Supporting Information

Hyaluronidase-trigger nanocarriers for targeted delivery of anti-liver cancer compound

Junxin Xu^a, Siling Chen^a, Jianmei Yang^a, Zhengquan Nie^a, Junnan He^a, Yong Zhao^a, Xiaoqing Liu^b, Jin Zhang^{*a}, Yan Zhao^{*a}

^aCollege of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China

^bShenzhen Kewode Technology Co., Ltd, Shenzhen, 518028, People's Republic of China ^{*}Corresponding author

E-mail: ynzhangjin@163.com E-mail: zhaooyann@163.com

Figure S1. (MI)₇- β -CD synthesis route diagram.

Figure S2. The ¹H NMR spectrum of (MI)₇- β -CD in D₂O.

Figure S3. (a) The images of Tyndall effect of (MI)₇- β -CD (A), HA/ β -CD (B), HA (C), and HA/(MI)₇- β -CD NCs (D). (b) Optical transmittance of (MI)₇- β -CD (14.73 µg/mL), HA (20 µg/mL), and their mixture.

Figure S4. (a) Optical transmittance of HA (30 μ g/mL) after adding (MI)₇- β -CD with the concentration from 0 to 14.25 μ g/mL at 25°C. (b) optical transmittance at 450 nm of HA (30 μ g/mL) by increasing the (MI)₇- β -CD concentration from 0 to 18.21 μ g/mL at 25°C. (c) Optical transmittance of (MI)₇- β -CD (14.73 μ g/mL) after adding HA with the concentration from 0 to 110 μ g/mL at 25°C. (d) dependence of the optical transmittance at 450 nm of (MI)₇- β -CD (14.73 μ g/mL) by increasing the HA concentration from 0 to 110 μ g/mL at 25°C.

Figure S5. FT-IR of HA, (MI)₇-β-CD, and HA/(MI)₇-β-CD NCs.

Figure S6. (a) The optical transmittance curves of HA/(MI)₇- β -CD NCs within 15 h. Inset: the transmittance value at 450 nm changes with time. [HA] = 20.00 µg/mL, [(MI)₇- β -CD] = 14.73 µg/mL (b) UV-vis transmittance curves of HA/(MI)₇- β -CD solution at different temperatures (15-45°C). Inset: Transmittance values at 450 nm vary with temperature. [HA] = 20.00 µg/mL, [(MI)₇- β -CD] = 14.73 µg/mL

Figure S7. (a) TEM images of HA/(MI)₇- β -CD NCs before adding HAase (left), TEM images of HA/(MI)₇- β -CD NCs after adding HAase (right). (b) Changes of transmittance of HA/(MI)₇- β -CD NCs with time after the addition of HAase. [HA] = 20.00 µg/mL, [(MI)₇- β -CD] = 14.73 µg/mL, [HAase] = 5.00 mg/mL

Figure S8. UV-vis absorption of CSL-trapped NCs at room temperature for 16 h. Inset: the absorbance of CSL-trapped NCs at 437 nm changes for 16 h.

Figure S9. UV-vis absorption curves of CSL-trapped HA/(MI)₇- β -CD NCs were measured at different time under treating with HAase solutions at pH 7.4 (a), PBS solutions at pH 5.0 (b), and PBS solutions at pH 7.4 (c).