Supporting information

A Self-Healable Metallohydrogel for Drug Encapsulations and Drug Release

Mita Dutta^a, Shreya Banerjee^b, Mahitosh Mandal^b and Manish Bhattacharjee^{*,a}

^aDepartment of Chemistry, Indian Institute of Technology, Kharagpur 721302, India

^bSchool of Medical Science and Technology, Indian Institute of Technology Kharagpur 721302, India

Email: <u>mxb@iitkgp.ac.in</u>

Table of the Contents

Content	Page no
Figure S1 Inverted vial picture of the metallogel	S2
Figure S2 Stimuli responsive nature of the metallogel	S2
Figure S3 Optical images of the MOGs	S 3
Figure S4 MALDI-TOF Spectrum of MOG	S4
Figure S5 MALDI-TOF analysis of the MOG	S5
Figure S6 PXRD of xerogel	S6
Figure S7 Amplitude sweep experiments of (a) MOG (b) MOG_IND (c)MOG_GEM	S7
Figure S8 Frequency sweep experiment of the MOG at stain 2% strain	S8
Figure S9 (a) Frequency sweep and (b) amplitude sweep of healed MOG	S9
Figure S10 (a) Dye doped and undoped gel block (b) bridge constructed by alternative undoped and dye doped gel block	S9
Figure S11 Drug release profiles, at pH 7.4 and 5.8, of indomethacin sodium salts from the MOG_IND	S10
Figure S12 Cytotoxicity study in L929 cell by MTT assay after 24 h incubation at 37 °C of MOG_GEM, GEM and MOG	S11
Figure S13 anti-inflammatory study in Raw 264.7 cell by MTT assay after 24 h incubation at 37 °C of MOG_IND, IND and MOG	S12
Figure S14 Live dead assay of MDA-MB-468 cell after 48 hours' treatment with MOG_GEM, GEM, MOG	S12
Table S1. EDAX analysis of the MOG	S13

Figure S1: Optical images of inverted vial metallogel indication variation of concentration for the formation of stable gel.

Figure S2: Diverse stimuli-responsive nature of the metallogel

Figure S3 Optical image of the MOG and drug encapsulated MOGs

Figure S4 MALDI-TOF spectra of MOG

Figure S5 (a) and (b) Index peak analysis of the MALDI-TOF spectra of MOG ((Positive ion detection mode)*

Figure S6 Powder X-ray diffraction pattern of the drug encapsulated metallogels.

Figure S7 Amplitude sweep experiments of (a) MOG (b) MOG_IND (c)MOG_GEM

Figure S8 Frequency sweep experiment of the MOG at stain 2% strain

Figure S9 (a) Frequency sweep and (b) amplitude sweep of healed MOG

Figure S10 (a) Dye doped and undoped gel block (b) bridge constructed by alternative undoped and dye doped gel block.

Figure S11 Drug release profiles, at pH 7.4 and 5.8, of indomethacin sodium salts from the MOG_IND

Figure S12 Cytotoxicity study in L929 cell by MTT assay after 24 h incubation at 37 °C of MOG_GEM, GEM and MOG

Figure S13 anti-inflammatory study in Raw 264.7 cell by MTT assay after 24 h incubation at 37 °C of MOG_IND, IND and MOG

Figure S14 Live dead assay of MDA-MB-468 cell after 48 hours' treatment with MOG_GEM, GEM, MOG

Table S1. EDAX analysis of the MOG

Element	Weight %	Atomic %	Net Int.	Error %	Kratio	Z	А	F
СК	25.88	34.01	156.26	7.38	0.1703	1.0710	0.6146	1.0000
NK	25.16	28.35	67.98	12.53	0.0859	1.0419	0.3279	1.0000
ОК	33.71	33.25	165.93	10.50	0.1062	1.0167	0.3100	1.0000
MnK	15.25	4.38	33.79	18.39	0.1159	0.7338	1.0092	1.0263

*Maximum deviation of assigned peaks for S6 from experimented value is ±0.50 Peak at m/z=273.49 appeared due to the presence of DHB matrix)