Supplementary Information

From liquid to solid-state, solvent-free oxidative ammonolysis of lignins – an easy, alternative approach to generate "N-lignins"

Gerhild K. Wurzer, Markus Bacher, Oliver Musl, Nadine Kohlhuber, Irina Sulaeva, Theres Kelz, Karin Fackler, Robert H. Bischof, Hubert Hettegger, Antje Potthast and Thomas Rosenau

List of Figures:

Figure 1: ¹ H-NMR spectrum of Indulin AT	2
Figure 2: ¹ H-NMR spectrum of lignosulfonate	2
Figure 3: ¹ H NMR spectrum of N-Indulin	3
Figure 4: ¹ H spectrum of N-lignosulfonate	3
Figure 5: ¹ H, ¹⁵ N HMBC spectrum of N-lignosulfonate	4
Figure 6: ¹ H spectrum of SS-N-Indulin	6
Figure 7: ¹ H spectrum of SS-N-LS	6
Figure 8: FT-IR spectra of SS-N-Indulin samples	7
Figure 9: FT-IR spectra of SS-N-lignosulfonate samples	8
Figure 10: Molar mass distribution of solid-state-N-Indulin samples	11
Figure 11: Molar mass distribution of SS-N-lignosulfonate samples	11
Figure 12: Starting material and modified samples; A- Indulin, B- N-Indulin, C- SS-N-Indulin, D-	
Lignosulfonate, E- N-LS, F- SS-N-LS	12

List of Tables

Table 1: Calculated statistical moments from MMD measured in DMSO/LiBr based on MALS (785 nm); start material and "classical" AO samples
and COOH group contents
Table 3: Calculated statistical moments from MMD measured in DMSO/LiBr based on MALS (785 nm);
Transition samples 5
Table 4: Hydroxyl groups of "transition" samples measured by ³¹ P NMR, in mmol/g 5
Table 5: Elemental analysis results of solid-state ammonoxidation of Indulin
Table 6: Elemental analysis results of solid-state ammonoxidation of lignosulfonate
Table 7: Molar mass statistical moments of SS-N-Indulin samples, from GPC measurements inDMSO/LiBr with MALS detection (785 nm)
Table 8: Molar mass statistical moments of SS-N-lignosulfonate samples, calculated based on the
reference (lignosulfonate) sample
Table 9: Hydroxyl groups of solid-state-ammonoxidised N-lignosulfonates measured by ³¹ P NMR, in mmol/g 10
Table 10: Hydroxyl groups of solid-state-ammonoxidised N-Indulin measured by ³¹ P NMR, in mmol/g

Starting material

Figure 1: ¹H-NMR spectrum of Indulin AT

Figure 2: ¹H-NMR spectrum of lignosulfonate

"classical" ammonoxidation samples

Figure 3: ¹H NMR spectrum of N-Indulin

Figure 4: ¹H spectrum of N-lignosulfonate

Figure 5: ¹H, ¹⁵N HMBC spectrum of N-lignosulfonate

Table 1. Calculated statistical moments from MMD measured in DMSO/LiBr based on MALS (785 nm); start material and "classical" AO samples

	,			
Sample	M _n (Da)	M _w (Da)	M _z (Da)	Ð
Indulin	2520	10470	41360	4.15
N-Indulin	6510	156910	95279	24.09
LS	1948	6393	21560	3.28
N-LS	1650	5350	12690	3.25

Table 2. Quantitative ³¹P NMR data of N-Indulin and N-LS and their starting materials: changes in OH and COOH group contents; OH group content in mmol/g

	aliphatic OH	syringyl &	guaiacyl &	carboxylic	aromatic	total
Sample	anphatic on	condensed OH	catechol OH	ОН	ОН	ОН
Indulin	1.95	1.53	2.22	0.45	3.74	5.70
N-Indulin	0.97	0.49	0.44	0.76	0.92	1.89
Lignosulfonate	2.14	1.97	0.95	0.22	2.92	5.06
N-Lignosulfonate	0.66	0.42	0.21	1.34	0.63	1.29

"transition" ammonoxidation samples

ampies				
Sample	M _n (Da)	M _w (Da)	M _z (Da)	Ð
Indulin	2520	10470	41360	4.15
TrN-Ind. 1	6130	12330	1223800	20.11
TrN-Ind. 2	3420	64010	518390	18.71
TrN-Ind. 3	10850	8160	554260	7.50
TrN-Ind. 4	6080	33820	112250	5.57
TrN-Ind. 5	6330	60780	383020	9.60

 Table 3. Calculated statistical moments from MMD measured in DMSO/LiBr based on MALS (785 nm); Transition samples

Table 4. Hydroxyl groups of "transition" samples measured by ³¹P NMR, in mmol/g

Sample	Aliphatic OH	syringyl & condensed OH	guaiacyl & catechol OH	carboxylic OH	aromatic OH	total OH
Tr. N-Ind. 1	1.15	0.82	1.06	0.42	1.88	3.03
TrN-Ind. 2	2.04	1.26	1.98	0.48	3.24	5.28
TrN-Ind. 3	1.90	1.00	1.01	0.96	2.01	3.90
TrN-Ind. 4	1.69	0.95	1.17	0.96	2.12	3.81
TrN-Ind. 5	1.57	1.03	1.43	0.70	2.46	4.03

