mathrm{Cu}(6)_{2}\right]\left[\mathrm{PF}_{6}\right]$.

Fig. S45 Part of the HMBC spectrum ($500 \mathrm{MHz}{ }^{1} \mathrm{H}, 126 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$, acetone- $\mathrm{d}_{6}, 298 \mathrm{~K}$) of $\left[\mathrm{Cu}(6)_{2}\right]\left[\mathrm{PF}_{6}\right]$. * $=$ acetone- $\mathrm{d}_{5}, * *=\mathrm{H}_{2} \mathrm{O}, \S=\mathrm{Et}_{2} \mathrm{O}$.

FT-IR Spectra

Fig. S46 The solid state FT-IR spectrum of 8.

Fig. S47 The solid state FT-IR spectrum of $\mathbf{3 e}$.

Fig. S48 The solid state FT-IR spectrum of $\left[\mathrm{Cu}(\mathbf{3 e})_{2}\right]\left[\mathrm{PF}_{6}\right]$.

Fig. S49 The solid state FT-IR spectrum of $\mathbf{3}$.

Fig. S50 The solid state FT-IR spectrum of [Cu(3)(3-H)].

Fig. S51 The solid state FT-IR spectrum of $\mathbf{1 0}$.

Fig. S52 The solid state FT-IR spectrum of $\mathbf{4 e}$.

Fig. S53 The solid state FT-IR spectrum of 4.

Fig. S54 The solid state FT-IR spectrum of 5.

Fig. S55 The solid state FT-IR spectrum of $\left[\mathrm{Cu}(5)_{2}\right]\left[\mathrm{PF} F_{6}\right]$.

Fig. S56 The solid state FT-IR spectrum of $\mathbf{6 e B r}$.

Fig. S57 The solid state FT-IR spectrum of $\mathbf{6 e}$.

Fig. $\mathbf{S 5 8}$ The solid state FT-IR spectrum of 6 .

Fig. S59 The solid state FT-IR spectrum of $[\mathrm{Cu}(6)(6-\mathrm{H})]$.

Fig. S60 The solid state FT-IR spectrum of $\left[\mathrm{Cu}(\mathbf{6 e})_{2}\right]\left[\mathrm{PF}_{6}\right]$.

HR-MS Spectra

Figure S61 HR-ESI mass spectrum of $\mathbf{8}$ comparing the experimental isotope pattern for the base peak arising from $[\mathrm{M}+\mathrm{H}]^{+}$(top) with the calculated isotope pattern (bottom).

Figure S62 HR-ESI mass spectrum of $\mathbf{3 e}$ comparing the experimental isotope pattern for the base peak arising from $[\mathrm{M}+\mathrm{H}]^{+}$(top) with the calculated isotope pattern (bottom).

Figure $\mathbf{S 6 3} \mathrm{HR}$-ESI mass spectrum of $\left[\mathrm{Cu}(3 \mathrm{e})_{2}\right]\left[\mathrm{PF}_{6}\right]$ comparing the experimental isotope pattern for the base peak arising from $\left[\mathrm{M}-\mathrm{PF}_{6}\right]^{+}$ (top) with the calculated isotope pattern (bottom).

Figure S64 HR-ESI mass spectrum of $\mathbf{3}$ comparing the experimental isotope pattern for the base peak arising from $[\mathrm{M}-\mathrm{H}]^{-}$(top) with the calculated isotope pattern (bottom).

Figure $\mathbf{S} 65 \mathrm{HR}$-ESI mass spectrum of $[\mathrm{Cu}(3)(3-\mathrm{H})]$ comparing the experimental isotope pattern for the base peak arising from $[\mathrm{M}-\mathrm{H}]^{-}$(top) with the calculated isotope pattern (bottom).

Figure $\mathbf{S 6 6} \mathbf{~ H R - E S I}$ mass spectrum of $\mathbf{1 0}$ comparing the experimental isotope pattern for the base peak arising from $[\mathrm{M}+\mathrm{H}]^{+}$(top) with the calculated isotope pattern (bottom).

Figure $\mathbf{S 6 7} \mathbf{H R}$-ESI mass spectrum of $\mathbf{4 e}$ comparing the experimental isotope pattern for the base peak arising from $[\mathrm{M}+\mathrm{H}]^{+}$(top) with the calculated isotope pattern (bottom).

