Page 1 of 47

Electronic Supplementary Material (ESI) for RSC Advances.

This journal is © The Royal Society of Chemistry 2023

Co-catalyzed Arylation of Aldehydes and Aryltrimethylgermanes

Qiang Zhang,* Xiao Zou, Ningqi Zhang, Bo Liu

Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environmental Science, Shaanxi University of Technology, Han zhong, 723001, P. R. China

E-mail: zhangqiang22@126.com

1. Experimental reagents and instruction	
2. General experimental procedures	
3. Experimental characterization data for diarylmethanols	
4. Experimental characterization data for benzil derivatives	10
5. The NMR spectra of diarylmethanols	
6. The NMR spectra of benzil derivatives	

1. Experimental reagents and instruction

Chemicals were either purchased or purified by standard techniques without special instructions. The reactions were monitored using analytical thin layer chromatography (TLC, GF-254). Flash chromatography was performed using silica gel (300-400 mesh) with freshly distilled solvents. The boiling range of petroleum ether in this research is 60-90 °C. Arylglyoxals¹ and were prepared according to the reported procedures. ¹H NMR and ¹³C NMR spectra were measured on a Bruker spectrometer, using CDCl₃ as the solvent with tetramethylsilane (TMS) as an internal standard at room temperature. The mass spectra of the starting materials and the intermediates were recorded on a Bruker Avance Mass Spectrometer (maXis, ESI). Chemical shifts are given in δ relative to TMS, the coupling constants *J* are given in Hz.

 ^[1] a) M. B. Floyd, M. T. Du, P. F. Fabio, L. A. Jacob, B. D. Johnson, J. Org. Chem., 1985, 50, 5022–5027; (b) B. Khalili, P. Jajarmi, B. Eftekhari-Sis,
M. M. Hashemi, J. Org. Chem. 2008, 73, 2090–2095.

2. General experimental procedures

Aryltrimethylgermanes were synthesized from the corresponding arylbromides and chlorotrimethylgermane according to the literature procedure ² with a slight modification. Trimethyl(phenyl)germane. To a 500 mL three necked flask were fitted with a magnetic stirrer, a thermometer, and a pressure equalizing dropping funnel. The flask was charged with bromobenzene (15.7 g, 100 mmol), and dry THF (200 mL) under Ar atomosphere. The reaction mixture was cooled to *ca.* – 80 °C and *n*-BuLi/hexane (2.5 M, 52 mL, 130 mmol) was added dropwise over 1.5 h. Upon completion of the addition, the reaction mixture was stirred at –80 °C for 3 h, chlorotrimethylgermane (18.4, 120 mmol) was added dropwise and then allowed to warm to room temperature. The resulting mixture was acidified with 2 N HCl (26 mL) and stirred for overnight. After being concentrated to 1/3 volume, the mixture was poured into water, extracted with diethyl ether and washed with water, dried over MgSO4, followed by filtration under rotary evaporation, and the residue was purified by column chromatography (silica gel, petroleum ether / ethyl acetate, v/v) to give a colorless liquid (22.3 g, yield 86 %) (17.3 g, yield 89 %). The product^[2e] was used without further purification in the next step.

(1) The best reaction condition of the synthesis of diarylmethanols

A 10 mL pressure tubes was charged with CoI₂ (3.9 mg, 2.5 mol %), **tmphen** (L8, 3.0 mg, 2.5 mol %), K₂CO₃ (1. 0 mmol), aldehyde (0. 5 mmol), aryltrimethylgermane(0.65 mmol), and THF (2 mL) into the reaction tube stirred for 10 min at room temperature. Then, the mixture was heated at 65 °C for 12 h. After completion of the reaction, as indicated by TLC, the reaction mixture was extracted with ethyl acetate (3×10 mL), concentrated and purified by flash column on a silica gel (silica gel 200-300 mesh), petroleum ether/ethyl acetate as the eluent, to give the product. The identity and purity of the product was confirmed by ¹H NMR and ¹³C NMR spectroscopic analysis.

(2) The best reaction condition of the synthesis of benzil derivatives

A 10 mL pressure tubes was charged with CoI_2 (3.9 mg, 2.5 mol %), **tmphen** (L8, 3.0 mg, 2.5 mol %), Cs_2CO_3 (1.0 mmol), arylglyoxal (0.5 mmol), aryltrimethylgermane(0.65 mmol), and THF (2 mL) into the reaction tube stirred for 10 min at room temperature. Then, the mixture was heated at 65 °C for 12 h. After completion of the reaction, as indicated by TLC, the reaction mixture was

 ^[2] a) S. M. Moerlein, J. Org. Chem. 1987, 52, 664–667; b) Z. T. Zhang, J. P. Pitteloud, L. Cabrera, Y. Liang, M. Toribio, S. F. Wnuk, Org. Lett. 2010, 12, 816–819; b) N. Komami, K. Matsuoka, A. N. M. Kojima, T. Yoshino, S. Matsunaga, Chemistry A Eurppean Journal, 2019, 24, 1217-1220.

extracted with ethyl acetate (3×10 mL), concentrated and purified by flash column on a silica gel(silica gel 200-300 mesh), petroleum ether/ethyl acetate as the eluent, to give the product. The identity and purity of the product was confirmed by ¹H NMR and ¹³C NMR spectroscopic analysis.

3. Experimental characterization data for diarylmethanols

4-nitrophenyl(phenyl)methanol³ (3a)

(4-nitrophenyl)(phenyl)methanol (**3a**). The product was isolated as a light-yellow solid (105 mg, 92%) after column chromatography purification using a solution of petroleum ether and ethyl acetate 5:1(v/v) as the eluent. mp 52–53 °C; IR (neat, cm⁻¹): 1350(NO₂), 1540(NO₂), 3340(OH); The NMR spectra of 4-nitrophenyl(phenyl)methanol are shown as Attached Fig.1 and Attached Fig.2 in supplementary material, respectively.¹H NMR (CDCl₃, 600 MHz) δ 2.48 (brs, 1H), 5.91 (s, 1H), 7.30-7.35 (m, 5H), 7.57 (d, *J* = 12.0 Hz, 2H), 8.18 (d, *J* = 12.0 Hz, 2H); ¹³C NMR (CDCl₃, 150 MHz) δ 123.7, 126.7, 127.0, 127.0, 128.4, 128.9, 142.6, 147.1, 150.6; HRMS (ESI) m/z calcd for (C₁₃H₁₁NO₃+Na) 252.0637, found 252.0651. (C₁₃H₁₁NO₃+Na).

