Constructing Interface Engineering and Tailoring Nanoflower-like FeP/CoP

Heterostructure Enhance Oxygen Evolution Reaction

Linhua Wang^a, Hua Yang^a*, Lulan Wang^a, Yunwu Li^a, Wenning Yang^a, Xu Sun^b*, Lingfeng Gao^b, Mingyu Dou^a, Dacheng Li^a, Jianmin Dou^a*

^a Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, 252059 Liaocheng, P. R. China.

^b Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 Shandong, P. R. China.

E-mail: <u>yanghua@lcu.edu.cn</u> (H. Yang), <u>dougroup@163.com</u> (J.M. Dou).

Contents

Figure S1. XRD patterns of (a) CoP-350 and FeP-350; (b) samples with different input ratios; (c) samples with different phosphating temperatures.

Figure S2. SEM images of (a) FeP/CoP-0.5-350; (b) FeP/CoP-2-350; (c) CoP-350; (d) FeP-350; (e) FeP/CoP-1-

300; (e) FeP/CoP-1-400 and (e) FeP/CoP-1-500.

Figure S3. EDS spectrums of (a) FeP/CoP-0.5-350; (b) FeP/CoP-2-350; (c) CoP-350; (d) FeP-350; (e) FeP/CoP-

1-300; (e) FeP/CoP-1-400 and (e) FeP/CoP-1-500.

Figure S4. (a) Survey XPS spectra (b) C 1s high-resolution XPS spectra of FeP/CoP-1-350, CoP-350 and FeP-350.

Figure S5. LSV curve of (a) FeP/CoP-1-350, Carbon powder and Bare GCE; (b) FeP/CoP-1-350/CC and Bare CC.

Figure S6. CVs measurement with various scan rates for all samples with various input ratios and phosphating temperatures in 1 M KOH.

Figure S7. LSV curves normalized by ECSA.

Table S1. The values of charge transfer resistance (R_{ct}) and resistance (R_s) for different samples.

 Table S2. The values of ECSA for different samples.

 Table S3. The comparison of OER performance between this work and other reported transition metal phosphide catalysts.

Figure S1. XRD patterns of (a) CoP-350 and FeP-350; (b) samples with different input ratios; (c) samples with

different phosphating temperatures.

Figure S2. SEM images of (a) FeP/CoP-0.5-350; (b) FeP/CoP-2-350; (c) CoP-350; (d) FeP-350; (e) FeP/CoP-1-

300; (f) FeP/CoP-1-400 and (g) FeP/CoP-1-500.

Figure S3. EDS spectrums of (a) FeP/CoP-0.5-350; (b) FeP/CoP-2-350; (c) CoP-350; (d) FeP-350; (e) FeP/CoP-

1-300; (e) FeP/CoP-1-400 and (e) FeP/CoP-1-500.

Figure S4. (a) Survey XPS spectra (b) C 1s high-resolution XPS spectra of FeP/CoP-1-350, CoP-350 and FeP-

350.

Figure S5. LSV curve of (a) FeP/CoP-1-350, Carbon powder and Bare GCE; (b) FeP/CoP-1-350/CC and Bare CC.

Figure S6. CVs measurement with various scan rates for all samples with various input ratios and phosphating

temperatures in 1 M KOH.

Figure S7. LSV curves normalized by ECSA.

	$R_{ m s}\left(\Omega ight)$	$R_{ ext{ct}}\left(\Omega ight)$
FeP/CoP-0.5-350	5.206	10.080
FeP/CoP-1-350	4.924	8.857
FeP/CoP-2-350	5.047	12.220
CoP-350	4.949	15.980
FeP-350	5.388	25.080
FeP/CoP-1-300	5.011	9.500
FeP/CoP-1-400	4.813	9.647
FeP/CoP-1-500	4.855	11.77
Rs	R1 R	Rct
	CPE1 CI	

Table S1. The values of charge transfer resistance (R_{ct}) and resistance (R_s) for different samples.

