Non-covalent interaction, adsorption characteristics and solvent effect of procainamide anti-arrhythmias drug on silver and gold loaded silica surfaces: SERS spectroscopy, density functional theory and molecular docking investigations

V. Vetrivelan^a, Sakthivel S^b, S. Muthu^{c*}, Abdulaziz A. Al-Saadi^{d*}

^aDepartment of Physics, Thanthai Periyar Government Institute of Technology, Vellore 632002, India.

^bDepartment of Physics, Panimalar Engineering college, Chennai-600 123, Tamilnadu, India

^dDepartment of Chemistry, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.

Corresponding author Emails: mutgee@gmail.com (S. Muthu); asaadi.kfupm@gmail.com (A. A. Al-Saadi),

^cDepartment of Physics, Arignar Anna Govt. Arts College, Cheyyar 604 407, Tamilnadu, India.

Table S1. Mulliken charges of PA and PA+Ag/Au-SiO₂ in gaseous & water phase computed at the B3LYP/LANL2DZ level.

	I	PA	PA complexes with Ag-SiO ₂							PA complexes with Au-SiO ₂					
Atom			Com	plex 1	Com	plex 2	Com	plex 3	Complex 1		Com	plex 2	Com	plex 3	
	Gas	Water	Gas	Water	Gas	Water	Gas	Water	Gas	Water	Gas	Water	Gas	Water	
01	-0.2876	-0.3521	-0.3142	-0.3765	-0.4181	-0.4353	-0.420	-0.441	-0.3104	-0.3766	-0.4225	-0.4447	-0.2336	-0.2807	
N2	-0.0661	-0.0961	-0.1214	-0.1385	-0.1300	-0.1491	-0.126	-0.149	-0.1309	-0.1504	-0.1227	-0.1375	-0.1440	-0.1574	
N3	-0.4138	-0.4136	-0.3852	-0.3853	-0.3757	-0.3756	-0.369	-0.372	-0.3912	-0.3903	-0.3769	-0.3747	-0.6121	-0.6201	
N4	-0.7103	-0.7217	-0.7633	-0.7575	-0.6876	-0.6970	-0.688	-0.695	-0.8267	-0.8222	-0.6878	-0.6947	-0.6835	-0.6868	
C5	-0.2666	-0.2755	-0.3128	-0.3141	-0.2993	-0.3036	-0.290	-0.296	-0.2985	-0.3034	-0.3096	-0.3116	-0.2924	-0.2890	
C6	-0.2767	-0.2824	-0.2838	-0.2879	-0.2867	-0.2888	-0.290	-0.291	-0.2849	-0.2873	-0.2899	-0.2911	-0.2931	-0.2954	
C7	-0.2645	-0.2723	-0.2820	-0.2861	-0.2800	-0.2835	-0.275	-0.279	-0.2788	-0.2833	-0.2817	-0.2850	-0.2921	-0.2910	
C8	-0.3926	-0.3902	-0.3496	-0.3470	-0.3575	-0.3533	-0.360	-0.351	-0.3528	-0.3496	-0.3593	-0.3524	-0.3106	-0.2995	
C9	-0.6877	-0.6945	-0.6503	-0.6577	-0.6268	-0.6382	-0.611	-0.626	-0.6295	-0.6394	-0.6368	-0.6478	-0.6233	-0.6320	
C10	-0.6912	-0.6959	-0.6262	-0.6391	-0.6259	-0.6405	-0.620	-0.637	-0.6264	-0.6402	-0.6254	-0.6390	-0.6297	-0.6421	
C11	0.1438	0.1392	0.1700	0.1620	0.2920	0.2873	0.297	0.288	0.1764	0.1727	0.3245	0.3269	0.1921	0.2045	
C12	0.3541	0.3502	0.3032	0.2990	0.2936	0.2810	0.301	0.291	0.3066	0.3060	0.3092	0.2965	0.3238	0.3241	
C13	-0.3646	-0.3922	-0.3413	-0.3662	-0.2998	-0.3048	-0.297	-0.322	-0.3413	-0.3632	-0.2556	-0.2721	-0.3218	-0.3403	
C14	-0.3726	-0.3788	-0.3442	-0.3515	-0.3537	-0.3536	-0.309	-0.317	-0.3333	-0.3381	-0.3514	-0.3517	-0.2505	-0.2567	
C15	-0.4052	-0.4247	-0.3557	-0.3709	-0.4230	-0.4359	-0.406	-0.426	-0.3477	-0.3590	-0.4226	-0.4421	-0.4019	-0.4194	
C16	-0.4269	-0.4454	-0.3410	-0.3502	-0.4115	-0.4297	-0.421	-0.439	-0.3490	-0.3548	-0.4120	-0.4290	-0.4427	-0.4582	