Figure S68 HR-ESI mass spectrum of 4 comparing the experimental isotope pattern for the base peak arising from [$\mathrm{M}-\mathrm{H}]^{-}$(top) with the calculated isotope pattern (bottom).

Figure S69 HR-ESI mass spectrum of $\mathbf{5}$ comparing the experimental isotope pattern for the base peak arising from $[\mathrm{M}+\mathrm{H}]^{+}$(top) with the calculated isotope pattern (bottom).

Figure S70 HR-ESI mass spectrum of $\left[\mathrm{Cu}(5)_{2}\right]\left[\mathrm{PF}_{6}\right]$ comparing the experimental isotope pattern for the base peak arising from $\left[\mathrm{M}-\mathrm{PF}_{6}\right]^{+}$ (top) with the calculated isotope pattern (bottom).

Figure S71 HR-ESI mass spectrum of 6 eBr comparing the experimental isotope pattern for the base peak arising from $[\mathrm{M}+\mathrm{H}]^{+}$(top) with the calculated isotope pattern (bottom).

Figure S72 HR-ESI mass spectrum of $\mathbf{6 e}$ comparing the experimental isotope pattern for the base peak arising from $[\mathrm{M}+\mathrm{H}]^{+}$(top) with the calculated isotope patterns (bottom).

Figure S73 HR-ESI mass spectrum of 6 comparing the experimental isotope pattern for the base peak arising from [M-H] (top) with the calculated isotope pattern (bottom).

Figure S74 HR-MALDI-ToF-MS mass spectrum of [Cu(6)(6-H)] comparing the experimental isotope pattern for the base peak arising from $[\mathrm{M}+\mathrm{H}]^{+}$(top) with the calculated isotope pattern (bottom).

Figure S75 HR-MALDI-ToF-MS mass spectrum of $\left[\mathrm{Cu}(6 \mathbf{e})_{2}\right]\left[\mathrm{PF}_{6}\right]$ comparing the experimental isotope pattern for the base peak arising from $\left[\mathrm{M}-\mathrm{PF}_{6}\right]^{2+}$ (top) with the calculated isotope pattern (bottom).

	Diffusion Coefficient/ $\mathrm{m}^{2} \mathrm{~s}^{-1}$	Species	Peak used for calculation
Neat ligand	5.037×10^{-10}	L	7.84
Ligand:Cu 1:0.5	4.466×10^{-10}	CuL_{2}	7.45
Ligand:Cu 1:1	4.455×10^{-10}	CuL_{2}	7.45
Ligand:Cu 1:2	4.535×10^{-10}	CuL_{2}	7.45
Ligand:Cu 1:2	4.929×10^{-10}	CuL	7.36

Table S1 DOSY experiment data for ligand $\mathbf{5}$ and $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]\left[\mathrm{PF}_{6}\right]$ in different ratios.

Fig. S76 Cyclic voltammograms of the investigated compounds.

Fig. S77 MOs character of investigated compounds. From LUMO+1 to HOMO-1 from top to bottom, respectively. Calculated at a DFT level 6-31G* basis set in polar solvent with Spartan software. ${ }^{3}$

Fig. S78 MOs character of $\left[\mathrm{Cu}(6)_{2}\right]^{+}$and $[\mathrm{Cu}(4)(5)]^{+}$. From $\mathrm{HOMO}-2$ to HOMO-5 from top to bottom, respectively. Calculated at a DFT level 6-31G* basis set in polar solvent with Spartan software. ${ }^{3}$

