The proton conduction behavior of two 1D open-framework metal phosphates with similar crystal structure and different hydrogen bond network

Kai-ming Zhang^{a,c}, Min-fang Ji^b, Xue-Yi Zhou^b, Fang Xuan^b, Bo-yuan Duan^a, Yuan Yuan^a, Guang-xiang Liu^{b*}, Hai-bao Duan^{b*} and Hai-rong Zhao^{b*}

^a Department of material science and engineering, Nanjing Institute of Technology, Nanjing 211167, P. R. China.

^b School of Environmental science, Nanjing Xiaozhuang University, Nanjing 210009, P. R.E-mail: hairong zhao111@163.com (HRZ); Tel: +86 25 13914700426.

^c Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, 1 Hongjing Road, Nanjing 211167, P. R. China.

Fig.S1 H-bond interactions between the guests and the inorganic $[Zn(HPO_4)_2]_{\infty}$ chains in the crystal of (a) 1 and (b) 2.

Fig. S2TG plots of compound 1 and 2.

Fig.S3 The FTIR curves of 1 and 2.

Fig.S4 Nyquist plot of (a) 1 and (b) 2 in the range of 75%-100% RH at 303 K.

Fig.S5 Temperature-dependent of Nyquist plots for 1 (a) 75% RH and (b) 85% RH.

Fig.S6 The corresponding conductivity in the form of $\ln(\sigma T)$ vs. 1000/T at 75%RH and 85%RH for 1.