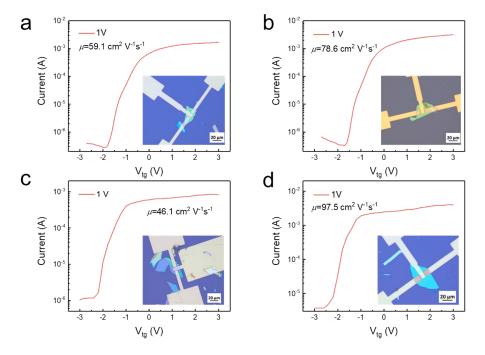
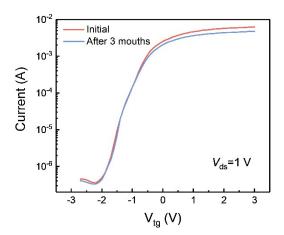
Supplementary Information for


Synaptic Plasticity Realized by Selective Oxidation of TiS3 Nanosheet for Neuromorphic Devices

Jing-Kai Qina, Hai-Lin Suna, Pei-Yu Huanga, Yang Lib, Liang Zhena, b, Cheng-Yan Xua, b*


^a Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China

^b MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin 150080, China

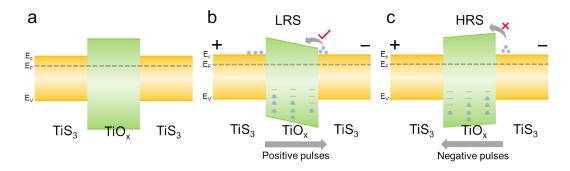

*E-mail addresses: cy_xu@hit.edu.cn

Figure S1. Photograph and transfer curves of typical device with mobility of (a) 59.1 cm² V⁻¹s⁻¹, (b) $78.6 \text{ cm}^2 \text{ V}^{-1}\text{s}^{-1}$, (c) $46.1 \text{ cm}^2 \text{ V}^{-1}\text{s}^{-1}$, (d) $97.5 \text{ cm}^2 \text{ V}^{-1}\text{s}^{-1}$.

Figure S2. The environmental stability of TiS₃ field-effect transistor after exposure to air for 3 months.

Figure S3. The energy band diagram of TiS_3 - TiO_x - TiS_3 heterostructures (a) in initial state, (b) in LRS programmed by positive pulses, (c) in HRS programmed by negative pulses.

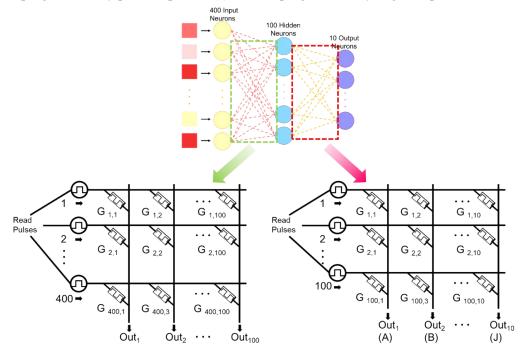


Figure S4. The corresponding schematic device array structure of ANN.