	$\left[\mathrm{Cu}(\mathbf{6})_{2}\right]^{+}$	$[\mathrm{Cu}(\mathbf{4})(5)]^{+}$	$\left[\mathrm{Cu}(\mathbf{3})_{2}\right]^{+}$	$[\mathrm{Cu}(\mathbf{1})(\mathbf{2})]^{+}$
	E / eV	E / eV	E / eV	E / eV
LUMO+9	-0.93	-0.66	-0.52	-0.52
LUMO+8	-1.00	-0.91	-0.52	-0.56
LUMO+7	-1.10	-1.07	-0.64	-0.64
LUMO+6	-1.15	-1.16	-0.64	-0.66
LUMO+5	-1.23	-1.19	-1.09	-1.03
LUMO+4	-1.31	-1.31	-1.10	-1.11
LUMO+3	-1.54	-1.55	-1.50	-1.45
LUMO+2	-1.62	-1.66	-1.50	-1.59
LUMO+1	-1.89	-1.81	-1.90	-1.77
LUMO	-1.99	-2.03	-1.90	-1.97
HOMO	-4.76	-4.81	-4.86	-4.86
HOMO-1	-4.83	-4.85	-4.87	-4.87
HOMO-2	-4.90	-4.90	-5.19	-5.18
HOMO-3	-4.96	-4.94	-5.20	-5.21
HOMO-4	-5.10	-5.11	-5.48	-5.48
HOMO-5	-5.11	-5.13	-5.72	-5.72
HOMO-6	-5.15	-5.15	-6.19	-6.18
HOMO-7	-5.15	-5.17	-6.70	-6.66
HOMO-8	-5.50	-5.54	-6.71	-6.75
HOMO-9	-5.75	-5.81	-6.78	-6.78

Table S2 MOs energy values from single point DFT calculations Calculated at a DFT level 6-31G* basis set in polar solvent with Spartan software. ${ }^{3}$

Table S3 Day 3 J-V performance data for three sets of cells with dyes 3, 4 and 6.

Dye	$\mathrm{J}_{\mathrm{sc}} / \mathrm{mA}$ cm^{-2}	$\mathrm{Voc} / \mathrm{mV}$	FF/\%	$\eta / \%$	$\eta_{\text {rel. }} / \%$
N719	15.02	615	59	5.42	100.0
3 c 1	1.57	552	64	0.56	10.3
3 c 2	1.91	580	62	0.69	12.7
3 c3	1.87	563	64	0.68	12.5
3 c 4	1.66	559	64	0.60	11.0
3 average	$\begin{gathered} 1.75 \pm \\ 0.16 \end{gathered}$	$\begin{gathered} 564 \pm \\ 12 \end{gathered}$	64 ± 1	$\begin{gathered} 0.63 \pm \\ 0.06 \end{gathered}$	11.6 ± 1.2
4 c 1	4.30	551	71	1.69	31.1
4 c 2	4.18	543	71	1.62	30.0
4 c 3	3.98	541	72	1.54	28.5
4 c 4	4.08	534	72	1.56	28.8
4 average	$\begin{gathered} 4.13 \pm \\ 0.14 \end{gathered}$	$\begin{gathered} 542 \pm \\ 7 \end{gathered}$	72	1.60 ± 0.7	29.6 ± 1.2
6 c1	4.68	598	65	1.83	33.7
6 c2	4.99	610	66	2.00	36.9
6 c3	5.01	595	61	1.80	33.3
6 c4	4.79	600	66	1.90	35.1
6 average	$\begin{gathered} 4.87 \pm \\ 0.16 \end{gathered}$	$\begin{gathered} 601 \pm \\ 6 \end{gathered}$	64 ± 3	$\begin{gathered} 1.88 \pm \\ 0.09 \end{gathered}$	34.7 ± 1.6

Table S4 Day 7 J-V performance data for three sets of cells with dyes 3, 4 and 6.

Dye	$\begin{gathered} \mathrm{J}_{\mathrm{sc}} / \mathrm{mA} \\ \mathrm{~cm}^{-2} \\ \hline \end{gathered}$	$\mathrm{Voc} / \mathrm{mV}$	FF/\%	n/\%	$\eta_{\text {rel. }} / \%$
N719	15.02	615	59	5.42	100.0
3 c 1	1.49	563	64	0.54	10.0
3 c 2	1.83	591	61	0.66	12.2
3 c 3	1.78	577	64	0.65	12.1
3 c 4	1.56	570	63	0.56	10.3
3 average	$\begin{gathered} 1.66 \pm \\ 0.17 \end{gathered}$	$\begin{gathered} 575 \pm \\ 12 \end{gathered}$	63 ± 1	$\begin{gathered} 0.60 \pm \\ 0.06 \end{gathered}$	11.1 ± 1.2
4 c 1	4.17	550	70	1.60	29.5
4 c 2	3.87	543	72	1.51	27.9
4 c 3	3.54	546	72	1.39	25.7
4 c 4	3.74	540	72	1.45	26.8
4 average	$\begin{gathered} 3.83 \pm \\ 0.26 \end{gathered}$	$\begin{gathered} 545 \pm \\ 5 \end{gathered}$	71 ± 1	$\begin{gathered} 1.49 \pm \\ 0.09 \end{gathered}$	27.5 ± 1.6
6 c1	4.73	606	63	1.82	33.5
6 c 2	4.28	616	67	1.75	32.4
6 c3	4.87	606	64	1.90	35.1
6 c4	4.75	608	66	1.90	35.1
6 average	$\begin{gathered} 4.66 \pm \\ 0.26 \\ \hline \end{gathered}$	$\begin{gathered} 609 \pm \\ 5 \\ \hline \end{gathered}$	65 ± 1	$\begin{gathered} 1.84 \pm \\ 0.07 \\ \hline \end{gathered}$	34.0 ± 1.3