(4-nitrophenyl)(4-tolyl)methanol⁴ (**3b**)

4-nitrophenyl-4-tolylmethanol (**3b**). The product was isolated as a light-yellow solid (114 mg, 94%) after column chromatography purification using a solution of petroleum ether and ethyl acetate $6:1(\nu/\nu)$ as the eluent. mp 98–100 °C; IR (neat cm⁻¹): 1350(NO₂), 1540(NO₂), 2870(CH₃), 2960(CH₃), 3341(OH); The NMR spectra of 4-nitrophenyl-4-tolylmethanol are shown as Attached Fig.3 and Attached Fig.4 in supplementary material, respectively.¹H NMR (CDCl₃, 300 MHz) δ 2.32 (d, *J* = 3.0 Hz, 1H), 2.36 (s, 3H), 5.90 (d, *J* = 3.0 Hz, 1H), 7.16-7.26 (m, 4 H), 7.59 (d, *J* = 6.9 Hz, 2H), 8.19 (d, *J* = 6.9 Hz, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 21.0, 75.3, 123.5, 126.6, 126.9, 129.5, 138.2, 139.9, 147.0, 150.9;; HRMS (ESI) m/z calcd for (C₁₄H₁₃NO₃+Na) 266.0793, found 266.0784. (C₁₄H₁₃NO₃+Na).

^[3] C. M. Qin, H. Y. Wu, J. Cheng, J. X. Chen, M. C. Liu, W. W. Zhang, W. K. Su, J. C. Ding, J. Org. Chem. 2007, 72, 4102–667.

⁴ S. H. Lin, X. Y. Lu, J. Org. Chem. 2007, 72, 9757–9761.

(4-methoxyphenyl)(4-nitrophenyl)methanol⁴ (3c)

(4-methoxyphenyl)(4-nitrophenyl)methanol (**3c**). The product was isolated as a light-yellow solid (120 mg, 93%) after column chromatography purification using a solution of petroleum ether and ethyl acetate $6:1(\nu/\nu)$ as the eluent. mp 54–56 °C; IR (neat cm⁻¹): 1350(NO₂), 1540(NO₂), 2850(OCH₃), 2930(OCH₃), 3340 (OH); The NMR spectra of (4-methoxyphenyl)(4-nitrophenyl) methanol are shown as Attached Fig.5 and Attached Fig.6 in supplementary material, respectively. ¹H NMR (CDCl₃, 300 MHz) δ 2.74 (brs, 1H), 3.79 (s, 3H), 5.86 (s, 1H), 6.82-6.93(m, 4H), 7.25-7.30 (m, 3H), 7.58 (d, *J* = 8.6 Hz, 2H), 8.18 (d, *J* = 8.6 Hz, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 55.2, 75.3, 112.4, 113.4, 118.9, 127.0, 128.2, 130.9, 144.0, 147.1, 151.0, 159.9; HRMS (ESI) m/z calcd for (C₁₄H₁₃NO₄+Na) 282.0742, found 282.0749. (C₁₄H₁₃NO₃+Na).

<u>3-methoxyphenyl(4-nitrophenyl)methanol⁵ (3d)</u>

(3-methoxyphenyl)(4-nitrophenyl)methanol (**3d**). The product was isolated as an Oil (120 mg, 93%) after column chromatography purification using a solution of petroleum ether and ethyl acetate 8:1(ν/ν) as the eluent. IR (neat cm⁻¹): 1360(NO₂), 1550(NO₂), 2851(OCH₃), 2932(OCH₃), 3342(OH); The NMR spectra of (3-methoxyphenyl)(4-nitrophenyl)methanol are shown as Attached Fig.7 and Attached Fig.8 in supplementary material, respectively. ¹H NMR (CDCl₃, 300 MHz) δ 2.78 (brs, 1H), 3.79 (s, 3H), 5.86 (s, 1H), 6.82 (m, 3H), 7.25-7.30 (m, 1H), 7.57 (d, *J* = 9.0 Hz, 2H), 8.17 (d, *J* = 9.0 Hz, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 55.2, 75.3, 112.3, 113.4, 118.9, 123.6, 127.0, 129.9, 144.3, 147.1, 150.6, 159.9; HRMS (ESI) m/z calcd for (C₁₄H₁₃NO₄+Na) 282.0742, found 282.0753. (C₁₄H₁₃NO₃+Na).

(2-methoxyphenyl)(4-nitrophenyl)methanol⁶ (3e)

⁵ H. M. Zheng, Q. Zhang, J. X. Chen, M. C. Liu, S. H. Cheng, J. C. Ding, H. Y. Wu, W. K. Su, J. Org. Chem. 2009, 74, 943–945.

⁶ H. Zhao, M. Cheng, T. Zhang, M. Z. Cai, J. Organomet. Chem. 2015, 777, 50–56.

(2-methoxyphenyl)(4-nitrophenyl)methanol (**3e**). The product was isolated as an Oil (118 mg, 91%) after column chromatography purification using a solution of petroleum ether and ethyl acetate 8:1(ν/ν) as the eluent. IR (neat cm⁻¹): 1355(NO₂), 1554(NO₂), 2853(OCH₃), 2935(OCH₃), 3345(OH); The NMR spectra of (2-methoxyphenyl)(4-nitrophenyl)methanol are shown as Attached Fig.9 and Attached Fig.10 in supplementary material, respectively. ¹H NMR (CDCl₃, 300 MHz) δ 3.17 (s, 1H), 3.80 (s, 3H), 6.09 (s, 1H), 6.89-6.92 (m, 2H), 7.21-7.32 (m, 2H), 7.55 (d, J = 8.8 Hz, 2H), 8.15 (d, J = 8.8 Hz, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 55.4, 71.6, 110.9, 121.1, 123.4, 127.1, 127.8, 128.2, 129.0, 129.5, 130.6, 150.8; HRMS (ESI) m/z calcd for (C₁₄H₁₃NO₄+Na) 282.0742, found 282.0746. (C₁₄H₁₃NO₃+Na).