C17	0.5099	0.4687	0.4429	0.4350	0.4914	0.4488	0.500	0.459	0.4483	0.4394	0.4994	0.4591	0.4956	0.4596	
H18	0.1444	0.1729	0.1816	0.2012	0.1780	0.1976	0.176	0.198	0.1743	0.1948	0.1845	0.2073	0.2427	0.2344	
H19	0.2476	0.2307	0.2317	0.2204	0.2306	0.2230	0.222	0.217	0.2346	0.2205	0.2357	0.2223	0.2388	0.2307	
H20	0.2081	0.2138	0.1866	0.1950	0.1888	0.1963	0.194	0.197	0.1859	0.1955	0.1883	0.1968	0.1871	0.1978	
H21	0.1573	0.1726	0.1689	0.1740	0.1756	0.1820	0.170	0.182	0.1734	0.1800	0.1825	0.1794	0.1874	0.1856	
H22	0.1975	0.2055	0.1836	0.1992	0.1797	0.1979	0.175	0.197	0.1785	0.1972	0.1807	0.1998	0.2043	0.2041	
H23	0.1565	0.1736	0.1692	0.1728	0.1766	0.1813	0.177	0.183	0.1754	0.1806	0.1738	0.1750	0.1800	0.1839	
H24	0.2485	0.2221	0.2526	0.2334	0.2537	0.2325	0.254	0.238	0.2506	0.2254	0.2622	0.2444	0.2353	0.2441	
H25	0.1998	0.2276	0.2063	0.2203	0.2042	0.2227	0.214	0.229	0.1984	0.2192	0.2113	0.2273	0.2380	0.2399	
H26	0.2052	0.2124	0.2389	0.2240	0.2109	0.2091	0.191	0.209	0.2164	0.2045	0.2287	0.2228	0.2144	0.2090	
H27	0.2240	0.2069	0.2003	0.1984	0.2118	0.2046	0.241	0.213	0.2076	0.2028	0.1997	0.2016	0.2038	0.2046	
H28	0.1962	0.2075	0.1878	0.1957	0.1930	0.1992	0.197	0.199	0.1878	0.1976	0.2010	0.1987	0.1969	0.2005	
H29	0.2040	0.2120	0.1967	0.2014	0.1974	0.2013	0.201	0.202	0.1971	0.2009	0.1997	0.2021	0.1959	0.2017	
H30	0.2206	0.2073	0.2082	0.2017	0.2105	0.2037	0.219	0.206	0.2097	0.2033	0.2072	0.2025	0.2054	0.2037	
H31	0.1942	0.2046	0.1909	0.1992	0.1914	0.1994	0.189	0.200	0.1894	0.1987	0.1919	0.2002	0.1926	0.2001	
H32	0.2982	0.3377	0.3003	0.3383	0.3190	0.3508	0.310	0.344	0.2989	0.3404	0.3226	0.3595	0.3526	0.3892	
H33	0.2649	0.2676	0.2807	0.2733	0.2494	0.2554	0.262	0.263	0.2847	0.2772	0.2573	0.2587	0.2700	0.2696	
H34	0.2172	0.2468	0.2287	0.2505	0.2219	0.2519	0.196	0.229	0.2190	0.2453	0.2266	0.2543	0.2200	0.2375	
H35	0.2182	0.2487	0.2303	0.2556	0.3052	0.2860	0.225	0.250	0.2333	0.2592	0.2297	0.2531	0.2248	0.2532	
H36	0.2142	0.2485	0.2333	0.2582	0.2178	0.2490	0.220	0.251	0.2375	0.2625	0.2223	0.2526	0.2262	0.2543	
H37	0.3002	0.3294	0.3474	0.3663	0.3077	0.3370	0.314	0.340	0.3697	0.3964	0.3143	0.3408	0.3190	0.3453	
H38	0.3021	0.3292	0.3528	0.3748	0.3284	0.3393	0.316	0.339	0.3722	0.3996	0.3189	0.3413	0.3179	0.3444	
5139			0.7903	0.7440	0.7465	0.7073	0.788	0.747	0.9523	0.9390	0.9498	0.9394	0.9492	0.9415	
040			-0.9398	-0.9091	-0.9393	-0.936/	-0.963	-0.972	-0.8334	-0.9101	-0.9623	-0.9/11	-0.9645	-0.9/43	
041			-0.8598	-0.9385	-0.8940	-0.9315	-0.863	-0.938	-0.9635	-0.9/45	-0.8588	-0.914/	-0.8560	-0.9142	
5142			0.7921	0.7442	0.7482	0.7139	0.791	0.750	0.949/	0.9383	0.9420	0.9303	0.9331	0.9435	
Ag43			-0.4413	-0.3333	-0.3339	-0.2337	-0.405	-0.339							
Ag44			0.4307	0.3308	0.4210	0.4740	0.434	0.400	0.4208	0.4697	0.2522	0.2620	0.2544	0.2876	
Au43									0.4398	0.408/	0.3322	0.3039	0.3344	0.36/0	
Au44									-0./4/1	-0./1/0	-0./40/	-0./036	-0.//15	-0./3/3	

