SUPPORTING INFORMATION

CaGdF₅ based heterogeneous core@shell upconversion nanoparticles for sensitive temperature measurement

Xiaoyu Xie^{a, b}, Wang Wang^{a, b}, Haoran Chen^a, Run Yang^{a, b}, Han Wu^{a, b}, Dechao Gan^{a, b}, Bin Li^a, Xianggui Kong^a, Qiqing Li^{a, *} and Yulei Chang^{a, *}

^a State Key Laboratory of Luminescence and Applications. Changchun Institute of Optics, FineMechanics and Physics, Chinese Academy of Sciences. Changchun, 130033, Jilin, China.
^b University of the Chinese Academy of Sciences, Beijing 100049, China.

E-mail: liqiqing0742@sina.cn and yuleichang@ciomp.ac.cn.

Figure S1. (a-c)Size distribution of the core samples, corresponding to Ca^{2+}/Gd^{3+} molar ratio of 0:1, 1:1, 2:1, respectively.

Wt %	At %
32.03	73.74
17.42	04.34
11.27	12.14
38.59	10.43
00.69	00.15
	Wt % 32.03 17.42 11.27 38.59 00.69

Figure S2. Energy dispersive spectra (EDS) of $CaGdF_5$ with Ca^{2+}/Gd^{3+} molar ratio of 1:1.

Figure S3. Integral intensities of the core UCNPs with varied Ca²⁺/Gd³⁺ molar ratio.

Figure S4. Upconversion emission spectra of (a) CaGdF:20% Yb,2% Er, CaF₂:20% Yb,2% Er and (b) CaGdF:20% Yb,2% Er, NaGdF₄:20%Yb,2% Er UCNP samples at 10 W/cm^2 .

Figure S5. TEM images of (a-c) CGF@CGF and (d-f) CGF@CF UCNPs in 20 min, 40 min, and 60 min, respectively.

Figure S6. Decay curves of CGF@CGF and CGF@CF under 980 nm excitation at 520 nm, and 540 nm, range from 200 K to 300 K.

Figure S7. Schematic illustration of in-situ measurement technique in extreme environment.

Materials	Temperature	Max-S _r (%	reference
	range(K)	K-1)	
LaF ₃ :Yb ³⁺ @LaF ₃ :Nd ³⁺ NPs	288-323	0.74	1
NaYF ₄ :Yb ³⁺ ,Er ³⁺ ,25%Ga ³⁺ NPs	198-498	0.46	2
LiLaP ₄ O ₁₂ :Yb ³⁺ ,Er ³⁺ NPs	173-350	1.80	3
NaErF4@NaYF4@NaYbF4:Tm ³⁺ @NaYF4	293-413	0.71	4
NPs			
NaYF ₄ :Yb ³⁺ ,Er ³⁺ NPs	75-600	0.48	5
Yb ₂ W ₃ O ₁₂ : Er ³⁺ @TiO ₂ : Yb ³⁺ , Er ³⁺ NPs	293-573	1.12	6
CGF:Yb ³⁺ ,Er ³⁺ @CF ₂ NPs	200-300	2.48	This work

Table S1. Thermometric performance of RE doped nanoparticles.

[1] D. Baziulyte-Paulaviciene, N. Traskina, R. Vargalis, A. Katelnikovas, S. Sakirzanovas, Thermal decomposition synthesis of Er3+-activated NaYbF4 upconverting microparticles for optical temperature sensing, Journal of Luminescence, 215 (2019).

[2] D. Li, Q. Shao, Y. Dong, J. Jiang, Temperature sensitivity and stability of NaYF 4 :Yb 3+, Er 3+ core-only and core-shell upconversion nanoparticlesJournal of Alloys and Compounds, 617 (2014), pp.1-6.

[3] C. Hu, L. Lei, E. Liu, Z. Lu, S. Xu, Improved negative thermal quenching effect of Yb/Er codoped fluoride upconversion nanocrystals via engineering phonon energy, Journal of Luminescence, 247 (2022).

[4] S.W. Hao, G.Y. Chen, C.H. Yang, Sensing Using Rare-Earth-Doped Upconversion Nanoparticles, Theranostics, 3 (2013), pp. 331-345.

[5] X.F. Wang, Q. Liu, Y.Y. Bu, C.S. Liu, T. Liu, X.H. Yan, Optical temperature sensing of rare-earth ion doped phosphors, Rsc Advances, 5 (2015), pp. 86219-86236.

[6] G.G. Lin, D.Y. Jin, Responsive Sensors of Upconversion Nanoparticles, Acs Sensors, 6 (2021), pp. 4272-4282.