(4-nitrophenyl)(o-tolyl)methanol⁷ (3f)

(4-nitrophenyl)(o-tolyl)methanol (**3f**). The product was isolated as an Oil (25.4 mg, 92%) after column chromatography purification using a solution of petroleum ether and ethyl acetate 5:1(ν/ν) as the eluent. IR (neat cm⁻¹): 1355(NO₂), 1554(NO₂), 2870(CH₃), 2960(CH₃), 3345(OH); The NMR spectra of (4-nitrophenyl)(o-tolyl)methanol are shown as Attached Fig.11 and Attached Fig.12 in supplementary material, respectively. ¹H NMR (CDCl₃, 300 MHz) δ 2.30 (s, 3H), 2.45 (s, 1H), 6.07 (s, 1H), 7.15-7.25 (m, 3H), 7.30-7.33 (m, 1H), 7.50 (d, J = 8.8 Hz, 2H), 8.16 (d, J = 8.8 Hz, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 19.4, 72.7, 123.6, 126.5, 127.0, 127.5, 128.3, 131.0, 135.6, 140.4, 147.1, 150.2; HRMS (ESI) m/z calcd for (C₁₄H₁₃NO₃+Na) 266.0793, found 266.0797. (C₁₄H₁₃NO₃+Na). naphthalen-1-yl(4-nitrophenyl)methanol^[5](**3g**)

naphthalen-1-yl(4-nitrophenyl)methanol (**3g**). The product was isolated as a light-yellow solid (129 mg, 93%) after column chromatography purification using a solution of petroleum ether and ethyl

⁷ T. Zou, S. S. Pi, J. H. Li, Org. Lett. 2009, 11, 453–456.

acetate 5:1(v/v) as the eluent. mp 51–52 °C; IR (neat cm⁻¹): 1380(NO₂), 1564(NO₂), 3345(OH); The NMR spectra of naphthalen-1-yl(4-nitrophenyl)methanol are shown as Attached Fig.13 and Attached Fig.14 in supplementary material, respectively. ¹H NMR (CDCl₃, 300 MHz) δ 2.79 (brs, 1H), 6.55 (s, 1H), 7.47-7.51 (m, 4H), 7.58 (d, J = 8.9 Hz, 2H), 7.85-7.91 (m, 2H), 8.01-8.04 (m, 1H), 8.15 (d, J = 8.9 Hz, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 73.4, 123.6, 123.7, 125.3, 125.6, 126.0, 126.6, 127.5, 129.0, 129.4, 130.5, 134.2, 137.8, 147.3, 150.3; HRMS (ESI) m/z calcd for (C₁₇H₁₃NO₃+Na) 302.0793, found 302.0799. (C₁₇H₁₃NO₃+Na).

(4-fluorophenyl)(4-nitrophenyl)methanol^[5] (**3h**)

(4-fluorophenyl)(4-nitrophenyl)methanol (**3h**). The product was isolated as a light-yellow solid (117 mg, 95%) after column chromatography purification using a solution of petroleum ether and ethyl acetate 10:1(ν/ν) as the eluent. mp 74–76 °C; IR (neat cm⁻¹): 1384(NO₂), 1562(NO₂), 3350(OH); The NMR spectra of (4-fluorophenyl)(4-nitrophenyl)methanol are shown as Attached Fig.15 and Attached Fig.16 in supplementary material, respectively. ¹H NMR (CDCl₃, 300 MHz) δ 2.40 (s, 1H), 5.93 (s, 1H), 7.04-7.09 (m, 2H), 7.32-7.36 (m, 2H), 7.57 (d, J = 6.9 Hz, 2H), 8.21 (d, J = 6.9 Hz, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 74.8, 115.8 (d, J- $C_F = 21.5$ Hz), 123.7, 127.0, 128.5 (d, J- $C_F = 8.2$ Hz), 138.5, 147.3, 150.5, 162.5 (d, J- $C_F = 246.2$ Hz); HRMS (ESI) m/z calcd for (C₁₃H₁₀FNO₃+Na) 270.0542, found 270.0549. (C₁₃H₁₀FNO₃+Na)._

(4-chlorophenyl)(4-nitrophenyl)methanol⁸ (3i)

(4-chlorophenyl)(4-nitrophenyl)methanol (**3i**). The product was isolated as a light-yellow solid (121 mg, 92%) after column chromatography purification using a solution of petroleum ether and ethyl acetate 8:1(v/v) as the eluent. mp 132–134 °C; IR (neat cm⁻¹): 1386(NO₂), 1566(NO₂), 3348(OH); The NMR spectra of (4-chlorophenyl)(4-nitrophenyl)methanol are shown as Attached Fig.17 and Attached Fig.18 in supplementary material, respectively. ¹H NMR (CDCl₃, 300 MHz) δ 2.43 (d, J =

⁸ K. Li, N. F. Hu, R. S.Luo, W. C. Yuan, W. J. Tang. J. Org. Chem. 2013, 78, 6350–6355.

/ 01 4/

3.5 Hz"1H), 5.90 (d, J = 3.5 Hz, 1H), 7.27-7.35 (m, 4H), 7.55 (d, J = 8.9 Hz, 2H), 8.19 (d, J = 8.9 Hz, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 74.6, 123.6, 126.8, 127.8, 127.8, 128.9, 134.0, 140.9, 150.0; HRMS (ESI) m/z calcd for (C₁₃H₁₀ClNO₃+Na) 286.0247, found 286.0254. (C₁₃H₁₀ClNO₃+Na). (4-bromophenyl)(4-nitrophenyl)methanol⁹ (**3**j)

(4-bromophenyl)(4-nitrophenyl)methanol (**3j**). The product was isolated as a light-yellow solid (140 mg, 91%) after column chromatography purification using a solution of petroleum ether and ethyl acetate 6:1(v/v) as the eluent. mp 160–162 °C; IR (neat cm⁻¹): 1378(NO₂), 1561(NO₂), 3353(OH); The NMR spectra of (4-bromophenyl)(4-nitrophenyl)methanol are shown as Attached Fig.19 and Attached Fig.20 in supplementary material, respectively. ¹H NMR (CDCl₃, 300 MHz) δ 2.43 (d, *J* = 3.3 Hz, 1H), 5.89 (d, *J* = 3.3 Hz, 1H), 7.23 (d, *J* = 6.7 Hz, 2H), 7.48-7.56 (m, 4H), 8.20 (d, *J* = 6.8 Hz, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 74.5, 122.0, 123.5, 126.7, 128.0, 131.7, 141.3, 147.1, 149.8; HRMS (ESI) m/z calcd for (C₁₃H₁₀BrNO₃+Na) 329.9742, found 329.9747. (C₁₃H₁₀BrNO₃+Na). <u>3-nitrophenyl-phenylmethanol¹⁰ (**3**k)</u>

