### **Support Materials**

# FeMoS<sub>2</sub> Micoroparticles as an Excellent Catalyst for the Activation of Peroxymonosulfate toward Organic Contaminant Degradation

Cai-Wu Luo, <sup>*a*, *b*, \*</sup> Lei Cai, <sup>*b*</sup> Chao Xie, <sup>*b*</sup> Jing Wu, <sup>*c*</sup> Tian-Jiao Jiang

<sup>*a*</sup> Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, China

<sup>b</sup> School of Resource Environmental and Safety Engineering, University of South China, 421000, China

<sup>c</sup> Ningxia Modern Construction Technology Vocational Skills PublicTraining Center, Ningxia College of Construction, 750021, China

\* Corresponding author: Cai-Wu Luo;

Tel: +86-734-8282345;

E-mail address: <u>luocaiwu00@126.com</u>.



Figure S1 Synthetic route of  $FeMoS_2$  microparticles.





Figure S2 (a) XRD pattern of Fe-S catalyst; (b) EPR signal of sulfur vacancies in  $MoS_2$  and  $MoS_2$ -300.



Figure S3 (a) SEM image of  $MoS_2$ -IS; (b) SEM image of  $FeMoS_2$ -IS.





Figure S4 XRD patterns of FeMoS<sub>2</sub>-IS and FeMoS<sub>2</sub>-IE.

Figure S5



 $\label{eq:Figure S5} \ \ XRD \ patterns \ of \ FeMoS_2-IS-60 \ and \ FeMoS_2-IS-400.$ 



**Figure S6** XPS spectra of (a) survey spectra, (b) Mo 3d, (c) S 2p, (d) O 1s and (e) Fe 2p in the FeMoS<sub>2</sub>-IS-60 and FeMoS<sub>2</sub>-IS-400.

Figure S7



**Figure S7** Removal of RhB over  $MoS_2$  and  $MoS_2$ -300 activating PMS. Reaction conditions: [RhB] = 10 mg/L, initial pH = 3.0, [MoS\_2 and MoS\_2-300] = 1.0 g/L, [PMS] = 1.0 mM and in the darkness.

Figure S8







Figure S10



Figure S10 Change of solution pH before and after the reaction. Reaction conditions: [RhB] = 10 mg/L,  $[FeMoS_2-IS] = 1.0 \text{ g/L}$ , [PMS] = 1.0 mM and in the darkness.





Figure S11 Removal of different organic pollutants. Reaction conditions: [Organic pollutants] = 20.8  $\mu$ M, initial pH = 3.0, [FeMoS<sub>2</sub>-IS] = 0.3 g/L, [PMS] = 1.0 mM and in the darkness.





Figure S12 The stability of catalyst. Reaction conditions: [RhB] = 10 mg/L, initial pH = 3.0,  $[FeMoS_2-IS] = 0.3 \text{ g/L}$ , [PMS] = 1.0 mM and in the darkness.





**Figure S13** Comparison of regeneration and without regeneration on the removal of RhB. Reaction conditions: [RhB] = 10 mg/L, initial pH = 3.0,  $[FeMoS_2-IS] = 0.3 \text{ g/L}$ , [PMS] = 1.0 mM and in the darkness.

Figure S14



Figure S14 XRD patterns of fresh and used FeMoS<sub>2</sub>-IS.



Figure S15 XPS spectra of (a) survey spectra, (b) Mo 3d, (c) S 2p, (d) O 1s and (e) Fe

2p in the fresh and used FeMoS<sub>2</sub>-IS.



Figure S16 Effect of phenol (a) on the removal of RhB in the  $FeMoS_2$ -IS/PMS process and signals of EPR (b). Reaction conditions: [RhB] = 10 mg/L, initial pH = 3.0, [FeMoS\_2-IS] = 0.3 g/L, [PMS] = 1.0 mM and in the darkness.

| Catalysts                           | $Mo^{4+}/Mo^{6+}$ | 2H-/1T- | Mo <sup>6+</sup> <i>a</i> | Mo-S  | Fe <sup>2+ <i>b</i></sup> | Fe <sup>2+</sup> /Fe <sup>3</sup> |
|-------------------------------------|-------------------|---------|---------------------------|-------|---------------------------|-----------------------------------|
|                                     |                   | $MoS_2$ |                           |       |                           | +                                 |
| MoS <sub>2</sub> -IS                | 2.23              | 1.18    | 0.31                      | 0.031 | No <sup>c</sup>           | No                                |
| FeMoS <sub>2</sub> -IS              | 2.56              | 0.74    | 0.28                      | 0.068 | 0.67                      | 1.99                              |
| FeMoS <sub>2</sub> -IS-             | 0.56              | 0.81    | 0.36                      | No    | 0.40                      | 0.65                              |
| 60                                  |                   |         |                           |       |                           |                                   |
| FeMoS <sub>2</sub> -IS <sup>d</sup> | 1.46              | 1.63    | 0.41                      | No    | 0.38                      | 0.62                              |

 Table S1 Changes of surface elements from XPS characterization.

<sup>*a*</sup>: Mo<sup>6+</sup>/(Mo<sup>4+</sup> + Mo<sup>6+</sup>); <sup>*b*</sup>: Fe<sup>2+</sup>/(Fe<sup>2+</sup> + Fe<sup>3+</sup>); <sup>*c*</sup> No wasn't detected; <sup>*d*</sup>: after five runs. All values were based on the peak of each element from XPS characterization.