N-doped carbon nanoparticles on highly porous carbon nanofiber electrodes for sodium ion batteries

Meltem Yanilmaz^{1,2*}, Bülin Atıcı¹, Jiadeng Zhu³, Ozan Toprakci⁴, Juran Kim^{5*}

¹Nano-Science and Nano-Engineering Program, Graduate School of Science, Engineering and Technology, Istanbul Technical University, Istanbul 34469, Turkey

² Textile Engineering, Istanbul Technical University, Istanbul 34469, Turkey

³Oak Ridge National Laboratory, Chemical Sciences Division, Oak Ridge, TN 37831, USA

⁴Yalova University, Department of Polymer Materials Engineering, 77200 Yalova, Turkey

⁵Advanced Textile R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Korea

Table S1 Capacity and CE values

Electrodes	First cycle Capacity,	Initial Coulombic	Capacity
	mAh/g	efficiency, %	retention, %
CNF	197	48	90
PCNF1	283	48	93
PCNF2	350	54	94
PCNF3	325	54	87
N-PCNF4	402	66	97
N-PCNF5	392	54	97

Figure S1 N₂ adsorption/desorption isotherms (a), and pore size distributions (b).

Figure S2 Coulombic Efficiencies of of CNF, PCNF1, PCNF2, PCNF3, N-PCNF4 and N-PCNF5 electrodes.