(3-nitrophenyl)(phenyl)methanol (**3j**). The product was isolated as a light-yellow solid (97 mg, 85%) after column chromatography purification using a solution of petroleum ether and ethyl acetate 5:1(v/v) as the eluent. mp 68–70 °C; IR (neat cm⁻¹): 1379(NO₂), 1562(NO₂), 3351(OH); The NMR spectra of (3-nitrophenyl)(phenyl)methanol are shown as Attached Fig.21 and Attached Fig.22 in supplementary material, respectively. ¹H NMR (CDCl₃, 300 MHz) δ 2.75 (s, H), 5.91 (s, 1H), 7.33-7.38 (m, 5H), 7.49 (t, *J* = 7.9 Hz, 1H), 7.71(d, *J* = 7.9 Hz, 1H), 8.11 (d, *J* = 7.9 Hz, 1H), 8.29 (s, 1H); ¹³C NMR (75 MHz) δ 75.3, 121.3, 122.4, 126.6, 128.3, 128.9, 129.3, 132.4, 142.8, 145.8,148.3; HRMS (ESI) m/z calcd for (C₁₃H₁₁NO₃+Na) 252.0637, found 252.0644 (C₁₃H₁₁NO₃+Na). 2-nitrophenyl-phenylmethanol¹⁰ (**3**)

⁹ R. G. La, A. Coluccia, V. Famiglini, S. Pelliccia, L. Monti, D. Vullo, E. Nuti, V. Alterio, G. De Simone, S. M. Monti, P. W. Pan, S. Parkkila, C. T. Supuran, A. Rossello, R. Silvestri, *J. Med. Chem.* **2015**, *58*, 8564–8572;

¹⁰ S. J. Chang, S. L. Zhou, H. M. Gau, *RSC Advances*, **2015**, *5*, 9368–9373.

(2-nitrophenyl)(phenyl)methanol(**3j**). The product was isolated as a light-yellow solid (87 mg, 76%) after column chromatography purification using a solution of petroleum ether and ethyl acetate 5:1(v/v) as the eluent. mp 58–59 °C; IR (neat cm⁻¹): 1373(NO₂), 1558(NO₂), 3348(OH); The NMR spectra of (2-nitrophenyl)(phenyl)methanol are shown as Attached Fig.23 and Attached Fig.24 in supplementary material, respectively. ¹H NMR (CDCl₃, 300 MHz) δ 3.04 (s, 1H), 6.40 (s, 1H), 7.29-7.33 (m, 5H), 7.45 (t, *J* = 7.5 Hz, 1H), 7.63 (t, *J* = 8.1 Hz, 1H), 7.74 (d, *J* = 7.5 Hz, 1H), 7.91 (d, *J* = 8.1 Hz, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 71.4, 124.7,126.9, 128.0, 128.5, 128.5, 129.4, 133.4, 138.5, 141.5, 148.3; HRMS (ESI) m/z calcd for (C₁₃H₁₁NO₃+Na) 252.0637, found 252.0645 (C₁₃H₁₁NO₃+Na).

4-cyanophenyl-phenylmethanol¹¹ (3m)

4-(hydroxy(phenyl)methyl)benzonitrile (**3m**). The product was isolated as a light-yellow solid (91 mg, 87%) after column chromatography purification using a solution of petroleum ether and ethyl acetate 6:1(v/v) as the eluent. mp 68–70 °C; IR (neat cm⁻¹): 2221(CN), 3348(OH); The NMR spectra of 4-(hydroxy(phenyl)methyl)benzonitrile are shown as Attached Fig.25 and Attached Fig.26 in supplementary material, respectively. ¹H NMR (CDCl₃, 300 MHz) δ 2.31 (d, *J* = 3.0 Hz, 1H), 5.87 (d, *J* = 3.0 Hz, 1H), 7.33-7.34 (m, 5H), 7.52 (d, *J* = 8.6 Hz, 2H), 7.63 (d, *J* = 8.6 Hz, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 75.6, 118.8, 126.6, 126.7, 127.0, 127.0, 128.3, 128.9, 132.2, 142.8; HRMS (ESI) m/z calcd for (C₁₄H₁₁NO+Na) 232.0738, found 232.0734 (C₁₄H₁₁NO+Na).

4-formylphenyl-phenylmethanol¹¹(**3n**)

4-formylphenyl-phenylmethanol(**3n**). The product was isolated as a light-yellow solid (98 mg, 93%)

¹¹ a) Y. Hayashi, N. Yamamura, T. Kusukawa, T. Harada, *Chem. Eur. J.*, **2016**, 22, 12095–12105; b) J. Karthikeyan, M. Jeganmohan, C. H Cheng, *Chem. Eur. J.* **2010**, *16*, 8989–8992.

after column chromatography purification using a solution of petroleum ether and ethyl acetate 5:1(ν/ν) as the eluent. mp 76–78 °C; IR (neat cm⁻¹): 1710(CHO), 2720(CHO), 2749(CHO), 3348(OH); The NMR spectra of 4-formylphenyl-phenylmethanol are shown as Attached Fig.27 and Attached Fig.28 in supplementary material, respectively. ¹H NMR (CDCl₃, 300 MHz) δ 2.88 (brs, 1H), 5.88 (s, 1H), 7.27-7.36 (m, 5H), 7.56 (d, J = 8.0 Hz, 2H), 7.83 (d, J = 8.0 Hz, 2H), 9.94 (s, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 75.8, 126.7, 126.9, 128.0, 128.7, 129.9, 135.5, 143.1, 150.5, 192.1; HRMS (ESI) m/z calcd for (C₁₄H₁₂O₂+Na) 235.0735, found 235.0742 (C₁₄H₁₂O₂+Na). methyl 4-(hydroxy(phenyl)methyl)benzoate¹² (**30**)

methyl 4-(hydroxy(phenyl)methyl)benzoate(**30**). The product was isolated as a light-yellow solid (66 mg, 55%) after column chromatography purification using a solution of petroleum ether and ethyl acetate 5:1(ν/ν) as the eluent. mp 61–62 °C; IR (neat cm⁻¹): 1730(COO), 3351(OH); The NMR spectra of methyl 4-(hydroxy(phenyl)methyl)benzoate are shown as Attached Fig.29 and Attached Fig.30 in supplementary material, respectively. ¹H NMR (CDCl₃, 300 MHz) δ 2.59 (brs, 1H), 3.89 (s, 3H), 5.86 (s, 1H), 7.19-7.35 (m, 5H), 7.45 (d, *J* = 8.3 Hz, 2H), 7.99 (d, *J* = 8.3 Hz, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 52.1, 75.9, 126.3, 126.6, 127.9, 128.7, 129.2, 129.8, 143.3, 148.7, 166.9; HRMS (ESI) m/z calcd for (C₁₅H₁₄O₃+Na) 265.0841, found 265.0847 (C₁₅H₁₄O₃+Na).