	PA			PA···Ag-SiO ₂						PA···Au-SiO ₂						
Atom			Ag- SiO ₂	Au- SiO ₂	Complex 1		Com	plex 2	Com	plex 3	Com	plex 1	Complex 2		Complex 3	
	Gas	Water			Gas	Water	Gas	Water	Gas	Water	Gas	Water	Gas	Water	Gas	Water
E _{HOMO} (eV)	-5.53	-5.73	-5.23	-6.37	-4.39	-4.65	-4.31	-4.69	-4.05	-4.64	-5.47	-5.43	-5.17	-5.46	-5.39	-5.59
E _{LUMO} (eV)	-0.43	-0.68	-3.69	-4.83	-2.07	-1.85	-1.63	-1.75	-2.00	-1.84	-2.16	-2.18	-2.02	-2.18	-2.42	-2.10
Eg (eV)	5.10	5.05	1.54	1.54	2.32	2.81	2.68	2.94	2.05	2.79	3.32	3.26	3.16	3.29	2.98	3.35
Fermi level (eV)	-2.98	-3.20	-4.46	-5.60	-3.23	-3.25	-2.97	-3.22	-3.03	-3.24	-3.81	-3.81	-3.59	-3.82	-3.91	-3.89
Chemical Potential (eV)	-2.98	-3.20	-4.46	-5.60	-3.23	-3.25	-2.97	-3.22	-3.03	-3.24	-3.81	-3.81	-3.59	-3.82	-3.91	-3.89
Hardness (eV)	2.55	2.52	0.77	0.77	1.16	1.40	1.34	1.47	1.03	1.39	1.66	1.63	1.58	1.64	1.49	1.68
Softness (1/eV)	0.392	0.39	1.30	1.30	0.86	0.71	0.75	0.68	0.97	0.72	0.60	0.61	0.63	0.61	0.67	0.59
Electronega tivity	2.981	3.203	4.460	5.601	3.233	3.251	2.974	3.221	3.027	3.242	3.815	3.807	3.595	3.820	3.906	3.89
Electrophili city index (eV)	1.740	2.032	12.93	20.39	4.506	3.767	3.303	3.524	4.468	3.760	4.389	4.451	4.095	4.440	5.121	4.451
Dipole moment (Debye)	5.67	7.88	4.11	3.77	10.66	11.21	12.02	12.41	18.91	22.65	12.71	14.99	16.19	19.19	13.37	15.65

Table S2. Chemical descriptors of PA and PA···Ag- and Au-SiO₂ in gaseous and water phases computed at B3LYP/LANL2DZ.

