Supplementary Information

Modulated wafer-scale WS₂ films based on atomic-layer-deposition for various device applications

Xiangyu Guo^a, Hanjie Yang^a, Xichao Mo^b, Rongxu Bai^a, Yanrong Wang^b, Qi Han^a,

Sheng Han^a, Qingqing Sun^a, David W. Zhang^a, Shen Hu^{a,c,*} and Li Ji^{a,d,*}

^a School of Microelectronics, Fudan University, Shanghai 200433, China;E-mail: hushen@fudan.edu.cn, lji@fudan.edu.cn
^b School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China.
^c Jiashan Fudan Institute, Jiashan 314100, China.
^d Hubei Yangtz Memory Laboratories, Wuhan 430205, China.

This PDF file includes:

Fig. S1[†] The annealing process of WS₂ film.
Fig. S2[†] Detailed fabrication process of WS₂ FETs.
Fig. S3[†] Thickness of WS₂ with 200 ALD cycles.
Fig. S4[†]SEM image of WS₂ film with 800 cycles.

Fig. S5 †Process diagram of Nb-doped WS₂.

Fig. S1 | The annealing process of WS_2 film. The as-deposited samples were placed in a quartz boat in the center of Zone II, and 0.5 g sulfur powder was placed in Zone III carried by a quartz boat. The distance of samples and sulfur powder is 30cm. Argon (10 sccm, 99.999%) was chosen as the carrier gas. The samples were annealed for 2 h in a 4-inch quartz tube at a base pressure of 10 Pa.

Fig. S2 | Detailed fabrication process of WS₂ FETs. Top-gate FETs for WS₂ and Nb-doped WS₂ films were fabricated through CMOS-compatible processes. After annealing in S atmosphere, photolithography was used to define channel area and was etched by $CF_4/Ar (20/10 \text{ sccm})$ in RIE. Source and drain electrodes were patterned by photolithography and metalized by Ti/Au (10/70 nm) for WS₂ N-FETs and Ti/Pt (10/70 nm) for Nb-doped WS₂ P-FETs via PVD. Al₂O₃ gate oxide was deposited by ALD at 250 °C. The precursors for Al₂O₃ were TMA and H₂O, respectively. After top-gate patterning, 10/70 nm Ti/Au was deposited by PVD.

Fig. S3 | Thickness of WS₂ with 200 ALD cycles.

Fig. S4 | SEM image of WS₂ film with 800 cycles.

Fig. S5 | Process diagram of Nb-doped WS₂. The Nb doping process consists of z large cycles, and every large cycle contains x cycles of WS₂ and y cycles of NbS₂.