(4-(methylsulfonyl)phenyl)(phenyl)methanol⁵(**3p**)

(4-(methylsulfonyl)phenyl)(phenyl)methanol(**3p**). The product was isolated as a light-yellow solid (119 mg, 91%) after column chromatography purification using a solution of petroleum ether and ethyl acetate 5:1(v/v) as the eluent. mp 125–126 °C; IR (neat cm⁻¹): 1560(SO₂), 3351(OH); The NMR spectra of (4-(methylsulfonyl)phenyl)(phenyl)methanol are shown as Attached Fig.31 and Attached Fig.32 in supplementary material, respectively. ¹H NMR (CDCl₃, 300 MHz) δ 2.42 (s, 1H), 3.03 (s, 3H), 5.91 (d, J = 2.5 Hz, 1H), 7.33-7.37 (m, 5H), 7.61 (d, J = 8.1 Hz, 2H), 7.90 (d, J = 8.1

¹² T. Yamamoto, T. Furusawa, A. Zhumagazin, T. Yamakawa, Y. Oe, T. Ohta, *Tetrahedron*, **2015**, *71*, 19–26.

Hz, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 44.5, 75.6, 126.7, 127.2, 127.5, 127.5, 128.2, 128.8, 142.9, 150.0; HRMS (ESI) m/z calcd for (C₁₄H₁₄O₃S+Na) 285.0561, found 285.0567 (C₁₄H₁₄O₃S+Na).

4. Experimental characterization data for benzil derivatives

Benzyl¹³ (4a)

<u>Benzyl</u>(4a). The product was isolated as a light-yellow solid (99 mg, 95%) after column chromatography purification using a solution of petroleum ether and ethyl acetate 10:1(v/v) as the eluent. mp 94–95 °C; IR (neat cm⁻¹): 1680(-CO-CO-), 1620(-CO-CO-); The NMR spectra of benzyl are shown as Attached Fig.33 and Attached Fig.34 in supplementary material, respectively. ¹H NMR (CDCl₃, 300 MHz) δ 7.48-7.54 (m, 4H), 7.62-7.68 (m, 2H), 7.95-8.00 (m, 4H); ¹³C NMR (CDCl₃, 75 MHz) δ 128.9, 129.5, 132.2, 134.7, 194.5; HRMS (ESI) m/z calcd for (C₁₄H₁₀O₂+H) 211.2400, found 211.2410 (C₁₅H₁₂O₃+H).

1-(4-methoxyphenyl)-2-phenylethane-1, 2-dione¹⁴(4b)

1-(4-methoxyphenyl)-2-phenylethane-1,2-dione(**4b**). The product was isolated as a light-yellow solid (113 mg, 94%) after column chromatography purification using a solution of petroleum ether and ethyl acetate 10:1(ν/ν) as the eluent. mp 62–63 °C; IR (neat cm⁻¹): 2830(OCH₃), 2812(OCH₃), 1680(-CO-CO-), 1620(-CO-CO-); The NMR spectra of 1-(4-methoxyphenyl)-2-phenylethane-1,2-dione are shown as Attached Fig.35 and Attached Fig.36 in supplementary material, respectively. ¹H NMR (CDCl₃, 300 MHz) δ 3.89 (s, 3H), 6.94-6.99 (m, 2H), 7.46-7.64 (m, 3H), 7.91-7.99 (m, 8.4 Hz, 4H); ¹³C NMR (CDCl₃, 75 MHz) δ 55.6, 114.4, 126.0, 128.9, 129.8, 133.2, 134.6, 140.0, 165.0, 193.1, 194.8; HRMS (ESI) m/z calcd for (C₁₅H₁₂O₃+H) 241.0865, found 241.0873 (C₁₅H₁₂O₃+H). 1-phenyl-2-*p*-tolylethane-1, 2-dione¹⁴ (**4c**)

¹⁶ Z. H. Wan, C. D. Jones, D. Mitchell, J. Y. Pu, T. Y. Zhang, J. Org. Chem. 2006, 71, 826-828.

1-phenyl-2-(p-tolyl)ethane-1,2-dione(**4c**). The product was isolated as a light-yellow solid (104 mg, 93%) after column chromatography purification using a solution of petroleum ether and ethyl acetate 10:1(ν/ν) as the eluent. mp 99–101 °C; IR (neat cm⁻¹): 2958(CH₃), 2861(CH₃), 1680(-CO-CO-), 1620(-CO-CO-); The NMR spectra of 1-phenyl-2-(p-tolyl)ethane-1,2-dione are shown as Attached Fig.37 and Attached Fig.38 in supplementary material, respectively. ¹H NMR (CDCl₃, 300 MHz) δ 2.43 (s, 3H), 7.28-7.31 (m, 2H), 7.46-7.52 (m, 2H), 7.61-7.64 (m, 1H), 7.85-7.88 (m, 2H), 7.94-7.98 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 21.9, 128.9, 129.7, 129.8, 129.9, 130.0, 130.6, 134.8, 146.2, 194.2, 194.7; HRMS (ESI) m/z calcd for (C₁₅H₁₂O₂+H) 225.0916, found 225.0922 (C₁₅H₁₂O₂+H). 1-(naphthalen-1-yl)-2-phenylethane-1,2-dione¹⁴ (**4d**)

1-(naphthalen-1-yl)-2-phenylethane-1,2-dione(**4d**). The product was isolated as a light-yellow solid (119 mg, 92%) after column chromatography purification using a solution of petroleum ether and ethyl acetate 10:1(v/v) as the eluent. mp 101-103 °C; IR (neat cm⁻¹): 1688(-CO-CO-), 1622(-CO-CO-); The NMR spectra of 1-(naphthalen-1-yl)-2-phenylethane- 1,2-dione are shown as Attached Fig.39 and Attached Fig.40 in supplementary material, respectively. ¹H NMR (CDCl₃, 300 MHz) δ 7.49-7.67 (m, 6H), 7.90-8.05 (m, 5H), 9.30-9.46 (m, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 124.5, 126.0, 127.2, 128.6, 129.0, 129.5, 131.0, 133.4, 134.1, 134.8, 135.1, 136.0, 194.6, 197.2; HRMS (ESI) m/z calcd for (C₁₈H₁₂O₂+H) 261.0916, found 261.0923 (C₁₈H₁₂O₂+H).

