Supporting Information

Cell Volume-Wise Dopant Screening for Amorphous LiPON Solid State Electrolyte toward Improved Li-ion Mobility: An ab initio study

Heechae Choi,^{a,b} Seulgi Ji,^b Haneol Cho,^c Chansoo Kim,^c Patrick Joohyun Kim,^d Hyunjung Park^e and Junghyun Choi,^{f,*}

^aDepartment of Chemistry, Xi'an Jiaotong–Liverpool University, Suzhou Industrial Park, 215123, Suzhou, China

^bTheoretical Materials & Chemistry Group, Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939, Cologne, Germany

^cKorea Institute of Science and Technology, Hwarangro 14Gil 5, 136-791, Seoul, Korea

^dDepartment of Applied Chemistry, Kyungpook National University, Daegu, 41566, Korea

^eDepartment of Materials Science and Engineering, Chosun University, Gwangju, 61452, Korea

^fEnergy Storage Materials Center, Korea Institute of Ceramic Engineering and Technology, Jinju, 52851, Korea. E-mail: jchoi@kicet.re.kr

Figure S1. The radial distribution function g(r) of amorphous LiPON, Si-LiPON and crystalline LiPON, Si-LiPON.

The radial distribution function g(r) represents the mean number of atoms in a shell of width dr at distance r can be obtained by using following equation,

$$g(r) = p(r)(\rho 4\pi r^2 dr)$$

where p(r) is the pair correlation function and ρ represent the atom density.¹ Crystalline LiPON and Si-LiPON showed more sharp lines than amorphous LiPON and Si-LiPON, indicating amorphization was well performed after ab initio molecular dynamics (AIMD) simulations at 3000 K.

Reference

(1) Lee, I.-H.; Chang, K. J. Crystal Structure Prediction in a Continuous Representative Space. *Computational Materials Science* **2021**, *194*, 110436. https://doi.org/10.1016/j.commatsci.2021.110436.