Table S5 Day 3 J-V performance data for sets of four or two cells for dyes $[\mathrm{Cu}(\mathbf{3})(\mathbf{3}-\mathrm{H})],[\mathrm{Cu}(\mathbf{1})(\mathbf{2})]^{+},[\mathrm{Cu}(\mathbf{6})(6-\mathrm{H})]$ and $[\mathrm{Cu}(\mathbf{4})(\mathbf{5})]^{+}$.

Dye	$\mathrm{Jsc}^{\text {/ }}$ mA cm ${ }^{-2}$	$\mathrm{Voc} / \mathrm{mV}$	FF/\%	$\eta / \%$	$\eta_{\text {rel. }} / \%$
N719	15.02	615	59	5.42	100.0
$[\mathrm{Cu}(3)(3-\mathrm{H})]^{a} \mathrm{c} 1$	4.81	639	59	1.81	33.4
$[\mathrm{Cu}(3)(3-\mathrm{H})]^{a} \mathrm{c} 2$	3.77	634	63	1.51	27.8
$[\mathrm{Cu}(3)(3-\mathrm{H})]^{a} \mathrm{c} 3$	4.31	639	62	1.70	31.4
$[\mathrm{Cu}(3)(3-\mathrm{H})]^{a} \mathrm{c} 4$	4.61	636	63	1.85	34.1
[Cu(3)(3-H)] average	4.37 ± 0.45	637 ± 3	62 ± 2	1.72 ± 0.15	31.7 ± 2.8
$[\mathrm{Cu}(\mathbf{1})(\mathbf{2})]^{+b, c} \mathrm{c} 1$	3.86	553	64	1.36	25.0
$[\mathrm{Cu}(\mathbf{1})(\mathbf{2})]^{+b, c} \mathrm{c} 2$	4.49	539	62	1.51	27.9
$[\mathrm{Cu}(\mathbf{1})(\mathbf{2})]^{+b, c} \mathrm{c} 3$	3.61	542	63	1.22	22.6
$[\mathrm{Cu}(\mathbf{1})(\mathbf{2})]^{+b, c} \mathrm{c} 4$	4.07	546	59	1.32	24.4
[$\mathrm{Cu}(\mathbf{1})(\mathbf{2})]^{+}$average	4.01 ± 0.37	545 ± 6	62 ± 2	1.35 ± 0.12	$\mathbf{2 5 . 0} \pm \mathbf{2 . 2}$
$[\mathrm{Cu}(6)(6-\mathrm{H})]^{a} \mathrm{c} 1$	6.24	607	61	2.31	42.6
$[\mathrm{Cu}(6)(6-\mathrm{H})]^{a} \mathrm{c} 2$	6.00	609	66	2.43	44.8
[Cu(6)(6-H)] average	6.12 ± 0.17	608 ± 2	64 ± 4	2.37 ± 0.09	43.7 ± 1.6
$[\mathrm{Cu}(4)(5)]^{+c} \mathrm{c} 1$	4.55	532	70	1.71	31.5
$[\mathrm{Cu}(4)(5)]^{+c} \mathrm{c} 2$	4.47	525	71	1.67	30.8
[$\mathrm{Cu}(4)(5)]^{+c} \mathrm{c} 3$	4.42	523	70	1.63	30.1
[$\mathrm{Cu}(4)(5)]^{+c} \mathrm{c} 4$	4.42	523	68	1.58	29.2
[$\mathrm{Cu}(4)(5)]^{+}$average	4.47 ± 0.06	526 ± 4	70 ± 1	1.65 ± 0.05	30.4 ± 1.0

${ }^{a}$ From electrodes functionalised with method b, see Fig. 7. ${ }^{b}$ Set and parameters from our previous work. ${ }^{2}$ From electrodes functionalised with method a.