1-(4-fluorophenyl)-2-phenylethane-1, 2-dione¹⁵ (4e)

1-(4-fluorophenyl)-2-phenylethane-1,2-dione(4e). The product was isolated as a light-yellow solid (104 mg, 91%) after column chromatography purification using a solution of petroleum ether and

¹⁵ E. Anders, T. Clark, T. Gassner, Chem. Ber. 1986, 119, 1350-1360.

¹³ R. Ramajayam, R. Giridhar, M. R. Yadav, Chem. Heterocycl. Compd. 2006, 42, 901-906.

ethyl acetate 10:1(v/v) as the eluent. mp 62–64 °C; IR (neat cm⁻¹): 1688(-CO-CO-), 1622(-CO-CO-); The NMR spectra of 1-(4-fluorophenyl)-2-phenylethane-1,2-dione are shown as Attached Fig.41 and Attached Fig.42 in supplementary material, respectively. ¹H NMR (CDCl₃, 300 MHz) δ 7.15-7.26 (m, 2H), 7.50-7.54 (m, 2H), 7.55-7.68 (m, 1H), 7.95-8.05 (m, 4H); ¹³C NMR (CDCl₃, 75 MHz) δ 116.2, 116.5, 129.0, 129.5, 129.6, 129.9, 132.6, 132.7, 132.9, 134.9, 165.0, 168.5, 192.6, 194.0; HRMS (ESI) m/z calcd for (C₁₄H₉FO₂+H) 229.0665, found 229.0669 (C₁₄H₉FO₂+H).

<u>1-phenyl-2-*p*-tolylethane-1, 2-dione¹⁴ (4f)</u>

1-phenyl-2-(p-tolyl)ethane-1,2-dione(**4f**). The product was isolated as a light-yellow solid (104 mg, 93%) after column chromatography purification using a solution of petroleum ether and ethyl acetate 10:1(ν/ν) as the eluent. mp 99–101 °C; IR (neat cm⁻¹): 2958(CH₃), 2861(CH₃), 1680(-CO-CO-), 1620(-CO-CO-); The NMR spectra of 1-phenyl-2-(p-tolyl)ethane-1,2-dione are shown as Attached Fig.43 and Attached Fig.44 in supplementary material, respectively. ¹H NMR (CDCl₃, 300 MHz) δ 2.43 (s, 3H), 7.28-7.31 (m, 2H), 7.46-7.52 (m, 2H), 7.61-7.64 (m, 1H), 7.85-7.88 (m, 2H), 7.94-7.98 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 21.9, 128.9, 129.7, 129.8, 129.9, 130.0, 130.6, 134.8, 146.2, 194.2, 194.7; HRMS (ESI) m/z calcd for (C₁₅H₁₂O₂+H) 225.0916, found 225.0922 (C₁₅H₁₂O₂+H). 1-(4-methoxyphenyl)-2-phenylethane-1, 2-dione¹⁴(**4g**)

1-(4-methoxyphenyl)-2-phenylethane-1,2-dione(**4b**). The product was isolated as a light-yellow solid (113 mg, 94%) after column chromatography purification using a solution of petroleum ether and ethyl acetate 15:1(v/v) as the eluent. mp 62–63 °C; IR (neat cm⁻¹): 2830(OCH₃), 2812(OCH₃), 1680(-CO-CO-), 1620(-CO-CO-); The NMR spectra of 1-(4-methoxyphenyl)-2-phenylethane-1,2-dione are shown as Attached Fig.45 and Attached Fig.46 in supplementary material, respectively. ¹H NMR (CDCl₃, 300 MHz) δ 3.89 (s, 3H), 6.94-6.99 (m, 2H), 7.46-7.64 (m, 3H), 7.91-7.99 (m, 8.4 Hz, 4H); ¹³C NMR (CDCl₃, 75 MHz) δ 55.6, 114.4, 126.0, 128.9, 129.8, 133.2, 134.6, 140.0, 165.0, 193.1, 194.8; HRMS (ESI) m/z calcd for (C₁₅H₁₂O₃+H) 241.0865, found 241.0873 (C₁₅H₁₂O₃+H).

1-phenyl-2-(thiophen-3-yl) ethane-1, 2-dione¹⁶(4h)

1-phenyl-2-(thiophen-3-yl) ethane-1, 2-dione(**4h**). The product was isolated as a light-yellow solid (72 mg, 67%) after column chromatography purification using a solution of petroleum ether and ethyl acetate 15:1(v/v) as the eluent. mp 81–82 °C; IR (neat cm⁻¹): 3011(thiophene), 1620(-CO-CO-); The NMR spectra of 1-phenyl-2-(thiophen-3-yl) ethane-1, 2-dione are shown as Attached Fig.47 and Attached Fig.48 in supplementary material, respectively. ¹H NMR (CDCl₃, 300 MHz) δ 7.39-7.54 (m, 3H), 7.63-7.70 (m, 2H), 7.99-8.02 (m, 2H), 8.21(s, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 120.0, 129.3, 129.8, 131.1, 131.2, 132.7, 135.0, 141.5, 193.0, 193.8; HRMS (ESI) m/z calcd for (C₁₂H₈O₂S+H) 217.0323, found 217.0328 (C₁₂H₈O₂S+H).

<u>1-phenyl-2-(thiophen-2-yl) ethane-1, 2-dione¹⁷(4i)</u>

1-phenyl-2-(thiophen-2-yl) ethane-1, 2-dione(**4i**). The product was isolated as a light-yellow solid (25.4 mg, 59%) after column chromatography purification using a solution of petroleum ether and ethyl acetate 5:1(ν/ν) as the eluent. mp 61–62 °C; IR (neat cm⁻¹): 3010(thiophene), 1682(-CO-CO-), 1620(-CO-CO-); The NMR spectra of 1-phenyl-2-(thiophen-2-yl) ethane-1,2-dione are shown as Attached Fig.49 and Attached Fig.50 in supplementary material, respectively. ¹H NMR (CDCl₃, 300 MHz) δ 7.19-7.23 (m, 1H), 7.50-7.68 (m, 2H), 7.69-7.86 (m, 3H), 8.07 (d, J = 7.9, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 128.7, 128.9, 130.2, 132.6, 134.8, 136.6, 136.8, 139.9, 185.5, 192.0; HRMS (ESI) m/z calcd for (C₁₂H₈O₂S+H) 217.0323, found 217.0331 (C₁₂H₈O₂S+H).

1-(2-chlorophenyl)-2-phenylethane-1,2-dione¹⁷(4j)

1-(2-chlorophenyl)-2-phenylethane-1,2-dione (4i). The product was isolated as a light-yellow solid

¹⁷ C. J. Walsh, B. K. Mandal, J. Org. Chem. 1999, 64, 6102-6105.

