Supporting Information

Remarkable synergy between sawdust biochar and attapulgite/diatomite after co-ball milling to adsorb methylene blue

Fei Jiang¹, Feiyue Li^{1#*}, Andrew R. Zimmerman², Zhongpu Yu¹, Licheng Ji¹, Chengcheng Wei¹, Xueyang Zhang⁴, Bin Gao³

1. College of Resources and Environment Science, Anhui Science and Technology University, Fengyang, 233100, China

2. Department of Geological Sciences, University of Florida, Gainesville, FL 32611, USA

 Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA

4. School of Environmental Engineering, Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, Xuzhou University of Technology, Xuzhou 221018, PR China

Equal contribution to the paper*Corresponding author

E-mail: <u>lify@ahstu.edu.cn</u>

1.Removal rate R (%) and adsorption capacity Q (mg·g⁻¹):

$$R = \frac{C_0 - C}{C_0} \times 100\%$$
$$Q = \frac{(C_0 - C) \times V}{V}$$

М

Notes:

 C_0 is the initial MB concentration, mg·L⁻¹;

C is the MB concentration after adsorption, $mg \cdot L^{-1}$;

V is the volume of solution containing MB, L;

M is the amount of adsorbent added, g.

2. Adsorption kinetic models

Adsorption kinetic data were fitted with pseudo-first-order and pseudo-second-order models to evaluate potential adsorption mechanisms.

Pseudo first-level model (Al-Ghouti et al., 2009):

$$Q_t = Q_e(1 - e^{-K_1 t})$$

Pseudo secondary model (Al-Ghouti et al., 2009):

$$Q_t = \frac{Q_e^2 K_2 t}{1 + Q_e K_2 t}$$

Notes:

 Q_e is the heavy metal adsorption capacity at equilibrium, mg·g⁻¹;

 Q_t is the heavy metal adsorption capacity at time t,mg·g⁻¹;

K₁ is the pseudo-first-order adsorption rate constant, $L \cdot min^{-1}$;

 K_2 is the pseudo-second-order adsorption rate constant, g·(mg·min)⁻¹.

3. Adsorption isotherm models

Adsorption isotherms were fitted with the Langmuir and Freundlich models, which can be described as the following equations, respectively (Tayibi et al., 2021):

$$Q_e = K_F C_e^{\frac{1}{n}}$$
$$Q_e = Q_m \frac{K_L C_e}{1 + K_L C_e}$$

Notes:

 C_{e} is the equilibrium concentration, $mg{\cdot}L^{\text{-}1};$

 Q_e is the equilibrium adsorption capacity, $mg{\cdot}g^{\text{-}1};$

 Q_m is the maximum theoretical adsorption capacity, $mg{\cdot}g{\cdot}^{1};$

 K_L is the Langmuir equilibrium constant, $L \cdot mg^{-1}$;

 K_F and n are the Freundlich equilibrium constants, $(mg \cdot g^{\text{-}1}) \, (L \cdot min^{\text{-}1})^{1/n}.$

Samulas	Adsorption capacity	Removal rate
Samples	$(mg \cdot g^{-1})$	(%)
MBC	69.49	44.19
BC	1.10	0.46
MATP	31.55	21.72
ATP	74.34	47.47
MDE	13.79	13.34
DE	0	0.38
MABC10%	158.10	98.95
MABC20%	156.59	98.02
MABC30%	150.18	93.43
MABC40%	141.33	88.74
MABC10%-CK	85.14	52.87
MDBC10%	145.66	91.02
MDBC20%	145.78	91.17
MDBC30%	140.20	87.74
MDBC40%	143.19	90.39
MDBC10%-CK	68.69	42.17

4. Table S1. Adsorption capacity and removal rate of MB by various adsorbents

5. Table S2. Properties of selected ball milled adsorbents.

Samples C (%	С	Н	0	Ν	H/C	O/C	CEC	Surface Area	Pore Volume	Mean Pore Diameter
	(%)	(%)	(%)	(%)			$(\text{cmol}^+ \cdot \text{kg}^{-1})$	$(m^2 \cdot g^{-1})$	$(cm^{3} \cdot g^{-1})$	(nm)
MBC	80.8	2.6	13.0	0.2	0.39	0.12	10.8	400	0.19	0.96
MABC10%	70.6	2.6	17.3	0.2	0.45	0.18	82.9	313	0.16	0.99
MDBC10%	70.7	2.4	14.3	0.1	0.41	0.15	25.3	330	0.16	0.97