Table S6 Day 7 J-V performance data for sets of four or two cells for dyes $[\mathrm{Cu}(\mathbf{3})(\mathbf{3}-\mathrm{H})],[\mathrm{Cu}(\mathbf{1})(\mathbf{2})]^{+},[\mathrm{Cu}(\mathbf{6})(6-\mathrm{H})]$ and $[\mathrm{Cu}(\mathbf{4})(\mathbf{5})]^{+}$.

Dye	$\mathrm{Jsc}_{\mathrm{sc}} / \mathrm{mA} \mathrm{cm}^{-2}$	$\mathrm{Voc} / \mathrm{mV}$	FF/\%	ๆ/\%	$\eta_{\text {rel. }} / \%$
N719	15.02	615	59	5.42	100.0
$[\mathrm{Cu}(3)(3-\mathrm{H})]^{a} \mathrm{c} 1$	4.85	643	59	1.84	34.0
$[\mathrm{Cu}(3)(3-\mathrm{H})]^{a} \mathrm{c} 2$	3.69	645	62	1.47	27.2
$[\mathrm{Cu}(3)(3-\mathrm{H})]^{a} \mathrm{c} 3$	4.43	649	62	1.78	32.8
$[\mathrm{Cu}(3)(3-\mathrm{H})]^{a} \mathrm{c} 4$	4.53	646	62	1.82	33.7
[Cu(3)(3-H)] average	4.37 ± 0.49	646 ± 3	61 ± 1	1.73 ± 0.17	31.9 ± 3.2
$[\mathrm{Cu}(\mathbf{1})(\mathbf{2})]^{+b, c} \mathrm{c} 1$	4.16	567	63	1.48	27.4
$[\mathrm{Cu}(\mathbf{1})(\mathbf{2})]^{+b, c} \mathrm{c} 2$	4.67	563	63	1.65	30.5
$[\mathrm{Cu}(\mathbf{1})(\mathbf{2})]^{+b, c} \mathrm{c} 3$	3.79	560	64	1.36	25.1
$\left[\mathrm{Cu}(\mathbf{1) (2)}]^{+b, c} \mathrm{c} 4\right.$	4.12	569	59	1.38	25.4
[$\mathrm{Cu}(\mathbf{1})(\mathbf{2})]^{+}$average	4.18 ± 0.36	565 ± 4	62 ± 2	1.47 ± 0.13	27.1 ± 2.5
$[\mathrm{Cu}(6)(6-\mathrm{H})]^{a} \mathrm{c} 1$	5.65	618	62	2.17	40.1
$[\mathrm{Cu}(6)(6-\mathrm{H})]^{a} \mathrm{c} 2$	5.73	627	64	2.32	42.7
[Cu(6)(6-H)] average	5.69 ± 0.05	622 ± 6	63 ± 2	2.24 ± 0.10	41.4 ± 1.9
$[\mathrm{Cu}(4)(5)]^{+c} \mathrm{c} 1$	4.55	537	71	1.73	32.0
$[\mathrm{Cu}(4)(5)]^{+c} \mathrm{c} 2$	4.44	533	71	1.69	31.2
[$\mathrm{Cu}(4)(5)]^{+c} \mathrm{c} 3$	4.39	530	71	1.64	30.3
$[\mathrm{Cu}(4)(5)]^{+c} \mathrm{c} 4$	4.55	522	65	1.55	28.7
[$\mathrm{Cu}(4)(5)]^{+}$average	4.48 ± 0.08	531 ± 7	70 ± 3	1.65 ± 0.08	30.5 ± 1.4
lectrodes functionalised	hod b, see Fig.	and param	our previ	m electrodes	dith meth

Table S7 Day 3 J-V performance data for three or four sets of cells derived from dipping of 3-functionalised and 6-functionalised electrodes into either $0.01,0.1$ or 1.0 mM solutions of $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]\left[\mathrm{PF}_{6}\right]$.

