Supporting Information

Ultralight elastic Al₂O₃ nanorod-graphene aerogel for pressure sensing and thermal superinsulation

Fengqi Liu, Yonggang Jiang*, Junzong Feng, Liangjun Li, Jian Feng*

Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Technology, National University of Defense Technology, Changsha 410073, P.R. China

* E-mail: jygemail@nudt.edu.cn (Y. G. Jiang), fengj@nudt.edu.cn (J. Feng)

Fig. S1 shows the FTIR patterns of graphene oxide (GO), Al_2O_3 nanorod sol, and precursors of ANGAs (Pre-ANGAs) after freeze-drying. Due to the presence of organic substances in the Al_2O_3 nanorod sol (acetate and aluminum acetate), absorption peaks attributed to C=O (1610 cm⁻¹) appear in both Al_2O_3 nanorod sol and GO spectra ^{9,10}. The peaks at 1090 and 1220 cm⁻¹ are attributed to methylene ether bridges (C-O-C) and the broad peak at around 3400 cm⁻¹ belongs to –OH [26]. Several typical characteristic peaks in Al_2O_3 nanorod sol originate from the stretching vibrations (3099 and 3285 cm⁻¹) and bending vibrations (1070, 1162 cm⁻¹) of AlO-H, and the torsional vibrations

of Al-O (650 and 760 cm⁻¹), respectively ^{11,12}. Notably, after integrating ARs, RF, no new characteristic peaks appear in Pre-ANGAs, but the C=O peak is slightly shifted to 1630 cm⁻¹, and the stretching vibration peaks of Al-O are also shifted (3120 and 3320 cm⁻¹), implying the hydrogen bonding between GO and Al_2O_3 nanorods.

Fig.S2. Enlarged SEM image of ANGAs.

Fig. S3. TEM images of ANGAs.

Fig. S4. EDS mappings of ANGAs.

Fig. S5. SEM images of ANAs