Table S3. Predicted wavelengths, energies, oscillator strengths, symmetry, and major contributing molecular orbitals of PA...Ag/Au-SiO₂ complexes in comparison with PA in different solvent phase as calculated at the B3LYP/LANL2DZ level of theory.

Compound	Position	Solvent	λ (nm)	Energy (cm ⁻¹)	Oscillator strength	Symmetry	Major contributions
		Water	561	17826	0.1403	Singlet-A	HOMO->LUMO (98%)
			481	20798	0.0165	Singlet-A	HOMO->L+1 (25%), HOMO- >L+2 (66%)
			388	25786	0.3431	Singlet-A	HOMO->L+3 (89%), H-2->LUMO (3%)
			565	17688	0.1476	Singlet-A	HOMO->LUMO (98%)
	Complex 1 -H2N-AgSiO2	DMSO	482	20735	0.0176	Singlet-A	HOMO->L+1 (25%), HOMO- >L+2 (66%)
			392	25494	0.3665	Singlet-A	HOMO->L+3 (89%), H-2->LUMO (2%)
PA complexes with		Methanol	559	17886	0.1401	Singlet-A	HOMO->LUMO (98%)
Ag-SiO2			481	20798	0.0168	Singlet-A	HOMO->L+1 (25%), HOMO- >L+2 (64%)
			390	25670	0.3452	Singlet-A	HOMO->L+3 (88%), H-2->LUMO (3%)
			554	18044	0.1518	Singlet-A	HOMO->LUMO (98%)
		Chloroform	488	20491	0.0234	Singlet-A	HOMO->L+1 (28%), HOMO- >L+2 (36%), HOMO->L+3 (23%)
			411	24307	0.3956	Singlet-A	HOMO->L+2 (38%), HOMO- >L+3 (50%)
	Complex 2	Water	536	18661	0.1309	Singlet-A	HOMO->LUMO (96%)
	-O-AgSiO ₂		468	21370	0.0192	Singlet-A	HOMO->L+1 (31%), HOMO-

							>L+2 (51%)
			381	26274	0.3891	Singlet-A	HOMO->L+3 (83%) H-3->LUMO (5%)
			540	18523	0.1382	Singlet-A	HOMO->LUMO (96%)
		DMSO	469	21330	0.0206	Singlet-A	HOMO->L+1 (29%), HOMO- >L+2 (52%)
			385	26007	0.4158	Singlet-A	HOMO->L+3 (84%) H-3->LUMO (4%)
			535	18690	0.1305	Singlet-A	HOMO->LUMO (96%)
		Methanol	467	21411	0.0196	Singlet-A	HOMO->L+1 (28%), HOMO- >L+2 (52%)
			382	26160	0.3923	Singlet-A	HOMO->L+3 (82%) H-3->LUMO (5%)
			536	18641	0.1393	Singlet-A	HOMO->LUMO (94%)
		Chloroform	464	21566	0.0283	Singlet-A	HOMO->L+1 (17%), HOMO- >L+2 (46%)
			403	24813	0.4537	Singlet-A	HOMO->L+2 (23%), HOMO- >L+3 (68%)
		Water	563	17748	0.1349	Singlet-A	HOMO->LUMO (98%)
			482	20766	0.0195	Singlet-A	HOMO->L+2 (86%) HOMO->L+1 (7%)
			392	25523	0.3357	Singlet-A	HOMO->L+3 (89%) H-3->LUMO (3%)
			568	17610	0.1421	Singlet-A	HOMO->LUMO (98%)
	Complex 3	DMSO	483	20717	0.0206	Singlet-A	HOMO->L+2 (86%) HOMO->L+1 (7%)
	-mn-Ag5iO ₂		396	25233	0.3598	Singlet-A	HOMO->L+3 (90%) H-3->LUMO (2%)
			562	17796	0.1347	Singlet-A	HOMO->LUMO (98%)
		Methanol	481	20785	0.0197	Singlet-A	HOMO->L+2 (86%) HOMO->L+1 (7%)
			394	25410	0.3379	Singlet-A	HOMO->L+3 (89%) H-3->LUMO (3%)
		Chloroform	559	17881	0.1455	Singlet-A	HOMO->LUMO (63%)