¹⁸ S. Newman, G. B. Iiahlei, J. Org. Chem. 1958, 23, 666-669.

(95 mg, 78%) after column chromatography purification using a solution of petroleum ether and ethyl acetate 8:1(ν/ν) as the eluent. mp 47–49 °C; IR (neat cm⁻¹): 1685(-CO-CO-), 1622(-CO-CO-); The NMR spectra of 1-(2-chlorophenyl)-2-phenylethane-1,2-dione are shown as Attached Fig.51 and Attached Fig.52 in supplementary material, respectively. ¹H NMR (CDCl₃, 300 MHz) δ 7.41-7.57 (m, 5H), 7.64-7.67 (m, 1H), 7.89-7.94 (m, 1H), 8.02-8.05 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 127.4, 128.9, 130.2, 130.5, 132.1, 132.4, 133.8, 134.0, 134.5, 134.6, 192.1, 193.7; HRMS (ESI) m/z calcd for (C₁₄H₉ClO₂+H) 245.0369, found 245.0374 (C₁₄H₉ClO₂+H).

<u>1-phenyl-2-o-tolylethane-1,2-dione¹⁸(4k)</u>

1-phenyl-2-o-tolylethane-1,2-dione(**4k**). The product was isolated as a light-yellow solid (97 mg, 87%) after column chromatography purification using a solution of petroleum ether and ethyl acetate 5:1(ν/ν) as the eluent. mp 57–59 °C; IR (neat cm⁻¹): 2960(CH₃), 2869(CH₃), 1680(-CO-CO-), 1620(-CO-CO-); The NMR spectra of 1-phenyl-2-o-tolylethane-1,2-dione are shown as Attached Fig.53 and Attached Fig.54 in supplementary material, respectively. ¹H NMR (CDCl₃, 300 MHz) δ 2.72 (s, 3H), 7.27-7.40 (m, 2H), 7.48-7.55 (m, 3H), 7.64-7.70 (m, 2H), 7.97-7.80 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 21.9, 126.0, 127.9, 129.0, 129.9, 131.8, 132.6, 133.1, 133.8, 134.7, 141.3, 194.8, 196.8; HRMS (ESI) m/z calcd for (C₁₅H₁₂O₂+H) 225.0916, found 225.0921 (C₁₅H₁₂O₂+H).

1-(naphthalen-1-yl)-2-phenylethane-1,2-dione¹⁹ (41)

1-(naphthalen-1-yl)-2-phenylethane-1,2-dione(**4l**). The product was isolated as a light-yellow solid (118 mg, 91%) after column chromatography purification using a solution of petroleum ether and ethyl acetate 10:1(v/v) as the eluent. mp 101–102 °C; IR (neat):1680(-CO-CO-), 1620(-CO-CO-) cm⁻¹; The NMR spectra of 1-(naphthalen-1-yl)-2-phenylethane-1,2-dione are shown as Attached Fig.55 and Attached Fig.56 in supplementary material, respectively. ¹H NMR (CDCl₃, 300 MHz) δ

¹⁹ J. Tatsugi, Y. Izawa, J. Chem. Res. S. 1988, 356-357.

¹⁵ E. Anders, T. Clark, T. Gassner, Chem. Ber. 1986, 119, 1350-1360.

7.49-7.67 (m, 6H), 7.90-8.05 (m, 5H), 9.30-9.46 (m, 1H); 13 C NMR (CDCl₃, 75 MHz) δ 124.5, 126.0, 127.2, 128.6, 129.0, 129.5, 131.0, 133.4, 134.1, 134.8, 135.1, 136.0, 194.6, 197.2; HRMS (ESI) m/z calcd for (C₁₈H₁₂O₂+H) 261.0916, found 261.0923 (C₁₈H₁₂O₂+H).

1-(4-methoxyphenyl)-2-p-tolylethane-1,2-dione²⁰(4m)

1-(4-methoxyphenyl)-2-p-tolylethane-1,2-dione(**4**I). The product was isolated as a light-yellow solid (117 mg, 92%) after column chromatography purification using a solution of petroleum ether and ethyl acetate 10:1(ν/ν) as the eluent. mp 97–98 °C; IR (neat): 2950(CH₃), 2860(OCH₃), 2812(OCH₃), 1680(-CO-CO-), 1620(-CO-CO-)cm⁻¹; The NMR spectra of 1-(4-methoxyphenyl)-2-p-tolylethane-1,2-dione are shown as Attached Fig.57 and Attached Fig.58 in supplementary material, respectively. ¹H NMR (CDCl₃, 300 MHz) δ 2 .43 (s, 3H), 3.88 (s, 3H), 6.97 (d, *J* = 8.9, 2H), 7.30 (d, *J* = 7.9, 2H), 7.87 (d, *J* = 8.2, 2H), 7.94 (d, *J* = 8.2, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 127.4, 128.9, 130.2, 130.5, 132.1, 132.4, 133.8, 134.0, 134.5, 134.6, 192.1, 193.7; HRMS (ESI) m/z calcd for (C₁₆H₁₄O₃+H) 255.1021, found 255.1028 (C₁₆H₁₄O₃+H).

1, 2-bis(4-methoxyphenyl)ethane-1,2-dione²¹(4n)

1,2-bis(4-methoxyphenyl)ethane-1,2-dione (**4l**). The product was isolated as a light-yellow solid (127 mg, 94%) after column chromatography purification using a solution of petroleum ether and ethyl acetate 10:1(ν/ν) as the eluent. mp 130–132 °C; IR (neat): 2860(OCH₃), 2812(OCH₃), 1680(-CO-CO-), 1620(-CO-CO-); The NMR spectra of 1,2-bis(4-methoxyphenyl)ethane-1,2-dione are shown as Attached Fig.59 and Attached Fig.60 in supplementary material, respectively. ¹H NMR (CDCl₃, 300 MHz) δ 3.87 (s, 6H), 6.96 (dd, J_1 = 8.9 Hz, J_2 = 1.95 Hz, 4H), 7.94 (dd, J_1 = 8.9 Hz, J_2 = 1.98 Hz, 4H); ¹³C NMR (CDCl₃, 75 MHz) δ 55.5, 114.2, 126.2, 132.4, 164.7, 193.4; HRMS (ESI) m/z calcd for (C₁₆H₁₄O₄+H) 271.0970, found 271.0968 (C₁₆H₁₄O₄+H).

