Supplementary information

Inducing hierarchical pores in nano-MOFs for efficient gas separation

Kritika Narang Landström¹, Ashwin Nambi², Andreas Kaiser² and Farid Akhtar ^{1,*}

¹ Division of Materials Science, Luleå University of Technology, Luleå 97187, Sweden

² Department of Energy Conversion and Storage, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark

* Correspondence: farid.akhtar@ltu.se

Additional MOF synthesis protocols:

Protocol/ Composition	Metal salt: H₂ADC:DABCO (molar ratio)	Solvent (ml)	Temperature (℃) and duration (h)	BET surface area (m²/g)
A(Cu-MOF)	1:1:0.8	27	150 and 48	444
В	2:1:0.5	27	120 and 72	374
С	1:1:0.8	27	120 and 72	537
D(Hierarchical Cu-MOF)	1:1:0.8	90	120 and 48	607
E(Hierarchical Cu- MOF)	1:1:0.8	70	120 and 48	627.4

Table 1S: Protocols of Cu-MOFs synthesized in this work.

N₂ adsorption Isotherms

 N_2 adsorption isotherms were conducted for all the compositions at 77 K and are displayed in Figure 1S. The N_2 adsorption isotherm of composition E is given in the main article.

Figure 1S: N₂ adsorption isotherms for composition A (square, black), B(circle, red), C(triangle, blue) and D (inverted, olive green).

Thermal stability

Thermogravimetric analysis of Cu-MOF and hierarchical-Cu-MOF is shown in Figure 2S.

Figure 2S: Thermal gravimetric analysis of Cu-MOF, composition A (black, dashed line) and the hierarchical-Cu-MOF, composition E (red, solid line)

MOF structure

The CIF file of activated $Zn_2(adc)_2(dabco)$ MOF was obtained from the crystallographic database. The structure is simulated using Vesta software and is illustrated in Figure 3S.

Figure 3S: Structure of Zn₂(adc)₂(dabco) MOF

Table 2S: Selectivities for the separation of CO ₂ from CO2/N2 and CO2/CH4 mixtures for hierarchical Cu-MOF
and state-of-the art MOFs fro-m literature

MOF Name	BET	Gas	Selectivity	<i>CO</i> ₂	Tem-	Pressure	Refer
	surface	Mixture	of CO2	adsorption	perat		ence
	area			capacity	ure		
	(m²/g)						
		CO_2/N_2	12				This
Hierarchical	627.4			75 mg/g	295 K	1 bar	work
Cu - MOF		CO ₂ /CH ₄	3				
IRMOF-3	2350	CO_2/N_2	18	54 mg/g	298 K	1 bar	[1]
HKUST-1	2211	CO ₂ /CH ₄	9	352.1 mg/g	303 K	10 bar	[2]
	1948	CO_2/N_2	36	484 mg/g	273K	1 bar	[3]
Cu ₂ (Hbtb) ₂	600	CO ₂ /CH ₄	12.4	66 mg/g	298 K	1 bar	[4]
ZnDABCO	1725	CO ₂ /N ₂	17	440 mg/g	298 K	15 bar	[5]
MIL-101	1007	CO ₂ /CH ₄	6	269 mg/g	298 K	10 bar	[6]
		CO_2/N_2	61.5				
UiO-66	1123			52 mg/g	308 K	2 bar	[7]
		CO ₂ /CH ₄	18.3				

References:

- 1. Y. R. Lee, S. M. Cho, W. S. Ahn, C. H. Lee, K. H. Lee and W. S. Cho, *Microporous Mesoporous Mater.*, 2015, **213**, 161–168.
- 2. L. Hamon, JolimaîtreE. and G. D. Pirngruber, *Ind. Eng. Chem. Res.*, 2010, **49**, 7497–7503.
- 3. X. Yan, S. Komarneni, Z. Zhang and Z. Yan, *Microporous and Mesoporous Mater.*, 2014, **183**, 69–73.
- 4. B. Mu, F. Li and K. S. Walton, Chem. Comm., 2009, 2493.
- 5. Z. Liang, M. Marshall and A. L. Chaffee, *Microporous and Mesoporous Mater.*, 2010, **132**, 305–310.
- 6. M. Babaei, S. Salehi, M. Anbia and M. Kazemipour, *J. Chem. Eng. Data*, 2018, **63**, 1657–1662.
- 7. G. E. Cmarik, M. Kim, S. M. Cohen and K. S. Walton, *Langmuir*, 2012, **28**, 15606–15613.