			483	20724	0.0234	Singlet-A	HOMO->L+3 (85%) HOMO->L+1 (4%)
			417	23990	0.3924	Singlet-A	HOMO->L+2 (92%)
			397	25205	0.142	Singlet-A	HOMO->LUMO (96%)
		Water	330	30280	0.022	Singlet-A	H-2->LUMO (20%), HOMO->L+1 (17%)
			326	30721	0.0184	Singlet-A	H-2->LUMO (34%), HOMO->L+3 (43%)
		DMSO	399	25083	0.151	Singlet-A	HOMO->LUMO (96%)
			331	30218	0.0259	Singlet-A	H-2->LUMO (20%), HOMO->L+1 (17%)
	Complex 1 -H2N-AuSiO2		326	30649	0.0235	Singlet-A	H-2->LUMO (32%), HOMO->L+2 (11%)
		Methanol Chloroform	396	25231	0.1414	Singlet-A	HOMO->LUMO (96%)
			330	30280	0.0236	Singlet-A	H-2->LUMO (23%), HOMO->L+1 (15%)
PA complexes			326	30702	0.0197	Singlet-A	H-2->LUMO (30%), HOMO->L+1 (10%)
with Au-SiO2			397	25173	0.1531	Singlet-A	HOMO->LUMO (96%)
			333	30043	0.0622	Singlet-A	H-2->LUMO (31%), HOMO->L+2 (43%), HOMO->L+3 (16%)
			328	30443	0.031	Singlet-A	HOMO->L+1 (14%), HOMO- >L+2 (12%), HOMO->L+3 (58%)
			396	25235	0.1381	Singlet-A	HOMO->LUMO (96%)
		Water	332	30127	0.0185	Singlet-A	H-3->LUMO (13%), HOMO->L+1 (11%), HOMO->L+2 (70%)
	Complex 2		326	30632	0.0234	Singlet-A	H-3->LUMO (40%), HOMO->L+3 (50%)
	-O-AuSiO ₂		398	25109	0.147	Singlet-A	HOMO->LUMO (96%)
		DMSO	333	30067	0.0216	Singlet-A	H-3->LUMO (13%), HOMO->L+1 (10%), HOMO->L+2 (70%)
			327	30559	0.0297	Singlet-A	H-3->LUMO (37%), HOMO->L+3 (53%)
		Methanol	396	25251	0.1375	Singlet-A	HOMO->LUMO (96%)

