Electronic Supplementary Information

A facile strategy of MoS2 quantum dots for fluorescence-based targeted detection of nitrobenzene

*Bhasha Sathyan,^a Ann Mary Tomy,^a Neema PM,a,b Jobin Cyriaca** ^aDepartment of Chemistry, Indian Institute of Space Science and Technology, Thiruvananthapuram

^bSchool of Physics, Indian Institute of Science Education and Research, Thiruvananthapuram *Email: jobincyriac@iist.ac.in

Fig. S1.(a) TEM micrograph of MoS₂ QDs. Scale bar is 20 nm. (b) A higher magnification image showing (100) planes (arrows indicating lattice fringe spacing corresponds to (100) plane). (c) EDS spectrum of MoS_2 QDs taken from the area shown in SEM image of MoS_2 QDs (i) and EDS mapping of $MoS₂$ QDs (ii-iv) showing the elemental distribution. (d) The particle size distribution of $MoS₂ QDs$ obtained from the dynamic light scattering (DLS) analysis. (e) Showing the height profile drawn on the AFM image.

Fig. S2. Fluorescence response of MoS_2 QDs for a period of 30 days. The sample was kept under ambient conditions.

Fig. S3. Emission of MoS₂ QDs after exposure of UV irradiation (48 W power) at various time intervals.

Fig. S4. Lifetime decay curve of $MoS_2 QDs$ and $MoS_2 QDs$ with different analytes such as (a) HgCl2, (b) NMP, (c) PhCl, and (d) NMP. The instrument response is termed as prompt in the graphs.

Fig. S5. UV-visible spectra of MoS_2 QDs (black) and MoS_2 QDs at different concentrations of NB (2.5µM-50 µM).

Fig. S6. Plots of F₀/F vs [Nitrobenzene] at different temperatures. The solid line shows fit to the simple Stern-Volmer equation (eq (1).

Fig. S7. Relationship between F_0/F vs concentration of NB of $F_{observed}$ and $F_{corrected}$, showing linear plot with different slopes. F_0 and F are the steady state intensity before and after the addition of NB, respectively.

Fig. S8 (a*)* Percentage of quenching by different interfering analytes (0.01mM) before and after the addition of (0.01mM) NB*.* (b) Percentage of quenching by different interfering nitro explosives (0.01mM) before and after the addition of (0.01mM) NB.

Fig. S9. Lifetime decay curve of MoS_2 QDs and MoS_2 QDs with different nitro explosives such as (a) p-NP, (b) TNP, (c) o-NP, and (d) DNT. . The instrument response is termed as prompt in the graphs.

Fig. S10. This figure demonstrates the reproducibility of the sensor material. Each data point is derived from three different batches of MoS₂ QDs and three repeat measurements.

Table S1: Comparison of present NB sensor with previously reported fluorescence based NB sensors.

System	τ_1	α_1	τ_2	$\mathbf{0}\mathbf{2}$	τ_3	α_3	$<\tau>$	χ^2
	(n _s)	$(\%)$	(n _s)	$(\%)$	(n _s)	$(\%)$	(n s)	
MoS ₂ QD	1.78	19.54	6.13	32.84	19.46	47.62	16.62	1.18
$1 \mu M NB$	1.75	19.85	5.75	30.97	16.37	49.88	14.05	1.19
$2 \mu M NB$	1.68	26.01	5.66	30.12	16.13	43.87	13.50	1.20
$3 \mu M NB$	1.54	26.12	5.41	29.34	15.83	44.55	13.36	1.20
$4 \mu M NB$	1.45	29.54	5.40	30.34	15.99	40.12	13.21	1.17
$5 \mu M NB$	1.25	30.36	4.38	37.55	15.19	45.09	12.80	1.17
$6 \mu M NB$	0.84	39.86	4.35	28.43	15.18	23.71	11.52	1.13
$7 \mu M NB$	0.76	50.3	4.11	26.71	14.97	22.98	11.44	1.2
$8 \mu M NB$	0.59	54.26	4.02	29.01	13.68	22.73	10.39	1.2
$9 \mu M NB$	0.51	57.69	3.94	28.63	12.14	23.68	9.29	1.2
$10 \mu M NB$	0.45	66.68	3.46	26.78	11.05	26.54	8.77	1.2

Table S2. The lifetime component of $MoS₂ QDs$ and $MoS₂ QDs-NB$ shows concentration dependence (of NB) on lifetime value. All decay profiles are fitted into tri-exponential functions. A decrease in average lifetime values of $MoS₂ QDs-NB$ system implies the interaction of excited state MoS₂ QDs and with NB.

Fluorescence quenching efficiency calculation

Using steady-fluorescence data

 $E_F = 1 - (F_{DA}/F_D)$ ----- $(Eq, S1)$

Where,

FDA is the fluorescence intensity of Doner in the prescence of Accepter. F_D is the fluorescence intensity of Doner alone. Fluorescence quenching efficiency = 79 %

Dynamic quenching efficiency calculation

Using time-resolved fluorescence data

 $E_{D} = 1-(\tau_{DA}/\tau_{D})$ ------ (Eq. S2)

Where,

τDA is the fluorescence lifetime of Doner in the presence of Accepter. τ_D is the fluorescence lifetime of Doner alone Dynamic quenching efficiency $= 47.3$ %

Reference

- 1 H. Zheng, Y. K. Deng, M. Y. Ye, Q. F. Xu, X. J. Kong, L. S. Long and L. S. Zheng, *Inorg. Chem.*, 2020, **59**, 12404–12409.
- 2 L. Yang, C. Lian, X. Li, Y. Han, L. Yang, T. Cai and C. Shao, *ACS Appl. Mater. Interfaces*, 2017, **9**, 17208–17217.
- 3 A. M. S. M. M. Otrokov, I. I. Klimovskikh, F. Calleja, J. H. D. O. Vilkov, A. G. Rybkin, D. Estyunin, S. Mu, H. O. A. L. Vázquez de Parga, R. Miranda and A. A. F. Guinea, J. I. Cerdá, E. V. Chulkov, 2018, 0–13.
- 4 S. Xian, H. L. Chen, W. L. Feng, X. Z. Yang, Y. Q. Wang and B. X. Li, *J. Solid State Chem.*, 2019, **280**, 120984.
- 5 S. Vinoth, P. Mary Rajaitha and A. Pandikumar, *Compos. Sci. Technol.*, 2020, **195**, 108192.
- 6 R. Sakthivel, S. Palanisamy, S. M. Chen, S. Ramaraj, V. Velusamy, P. Yi-Fan, J. M. Hall and S. K. Ramaraj, *J. Taiwan Inst. Chem. Eng.*, 2017, **80**, 663–668.
- 7 C. Karuppiah, K. Muthupandi, S. M. Chen, M. A. Ali, S. Palanisamy, A. Rajan, P. Prakash, F. M. A. Al-Hemaid and B. S. Lou, *RSC Adv.*, 2015, **5**, 31139–31146.
- 8 R. Emmanuel, C. Karuppiah, S. M. Chen, S. Palanisamy, S. Padmavathy and P. Prakash, *J. Hazard. Mater.*, 2014, **279**, 117–124.