	Langmuir			Freundlich			Pseudo-first-order			Pseudo-second-order		
Samples	Q _m	k_L	D 2	1/m	k _F	D 2	Qe	\mathbf{k}_1	R ²	Qe	k ₂	\mathbb{R}^2
	$(mg \cdot g^{-1})$	$(L \cdot mg^{-1})$	K-	1/11	$(mg^{1-1/n} \cdot L^{1/n} \cdot g^{-1})$	K-	$(mg \cdot g^{-1})$	(h ⁻¹)		$(mg \cdot g^{-1})$	$(g \cdot mg^{-1} \cdot h^{-1})$	
MBC	68.2	5.93	0.998	0.043	57.4	0.969	64.5	0.247	0.319	67.2	0.006	0.725
MABC10%	183	22.7	0.842	0.0512	0.0512	0.804	145	0.110	0.795	154	0.001	0.969
MDBC10%	155	1.19	0.993	0.0568	0.0568	0.813	124	0.112	0.635	133	0.001	0.877

6. Table S3. Fitting parameters of adsorption isotherms and adsorption kinetics of selected ball-milled adsorbents.

7. Table S4. Figure 1 and Figure 6 Analysis Data Sharing.

Samples	Absorbance (a)	Qe (a)	Absorbance (b)	Qe (b)	Mean standard deviation
MBC	21.80	71.92	22.40	69.49	1.71
BC	43.50	0.37	43.30	1.10	0.52
MATP	32.30	37.97	34.00	31.55	4.54
ATP	20.40	77.58	21.20	74.34	2.29
MDE	34.70	28.90	38.70	13.79	10.68
DE	39.30	1.21	39.60	0	0.85
MABC10%	0.36	158.55	0.47	158.10	0.31
MABC20%	0.72	157.07	0.84	156.59	0.34
MABC30%	2.77	148.81	2.43	150.18	0.97
MABC40%	4.30	142.63	4.62	141.33	0.91
MABC10%-CK	20.7	84.04	20.40	85.13	0.77
MDBC10%	3.56	145.62	3.55	145.66	0.03
MDBC20%	3.47	145.98	3.52	145.78	0.14
MDBC30%	4.81	140.57	4.90	140.20	0.25
MDBC40%	3.45	146.06	4.16	143.19	2.03
MDBC10%-CK	23.20	66.26	22.60	68.69	1.71

Samples		Absorbance (a)	Qe (a)	Absorbance (b)	Qe (b)	Mean standard deviation
	2	27.30	50.11	27.25	50.31	0.18
	3	26.70	53.20	26.95	52.2	0.88
MDC	5	23.55	66.62	22.70	69.98	2.97
MBC	7	21.20	73.24	20.50	76.11	2.53
	9	17.40	89.96	16.70	92.77	2.49
	10	15.40	93.04	15.25	93.69	0.57
	2	14.57	101.33	13.57	105.35	3.55
	3	10.55	117.80	10.62	117.5	0.26
	5	2.20	151.25	2.50	150.06	1.05
MABC10%	7	2.06	151.57	2.52	149.68	1.66
	9	1.07	155.69	0.74	157.00	1.15
	10	1.12	155.10	2.36	149.71	4.76
	2	8.65	125.18	8.70	124.98	0.17
	3	8.35	126.60	8.62	125.5	0.97
MDBC10%	5	3.32	146.81	3.27	147.01	0.17
	7	2.05	151.61	2.14	151.24	0.32
	9	0.30	158.77	0.28	158.87	0.09
	10	0.16	159.26	0.15	159.34	0.06

Samples		Absorbance (a)	Qe (a)	Absorbance (b)	Qe (b)	Mean standard deviation
	0	23.70	73.02	23.60	73.39	0.32
MDC	0.001	22.20	69.38	21.80	71.02	1.44
MBC	0.01	21.15	74.97	21.35	74.17	0.71
	0.1	18.30	85.77	16.35	93.68	6.99
	0	2.74	149.94	2.55	150.64	0.61
	0.001	2.37	150.30	2.12	151.32	0.90
MABC10%	0.01	1.22	155.09	1.42	154.29	0.71
	0.1	1.09	155.55	0.87	156.45	0.78
MDBC10%	0	6.77	135.13	6.82	134.95	0.16
	0.001	11.17	114.38	11.10	114.69	0.27
	0.01	9.82	120.50	10.90	116.18	3.82
	0.1	4.65	141.14	4.92	140.02	0.98

References

- Al-Ghouti, M.A., Khraisheh, M.A., Ahmad, M.N., Allen, S. 2009. Adsorption behaviour of methylene blue onto Jordanian diatomite: a kinetic study. *J Hazard Mater*, 165(1-3), 589-98.
- Tayibi, S., Monlau, F., Fayoud, N.E., Abdeljaoued, E., Hannache, H., Zeroual, Y., Oukarroum, A., Barakat, A. 2021. Production and Dry Mechanochemical Activation of Biochars Derived from Moroccan Red Macroalgae Residue and Olive Pomace Biomass for Treating Wastewater: Thermodynamic, Isotherm, and Kinetic Studies. ACS Omega, 6(1), 159-171.