Supporting Information

Unravelling the Doping Effect of Potassium Ions on Structural

Modulation and Photocatalytic Activity of Graphitic Carbon Nitride

Chengyu Peng, Rong Lu* and Anchi Yu*

Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China

Additional tables and figures

Additional tables

Sample	Peak position (°)	FWHM (°)
GCN	27.4	1.6
GCN-K _{0.75} -500	27.4	1.9
GCN-K _{0.25} -530	27.5	1.9
GCN-K _{0.75} -530	27.5	2.1
GCN-K _{2.25} -530	27.5	2.3
GCN-K _{0.75} -540	27.5	3.6
GCN-K ₀ -550	27.5	1.3
GCN-K _{0.75} -550	28.0	4.5
GCN-K _{0.25} -560	27.5	3.2
GCN-K _{0.75} -560	28.2	0.7
GCN-K _{1.00} -560	28.2	0.7
GCN-K _{1.50} -560	28.2	0.7
GCN-K _{2.25} -560	28.2	1.2

Table S1 Position and the FWHM of (002) peak for all samples.

Table S2 K⁺ contents of GCN-K_{0.75}-560 and GCN-K_{0.75}-560-HCl according to SEM-EDS.

Sample	K(at. %)
GCN-K _{0.75} -560	8.25±1.00
GCN-K _{0.75} -560-HCl	0.37±0.05

Sample	C 1s (at.%)	N 1s (at.%)	O 1s (at.%)	K 2p (at.%)	Cl 2p (at.%)
GCN	45.65	51.27	3.08		
GCN-K _{0.75} -530	43.31	48.89	3.82	3.87	0.1
GCN-K _{0.75} -560	44.57	43.55	5.84	5.88	0.16

Table S3 Chemical compositions (XPS) for GCN, GCN-K_{0.75}-530 and GCN-K_{0.75}-560.

Table S4 The fitting parameters of the fluorescence decay with bi-exponential function for GCN,
GCN- $K_{0.75}$ -530 and GCN- $K_{0.75}$ -560.

$\lambda_{\text{ex}}(nm)$	Sample	a ₁	$\boldsymbol{\tau}_1(ns)$	a ₂	$\tau_2(ns)$	<\tau>(ns)
	GCN	0.84	1.39	0.16	9.02	2.61
375	GCN-K _{0.75} -530	0.75	0.47	0.25	2.52	0.98
	GCN-K _{0.75} -560	0.87	0.22	0.13	1.31	0.36

Table S5 H_2 evolution rates for the samples.

Sample	H_2 evolution rate (λ >420 nm) μ mol/h/20mg
GCN	1.0
GCN-K _{0.25} -530	1.5
GCN-K _{0.75} -530	4.4
GCN-K _{2.25} -530	2.9
GCN-K _{0.25} -560	2.1
GCN-K _{0.75} -560	14.3
GCN-K _{2.25} -560	8.7

Additional figures and schemes:

2 g melamine

2, Washed

GCN

Scheme S1 Schematic illustration of the preparation of GCN and K⁺-doped sample (GCN-K_x-T).

Fig. S1 XRD patterns of GCN and GCN-K₀-550.

Fig. S2 Mass yields of K⁺-doped GCNs (weight ratio of KCl/GCN=0.75, GCN: 400 mg) at different calcination temperatures.

Fig. S3 XRD patterns of GCN and K⁺-doped GCNs with different weight ratios of KCl to GCN at 560 °C.

Fig. S4 FTIR spectra of GCN-K_{0.75}-560 and HCl (0.1 M) treated sample GCN-K_{0.75}-560-HCl.

Fig. S5 SEM images of GCN (a), GCN- $K_{0.75}$ -530 (b) and GCN- $K_{0.75}$ -560 (c).

Fig. S6 Element mapping images of GCN (a), GCN-K_{0.75}-530 (b) and GCN-K_{0.75}-560 (c).

Fig. S7 Comparison of the photocatalytic H₂ evolution rates of the different photocatalysts.

Fig. S8 Stability test of H₂ evolution for GCN-K_{0.75}-560 under visible light (>420 nm) irradiation.

Fig. S9 FTIR spectra of GCN-K_{0.75}-560 before and after photocatalytic H₂ evolution.

Fig. S10 (left) Photocatalytic degradation of MB in the absence and presence of catalyst under visible light (>420 nm) irradiation; (right) Plot of $-\ln(c/c_0)$ against reaction time and photodegradation rates (inset).

Fig. S11 Stability test of photodegradation of MB over GCN- $K_{0.75}$ -560 under visible light (>420 nm) irradiation.