Supplementary material for

Optimization of a Lipase/Reduced Graphene Oxide/Metal-Organic Framework Electrode using Central Composite Design-Response Surface Methodology Approach

Nur Aina Izzati Mohd Mokhtar¹, Siti Efliza Ashari^{2,3}, Ruzniza Mohd Zawawi^{1,*}

¹Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia

²Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia

³Centre of Foundation Studies for Agricultural Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia

*Corresponding author: ruzniza@upm.edu.my

Run	Parameters			Current response (µA)	
	A: rGO	B:	C: Lipase	Actual	Predicted
	weight	Ultrasonication	concentration		
	(mg)	time (min)	(mg/mL)		
1	1.5 (0)	45 (0)	20 (0)	98.79	100.55
2	1 (-1)	45 (0)	20 (0)	105.6	104.6
3	1.5 (0)	45 (0)	20 (0)	100.31	100.55
4	1 (-1)	30 (-1)	10 (-1)	101.59	102.07
5	1.5 (0)	45 (0)	30 (+1)	112.36	111.43
6	2 (+1)	30 (-1)	30 (+1)	113.38	113.83
7	2 (+1)	60 (+1)	10 (-1)	103.78	103.56
8	2 (+1)	30 (-1)	10 (-1)	101.73	101.59
9	1 (-1)	60 (+1)	30 (+1)	112.03	112.37
10	1.5 (0)	45 (0)	20 (0)	99.71	100.55
11	1 (-1)	30 (-1)	30 (+1)	116.93	117.35
12	1 (-1)	60 (+1)	10 (-1)	104.35	104.10
13	1.5 (0)	45 (0)	20 (0)	100.26	100.55
14	2 (+1)	45 (0)	20 (0)	102.36	102.56
15	1.5 (0)	30 (-1)	20 (0)	101.13	99.92
16	1.5 (0)	45 (0)	20 (0)	100.52	100.55
17	1.5 (0)	45 (0)	10 (-1)	101.04	101.17
18	1.5 (0)	60 (+1)	20 (0)	98.01	98.42
19	2 (+1)	60 (+1)	30 (+1)	109.07	108.79

Table S1 The experimental runs with the actual and predicted current response obtained from

 RSM model

20	1.5 (0)	45 (0)	20 (0)	102.08	100.55

 Table S2 The regression coefficient estimate results

Variable	Coefficient estimate
Standard deviation	1.04
Mean	104.25
Coefficient of variation (C.V.) %	0.9955
\mathbb{R}^2	0.9812
Adjusted R ²	0.9642
Predicted R ²	0.9235
Adequate precision	25.8022

cameters (unit)	Goal	Lower Limit	Upper Limit
O weight (mg)	In range	1	2
rasonication time	In range	30	60
in)			
base concentration	In range	10	30
g/mL)			
rrent (µA)	Maximize	98.01	116.93
in) pase concentration f g/mL) rrent (μA)	In range Maximize	10 98.01	30 116.93

Table S3 The constraints for the independent parameters and the output

Sample	Independent Variables			Current Response (µA)		Residual
	rGO weight	Ultrasonicati	Lipase	Predicted	Actual	Standard
	(mg)	on time	concentrati			Error %
		(min)	on			(RSE %)
			(mg/mL)			
1	1	30	20	103.959	$103.883 \pm$	0.073
					1.29	
2	1.5	30	10	98.795	$100.230 \pm$	1.453
					3.25	
3	1.5	60	10	100.796	$101.395 \pm$	0.594
					2.47	
4	1.5	30	30	112.556	$112.540 \pm$	0.014
					1.08	
5	1.5	60	30	107.547	$109.390 \pm$	1.714
					0.72	

Table S4 The validation set of the lipase/rGO/Cu-MOF/SPCE

Sample	Area (%)				
	α-helices	β-sheets	β-turns	Turns and	Unordered
				bands	coils
Free lipase	14.32	37.57	21.80	11.78	14.53
Lipase/rGO/	35.60	27.79	23.94	5.12	7.55
Cu-MOF					

 Table S5 Percentage area of the secondary structure of free lipase and lipase/rGO/Cu-MOF

Scheme S1 The mechanisms of p-NPA detection using lipase

Fig. S1 Cyclic voltammogram of 750 μ M p-NPA in 0.1 M PBS (pH 7) using lipase/rGO/Cu-MOF/SPCE at a scan rate of 100 mV/s

Fig. S2 The diagnostic plots for the electrode optimization. The predicted versus actual response plot (a), the externally studentized residuals response versus the predicted current response plot (b), the studentized residuals response versus run number plot (c), and the DFFITS experimental run versus the run number plot (d)

Fig. S3 The effect of rGO weight (a), ultrasonication time (b), and lipase concentration (c) on the current response. The dotted lines represent the 95% confidence limit

Fig. S4 XRD diffractograms of Cu-MOF, rGO/Cu-MOF, and rGO (the ♦ symbol indicating peak corresponding to Cu-MOF structure)