Supporting Information:

Adsorption of singlet and triplet oxygen on B-doped graphene: Adsorption and electronic characteristics

A. Sahithi and K. Sumithra^{*} Department of Chemistry, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, 500078 Hyderabad, India.

*Author to whom correspondence should be addressed. Electronic mail: <u>sumithra@hyderabad.bits-pilani.ac.in</u>

Table of Contents

I.	Optimized structures and respective band structure	S1-S2
II.	5 \times 5 supercell optimized geometry and band structures	. S3
III.	Tables	S4-S5
IV.	Oxygen adsorption studies and respective band structures	S5-S7

Fig. S1 The 4 \times 4 boron doped graphene supercell configurations with different concentrations of 6.25% boron, (a) and (b) denoted, as B2G-1 and B2G-3 respectively.

Fig. S2 The band structures of borons doped graphene different patterns with different concentrations of doping shown in Fig. 1, in the manuscript and Fig. S1.

Fig. S3 The optimized 5 \times 5 boron doped graphene supercell with concentration of 4% with different configurations from (a) and (b) denoted as B2G-1/5 \times 5 and B2G-2/5 \times 5.

Fig. S4 The band structures borons doped graphene supercell of configurations with doping percent of 4% as shown in Fig. S3.

Fig. S5 Shows the optimized geometries of respective singlet O_2 adsorption on modified graphene surfaces (a) $O_2(s)/B2G-1/5 \times 5$ (b) $O_2(s)/B3G-2/5 \times 5$.

Fig. S6 Shows the band structure of oxygen in singlet state adsorbed on surfaces (a) $O_2(s)/B2G-1/5 \times 5$ (b) $O_2(s)/B2G-2/5 \times 5$ ((s); singlet state of oxygen).

Fig. S7 The optimized geometries of respective triplet O_2 adsorption on modified graphene surfaces (a) $O_2(t)/B2G-1/5 \times 5$ (b) $O_2(t)/B3G-2/5 \times 5$.

Fig. S8 The band structure of oxygen in triplet state adsorbed on surfaces (a) O2(t)/B2G-1/5 \times 5 (b) O2(t)/B2G-2/5 \times 5 ((t); triplet state of oxygen).

Table S1. The adsorption energy, distance of adsorbate from the adsorbent, band gaps and the Bader charge transfers of oxygen in singlet state adsorption on 5×5 supercell, 4% boron doped graphene were given respectively. Shown in parenthesis are the values obtained for 6.25% boron concentration on 4×4 supercell.

System	Adsorption	Distance (Å)	Charge
¹∆ _g on	energy (eV)		transfer (e)
5x5			
B2G-1	-0.752 (-0.664)	2.0 (1.9)	0.06(0.06)
(B-C-C-B)			
B2G-2	-1.152 (-1.222)	1.53 (1.53)	0.34 (0.32)
(B-C-B)			

Table S2. The adsorption energy, distance of adsorbate from the adsorbent, band gaps and the Bader charge transfers of oxygen in triplet state adsorption on 5×5 supercell boron doped graphene were given respectively.

System ³ Σ _g on	Adsorption energy (eV)	Distance (Å)	Band gap (eV)	Charge transfer (e)
5x5				
B2G-1	-0.154 (-0.144)	2.80 (2.86)	-	0.02 (0.02)
(B-C-C-B)				
B2G-2	-0.146(-0.138)	2.85(2.9)	0.39(0.41)	0.04(0.04)
(B-C-B)				

Fig. S9 Shows the optimized geometries of respective singlet O_2 adsorption on modified graphene surfaces (a) $O_2(s)/B2G-1$ (b) $O_2(s)/B3G-3$.

Fig. S10 Shows the band structure and corresponding DOS of oxygen in singlet state adsorbed on surfaces (a) $O_2(s)/B2G-1$ (b) $O_2(s)/B2G-3$ (c) $O_2(s)/B3G-2$ ((s); singlet state of oxygen). The magenta, red and blue represent the PDOS of carbon, oxygen and boron respectively.

Fig. S11 Shows the optimized geometries of respective triplet O_2 adsorption on modified graphene surfaces (a) $O_2(t)/B2G-1$ (b) $O_2(t)/B3G-3$.

Fig. S12 Shows the band structure and corresponding DOS of oxygen in triplet state adsorbed on surfaces (a) $O_2(t)/B2G-1$ (b) $O_2(t)/B2G-3$ (c) $O_2(t)/B3G-2$ ((t); triplet state of oxygen). The magenta and black correspond to the PDOS of oxygen.