Dye and Cell number	$\begin{gathered} {\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]\left[\mathrm{PF}_{6}\right] /} \\ \mathrm{mM} \\ \hline \end{gathered}$	$\mathrm{J}_{\mathrm{sc}} / \mathrm{mA} \mathrm{cm}^{-2}$	$\mathrm{Voc} / \mathrm{mV}$	FF/\%	$\eta / \%$	$\eta_{\text {rel. }} / \%$
N719	-	15.02	615	59	5.42	100.0
3 c 1	0.01	3.06	583	69	1.23	22.7
3 c 2	0.01	3.60	569	65	1.34	24.7
3 c 3	0.01	3.47	578	69	1.38	25.5
3 c 4	0.01	3.38	573	68	1.31	24.2
average	-	3.38 ± 0.23	576 ± 6	68 ± 2	1.32 ± 0.06	24.3 ± 1.2
3 c 1	0.1	4.11	583	70	1.68	31.1
3 c 2	0.1	4.06	581	72	1.69	31.2
3 c 3	0.1	4.03	570	73	1.67	30.8
3 c 4	0.1	4.23	602	70	1.79	33.0
average	-	4.11 ± 0.09	584 ± 13	71 ± 1	1.71 ± 0.05	31.5 ± 1.0
3 c 1	1.0	2.16	542	65	0.76	14.0
3 c 2	1.0	2.87	577	62	1.03	19.0
3 c 3	1.0	2.85	573	61	0.99	18.2
average	-	2.63 ± 0.41	564 ± 19	62 ± 2	0.92 ± 0.15	17.0 ± 2.7
6 c 1	0.1	6.84	580	64	2.53	46.8
6 c 2	0.1	6.86	583	61	2.44	45.1
6 c 3	0.1	6.79	579	61	2.40	44.3
6 c 4	0.1	6.45	579	61	2.30	42.4
average	-	6.74 ± 0.19	580 ± 2	62 ± 1	2.42 ± 0.10	44.6 ± 1.8

Table S8. Day 7 J-V performance data for three or four sets of cells derived from dipping of 3-functionalised and 6-functionalised electrodes into either $0.01,0.1$ or 1.0 mM solutions of $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]\left[\mathrm{PF}_{6}\right]$.

Dye and Cell number	$\begin{gathered} {\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]\left[\mathrm{PF}_{6}\right] /} \\ \mathrm{mM} \end{gathered}$	$\mathrm{Jsc} / \mathrm{mA} \mathrm{cm}^{-2}$	Voc/mV	FF/\%	$\eta / \%$	$\eta_{\text {rel. }} / \%$
N719	-	15.02	615	59	5.42	100.0
3 c 1	0.01	3.05	583	70	1.24	22.8
3 c 2	0.01	3.41	568	68	1.31	24.2
3 c 3	0.01	3.39	574	70	1.37	25.3
3 c 4	0.01	3.41	565	69	1.32	24.4
average	-	3.31 ± 0.18	572 ± 8	69 ± 1	1.31 ± 0.06	24.2 ± 1.0
3 c 1	0.1	3.97	564	73	1.62	30.0
3 c 2	0.1	3.92	563	73	1.62	29.9
3 c 3	0.1	3.92	557	74	1.62	30.0
3 c 4	0.1	4.11	584	72	1.74	32.1
average	-	3.98 ± 0.09	567 ± 11	73 ± 1	1.65 ± 0.06	30.5 ± 1.1
3 c 1	1.0	2.07	556	64.7	0.74	13.7
3 c 2	1.0	2.82	591	62.3	1.04	19.2
3 c 3	1.0	2.10	558	64.9	0.76	14.0
average	-	2.33 ± 0.43	568 ± 20	64 ± 1	0.85 ± 0.17	15.7 ± 3.1
6 c 1	0.1	6.64	589	64	2.51	46.4
6 c 2	0.1	6.70	591	61	2.43	44.9
6 c3	0.1	6.58	586	61	2.37	43.7
6 c 4	0.1	6.47	590	61	2.32	42.9
average	-	6.60 ± 0.09	589 ± 2	62 ± 2	2.41 ± 0.08	44.5 ± 1.5

References

1 S. Ashraf, R. Su, J. Akhtar, H. M. Siddiqi and A. El-Shafei, Dyes Pigm., 2018, 150, 347-353.
2 G. Risi, M. Becker, C. E. Housecroft and E. C. Constable, Molecules, 2020, 25, 1528.
3 Spartan '20 version 1.1.2 Wavefunction INC., Irvine, CA 92612