			332	30134	0.02	Singlet-A	H-3->LUMO (15%), HOMO->L+2 (68%)
			327	30609	0.0246	Singlet-A	H-3->LUMO (36%), HOMO->L+3 (53%)
			398	25127	0.1485	Singlet-A	HOMO->LUMO (96%)
		Chloroform	334	29911	0.0606	Singlet-A	H-3->LUMO (28%), HOMO->L+2 (56%)
			329	30390	0.0308	Singlet-A	HOMO->L+3 (76%) H-3->LUMO (9%)
			397	25213	0.1344	Singlet-A	HOMO->LUMO (94%)
		Water	332	30108	0.021	Singlet-A	H-3->LUMO (14%), HOMO->L+1 (12%), HOMO->L+2 (26%)
			328	30523	0.0277	Singlet-A	H-3->LUMO (37%), HOMO->L+2 (21%), HOMO->L+3 (34%)
		DMSO Methanol	399	25092	0.1428	Singlet-A	HOMO->LUMO (94%)
			333	30045	0.0247	Singlet-A	H-3->LUMO (13%), HOMO->L+1 (12%)
	Complex 3		328	30452	0.0341	Singlet-A	H-3->LUMO (34%), HOMO->L+2 (23%)
	-HN-Au5iO2		396	25233	0.1338	Singlet-A	HOMO->LUMO (93%)
			332	30104	0.0225	Singlet-A	H-3->LUMO (15%), HOMO->L+1 (12%)
			328	30503	0.0288	Singlet-A	H-3->LUMO (34%), HOMO->L+2 (23%)
			398	25134	0.1442	Singlet-A	HOMO->L+1 (95%)
		Chloroform	335	29874	0.0525	Singlet-A	HOMO->L+1 (95%), HOMO- >L+3 (28%)
			329	30455	0.0339	Singlet-A	H-3->LUMO (32%), HOMO->L+2 (27%)
		Water	253	39524	0.0434	Singlet-A	HOMO->L+1 (82%) H-3->LUMO (9%)
РА	DFT		244	41026	0.3778	Singlet-A	H-4->LUMO (24%), HOMO- >LUMO (60%)
			231	43206	0.2403	Singlet-A	H-4->LUMO (50%), H-4->L+2 (11%)

		253	39496	0.0462	Singlet-A	HOMO->L+1 (82%) H-3->LUMO (9%)
	DMSO	244	40956	0.393	Singlet-A	H-4->LUMO (23%), HOMO- >LUMO (61%)
		232	43147	0.2392	Singlet-A	H-4->LUMO (51%), H-4->L+2 (11%)
		253	39534	0.0435	Singlet-A	H-3->LUMO (10%), HOMO->L+1 (82%)
	Methanol	244	41029	0.3594	Singlet-A	H-4->LUMO (26%), HOMO- >LUMO (58%)
		232	43181	0.2562	Singlet-A	H-4->LUMO (48%), H-4->L+2 (11%)
		253	39563	0.0501	Singlet-A	H-3->LUMO (11%), HOMO->L+1 (75%)
	Chloroform	245	40858	0.2403	Singlet-A	H-4->LUMO (38%), H-4->L+2 (10%)
		233	43006	0.3818	Singlet-A	H-4->LUMO (33%), HOMO- >LUMO (51%)
Expt.		260				

Table S4. Biological activity of PA as precited using PASS Online software

Pa	Pi	Activity						
0,891	0,003	Cardiovascular analeptic						
0,887	0,005	Respiratory analeptic						
0,886	0,004	Superoxide dismutase inhibitor						
0,882	0,009	Phobic disorders treatment						
0,835	0,004	Proteasome ATPase inhibitor						
0,818	0,005	Analeptic						
0,813	0,002	Octopamine antagonist						
0,811	0,004	Spasmolytic, urinary						
0,811	0,011	Taurine dehydrogenase inhibitor						
0,793	0,004	Antihypoxic						

Figure S1. Molecular electrostatic potential (MEP) plots of PA drug with the Ag-SiO₂ (a-c) and Au-SiO₂ (g-i) complexes predicted in the gas medium. The corresponding MEPs of PA, Ag- and Au-SiO₂ substrates are also presented (d-f).

Figure S2. Molecular electrostatic potential (MEP) plots of PA drug with the Ag-SiO₂ (a-c) and Au-SiO₂ (g-i) complexes predicted in water medium. The MEPs of PA, Ag- and Au-SiO₂ substrates are also presented (d-f).

Figure S3. Reduced density gradient (RDG) scattered graphs PA…Ag-SiO₂ (a-c) and PA…Au-SiO₂ (d-f) complexes modeled in water medium. Different possible interaction modes are labeled.

Figure S4. UV-Vis. Spectra of PA, compared with UV-Vis spectra of the PA+ Ag/Au-SiO₂ complexes investigated.