"solid-state" ammonoxidation samples

Figure 6: ¹H spectrum of SS-N-Indulin

Figure 7: ¹H spectrum of SS-N-LS

Figure 8: FT-IR spectra of SS-N-Indulin samples

Figure 9: FT-IR spectra of SS-N-lignosulfonate samples

Sample	m (g)	С %	Н%	N %	S %	0 %
SS-N-Ind. 5	0.55	56.17	4.95	9.55	0.58	27.28
SS-N-Ind. 11	1.10	57.56	5.31	6.19	0.83	26.66
SS-N-Ind. 12	2.20	60.72	5.41	3.84	0.92	26.94
SS-N-Ind. 13	5.00	59.36	5.51	4.08	1.07	27.21
SS-N-Ind. 14	7.50	60.91	5.32	3.63	0.89	27.01
SS-N-Ind. 15	10	63.30	5.65	1.68	1.02	27.49
SS-N-Ind. 16	20	63.45	5.69	1.53	1.11	27.39

Table 5. Elemental analysis results of solid-state

 ammonoxidation of Indulin

Sample	m (g)	С %	Н%	N %	S %	0%
SS-N-LS 1	0.55	44.46	4.27	11.27	2.09	32.78
SS-N-LS 2	1.10	48.59	4.55	9.25	3.17	32.17
SS-N-LS 3	2.20	47.89	4.84	5.30	2.93	34.59
SS-N-LS 4	5.00	48.26	5.08	2.41	3.81	36.18
SS-N-LS 5	7.50	48.40	5.20	2.13	3.97	37.29
SS-N-LS 6	10	47.63	5.09	1.72	3.82	36.96
SS-N-LS 7	20	r	no space i	in the parr	reactor	

Table 6. Elemental analysis results of solid-state

 ammonoxidation of lignosulfonate

Table 7. Molar mass statistical moments of SS-N-Indulin samples, from GPC measurements in DMSO/LiBr with MALS detection (785 nm)

Sample	M _n (Da)	M _w (Da)	M _z (Da)	Ð
Indulin	2520	10470	41360	4.15

 Table 10. Hydroxyl groups of solid-state-ammonoxidised N-Indulin measured by ³¹P NMR, in mmol/g

Sample	Alip	hatic OH	syringyl & condensed OH	guaia catech	cyl & ol OH	carboxylic	он	aromatic OH	1	total OH
SS-N-Ind. 5		3	520	278	40		154780		7.9	1
SS-N-Ind. 11		3	050	323	90		306580		10.6	2
SS-N-Ind. 12		2	750	364	00		377940		13.2	4
SS-N-Ind. 13		2	770	185	9 0		93180		6.7	1

Table 8. Molar mass statistical moments of SS-N-lignosulfonate samples, calculated based on the reference (lignosulfonate) sample

Sample	M _n (Da)	M _w (Da)	M _z (Da)	Ð
LS	1948	6393	21560	3.28
SS-N-LS 1	1991	6459	21328	3.24
SS-N-LS 2	2460	12365	57645	5.03
SS-N-LS 3	3557	15642	61582	4.40
SS-N-LS 4	5318	16524	43163	3.11
SS-N-LS 5	6387	20709	55125	3.24
SS-N-LS 6	4687	18600	53681	3.97
SS-N-Ind. 14	3120	47780	491370	15.34
SS-N-Ind. 15	2790	16120	84690	5.78
SS-N-Ind. 16	2350	12840	61100	5.46

Sampla	Aliphatic	syringyl &	guaiacyl &	carboxylic	aromatic	total
Sample	OH	condensed OH	catechol OH	ОН	ОН	ОН
Lignosulfonate	2 :14	1:34	2.06 0.95	0.22	3. <u>40</u> 2.92	5.06
SS-N-LS 1	0.54	0.87	0.60	0.47	1.47	2.01
SS-N-LS 2	1 :58	1:33 1:14	2.10	0:45	3.43 1.86	5.01 2.48
SS-N-LS 3	0.96	1.42	0.77	0.31	2.20	3.16
SS-N-LS 4	2: <u>32</u> 1:35	1:44	6.64	8.25	2:08	5:34 3:42
SS-N-LS 5	1.60	1.66	0.73	0.30	2.39	3.99
SS-N-LS 6	1.71	1.84	0.82	0.22	2.66	4.37

 Table 9.
 Hydroxyl groups of solid-state-ammonoxidised N-lignosulfonates measured by ³¹P NMR, in mmol/g

Figure 10: Molar mass distribution of solid-state-N-Indulin samples

Figure 11: Molar mass distribution of SS-N-lignosulfonate samples

Figure 12: Starting material and modified samples; A- Indulin, B- N-Indulin, C-SS-N-Indulin, D- Lignosulfonate, E- N-LS, F- SS-N-LS