In the simplified equivalent electrical circuit, R_s is the overall series resistance, CPE₁ and R_1 are the constant phase element and resistance representing electron transport at CoFe-P catalyst/glassy carbon interface and between CoFe-P catalyst, respectively. CPE₂ is the constant phase element of the CoFe-P catalyst/electrolyte interface, and R_{ct} is the charge transfer resistance at CoFe-P catalyst/electrolyte interface related to the OER electrocatalysis process.

Table S2. The values of ECSA for different samples.		
	ECSA (cm ²)	
FeP/CoP-0.5-350	1709	
FeP/CoP-1-350	1292.25	
FeP/CoP-2-350	144	
CoP-350	1084.5	
FeP-350	38.25	
FeP/CoP-1-300	642	
FeP/CoP-1-400	896.75	
FeP/CoP-1-500	286.25	

catalysts.				
Electrocatalysts	Overpotential (mV)	Tafel slop (mV·dec ⁻¹)	Reference	
FeP/CoP-1-350	276	37.71	This Work	
NiCoFeP hollow nanoprism	294	50.5	S1	
Cu-CoP nanosheets	411	101.4	S2	
P@pCoPc/Co ₃ O ₄ nanosheets	320	57.4	S3	
CoP/NCNHP	310	70	S4	
NiCoFeP films	300	124	S5	
CoFeP	350	59	S6	
Ce _{0.5} -CoP	365	96	S7	
CoP/rGO	340	66	S8	
CoP NFs	323	49.6	S 9	
Hollow Mo-CoP nanoboxes	305	56	S10	
CoP-TiOx	337	72.1	S11	
Ni _{0.6} Co _{1.4} P	300	80	S12	

Table S3. The comparison of OER performance between this work and other reported transition metal phosphide

References

- S1 B. He, C. Xu, Y. Tang, Y. Qian, H. Liu, Q. Hao and Z. Su, J. Mater. Chem. A, 2019, 7, 24964-24972.
- S2 L. Yan, B. Zhang, J. Zhu, Y. Li, P. Tsiakaras and P. Kang Shen, Appl Catal B: Environ, 2020, 265, 118555.
- S3 Y. Kim, D. Kim, J. Lee, L. Y. S. Lee and D. K. P. Ng, Adv. Funct. Mater., 2021, 31, 2103290.
- S4 Y. Pan, K. Sun, S. Liu, X. Cao, K. Wu, W. C. Cheong, Z. Chen, Y. Wang, Y. Li, Y. Liu, D. Wang, Q. Peng,
 C. Chen and Y. Li, *J Am Chem Soc*, 2018, 140, 2610-2618.
- S5 S. Kan, M. Xu, W. Feng, Y. Wu, C. Du, X. Gao, Y. A. Wu and H. Liu, ChemElectroChem, 2021, 8, 539-546.
- S6 Y. Du, H. Qu, Y. Liu, Y. Han, L. Wang and B. Dong, Appl. Surf. Sci., 2019, 465, 816-823.
- S7 J. Li, S. Zou, X. Liu, Y. Lu and D. Dong, ACS Sustain Chem Eng, 2020, 8, 10009-10016.
- S8 G. Zhang, B. Wang, J. Bi, D. Fang and S. Yang, J. Mater. Chem. A, 2019, 7, 5769-5778.
- S9 L. Ji, J. Wang, X. Teng, T. J. Meyer and Z. Chen, ACS Catal, 2019, 10, 412-419.
- S10 C. Guan, W. Xiao, H. Wu, X. Liu, W. Zang, H. Zhang, J. Ding, Y. P. Feng, S. J. Pennycook and J. Wang, Nano Energy, 2018, 48, 73-80.
- S11 Z. Liang, W. Zhou, S. Gao, R. Zhao, H. Zhang, Y. Tang, J. Cheng, T. Qiu, B. Zhu, C. Qu, W. Guo, Q. Wang and R. Zou, *Small*, 2020, 16, 1905075.
- S12 B. Qiu, L. Cai, Y. Wang, Z. Lin, Y. Zuo, M. Wang and Y. Chai, Adv. Funct. Mater., 2018, 28, 1706008.