²⁰ U. Wille, J. Andropof, Aust. J. Chem. 2007, 60, 420-428.

²¹ J. K. Joseph, S. L. Jain, B. Sain, Eur. J. Org. Chem. 2006, 590-594.

1,2-dip-tolylethane-1,2-dione²⁰(40)

1,2-dip-tolylethane-1,2-dione(**4I**). The product was isolated as a light-yellow solid (118 mg, 93%) after column chromatography purification using a solution of petroleum ether and ethyl acetate 10:1(v/v) as the eluent. mp 106–107 °C; IR (neat): 2960(CH₃), 2869(CH₃), 1680(-CO-CO-), 1620(-CO-CO-); The NMR spectra of 1,2-dip-tolylethane-1,2-dione are shown as Attached Fig.61 and Attached Fig.62 in supplementary material, respectively. ¹H NMR (CDCl₃, 300 MHz) δ 2.42 (s, 6H), 7.29 (dd, J_1 = 8.46 Hz, J_2 = 0.5 Hz, 4H), 7.86 (dd, J_1 = 6.54 Hz, J_2 = 1.7 Hz, 4H), 8.02-8.05 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 21.8, 129.6, 129.9, 130.6, 146.0, 194.4; HRMS (ESI) m/z calcd for (C₁₆H₁₄O₂+H) 239.1072, found 255. 239.1076 (C₁₆H₁₄O₂+H).

5. The NMR spectra of diarylmethanols

Attached Fig.1 ¹H NMR spectrum of (4-nitrophenyl)(phenyl)methanol recorded in CDCl₃

Attached Fig.2 ¹³C NMR spectrum of (4-nitrophenyl)(phenyl)methanol recorded in CDCl₃

Attached Fig.3 ¹H NMR spectrum of (4-nitrophenyl)(p-tolyl)methanol recorded in CDCl₃

Attached Fig.4 ¹³C NMR spectrum of (4-nitrophenyl)(p-tolyl)methanol recorded in CDCl₃

Attached Fig.6¹³C NMR spectrum of (4-methoxyphenyl)(4-nitrophenyl)methanol recorded in CDCl₃

Attached Fig.10¹³C NMR spectrum of (2-methoxyphenyl)(4-nitrophenyl)methanol recorded in CDCl₃

, , , , , ,

Attached Fig.13 ¹H NMR spectrum of naphthalen-1-yl(4-nitrophenyl)methanol recorded in CDCl₃

Attached Fig.14 ¹³C NMR spectrum of naphthalen-1-yl(4-nitrophenyl)methanol recorded in CDCl₃

Attached Fig.15¹H NMR spectrum of (4-fluorophenyl)(4-nitrophenyl)methanol recorded in CDCl₃

Attached Fig.18¹³C NMR spectrum of (4-chlorophenyl)(4-nitrophenyl)methanol recorded in CDCl₃

Attached Fig.19¹H NMR spectrum of (4-bromophenyl)(4-nitrophenyl)methanol recorded in CDCl₃

Attached Fig.21 ¹H NMR spectrum of (3-nitrophenyl)(phenyl)methanol recorded in CDCl₃

Attached Fig.24 ¹³C NMR spectrum of (2-nitrophenyl)(phenyl)methanol recorded in CDCl₃

Attached Fig.27 ¹H NMR spectrum of 4-(hydroxy(phenyl)methyl)benzonitrile recorded in CDCl₃

Attached Fig.28 ¹³C NMR spectrum of 4-(hydroxy(phenyl)methyl)benzonitrile recorded in CDCl₃

Attached Fig.29 ¹H NMR spectrum of 4-(hydroxy(phenyl)methyl)benzonitrile recorded in CDCl₃

Attached Fig.31 ¹H NMR spectrum of 4-(hydroxy(phenyl)methyl)benzonitrile recorded in CDCl₃

6. The NMR spectra of benzil derivatives

Attached Fig. 34 ¹³C NMR spectrum of benzil recorded in CDCl₃

Attached Fig.35 ¹H NMR spectrum of 1-(4-methoxyphenyl)-2-phenylethane-1,2-dione recorded in CDCl₃

Attached Fig.36¹³C NMR spectrum of 1-(4-methoxyphenyl)-2-phenylethane-1,2-dione recorded in CDCl₃

Attached Fig.39 ¹H NMR spectrum of 1-(naphthalen-1-yl)-2-phenylethane-1,2-dione recorded in CDCl₃

Attached Fig.40¹³C NMR spectrum of 1-(naphthalen-1-yl)-2-phenylethane-1,2-dione recorded in CDCl₃

Attached Fig.42 ¹³C NMR spectrum of 1-(4-fluorophenyl)-2-phenylethane-1,2-dione recorded in CDCl₃

ppm

Attached Fig.44 ¹H NMR spectrum of 1-(4-fluorophenyl)-2-phenylethane-1,2-dione recorded in CDCl₃

Attached Fig.45 ¹H NMR spectrum of 1-(4-methoxyphenyl)-2-phenylethane-1,2-dione recorded in CDCl₃

Attached Fig.46¹³C NMR spectrum of 1-(4-methoxyphenyl)-2-phenylethane-1,2-dione recorded in CDCl₃

Attached Fig.47 ¹H NMR spectrum of 1-phenyl-2-(thiophen-3-yl)ethane-1,2-dione recorded in CDCl₃

Attached Fig.48 ¹³C NMR spectrum of 1-phenyl-2-(thiophen-3-yl)ethane-1,2-dione recorded in CDCl₃

Attached Fig.49 ¹H NMR spectrum of 1-phenyl-2-(thiophen-2-yl)ethane-1,2-dione recorded in CDCl₃

Attached Fig.51 ¹H NMR spectrum of 1-(2-chlorophenyl)-2-phenylethane-1,2-dione recorded in CDCl₃

Attached Fig.54 ¹³C NMR spectrum of 1-phenyl-2-(o-tolyl)ethane-1,2-dione recorded in CDCl₃

Attached Fig.55 ¹H NMR spectrum of 1-(naphthalen-1-yl)-2-phenylethane-1,2-dione recorded in CDCl₃

Attached Fig.56¹³C NMR spectrum of 1-(naphthalen-1-yl)-2-phenylethane-1,2-dione recorded in CDCl₃

Attached Fig.58¹³C NMR spectrum of 1-(4-methoxyphenyl)-2-(p-tolyl)ethane-1,2-dione recorded in CDCl₃

Attached Fig.60¹³ C NMR spectrum of 1,2-bis(4-methoxyphenyl)ethane-1,2-dione recorded in CDCl₃

