Supporting Information for

Amidinoquinoxaline N-oxides: Synthesis and activity against anaerobic bacteria

Nadia Gruber,^a Liliana Fernández-Canigia,^{*b} Natalia B. Kilimciler,^a Pierluigi Stipa,^c Juan A. Bisceglia,^a María B. García,^a Daniel H. Gonzalez Maglio,^b Mariela L. Paz,^b Liliana R. Orelli^{*a}

^aUniversidad de Buenos Aires. CONICET. Química Orgánica II. Departamento de Ciencias Químicas. Facultad de Farmacia y Bioquímica. Junín 956, (1113) Buenos Aires, Argentina.

^bLaboratorio de Microbiología, Hospital Alemán, Av. Pueyrredón 1640, (1118) Buenos Aires, Argentina

^cSIMAU Departament - Chemistry Division, Università Politecnica delle Marche, Via Brecce Bianche 12, Ancona (I-60131), Italy.

^dUniversidad de Buenos Aires. Instituto de Estudios de la Inmunidad Humoral (IDEHU); Cátedra de Inmunología. Facultad de Farmacia y Bioquímica. Junín 956, (1113) Buenos Aires, Argentina.

Table S1: In vitro activity of amidinoquinoxaline N-oxides 1, 2 againstclinical isolates of relevant anaerobic species (complete version)	S2-S4
Copies of ¹ H and ¹³ C NMR spectra	S5-S19
Copies of IR spectra	S20-S22
Copies of HRMS spectra	\$23-\$26
Copies of elemental analyses	S27

Organism (nº of	MIC (µg/mL)			
isolates) and compounds	Range	MIC ₅₀	MIC ₉₀	
Gram negative				
bacilli				
Bacteroides				
fragilis				
1a (19)	0.125 ->32	0,5	1	
1b (19)	0.5 ->32	1	2	
1c (19)	≤0.06 - 0.25	≤0.06	≤0.06	
1d (19)	0.5 ->32	- 1	2	
1e (16)	0.125 - 0.5	0.25	0.5	
1f (16)	<0.06 - 0.125	< 0.06	< 0.06	
1 g (16)	0.125 - 1	0.25	0.5	
1h (16)	0.5 - 4	1	4	
1i (16)	< 0.06 - 0.125	< 0.06	<0.06	
1i (16)	< 0.06 - 0.125	< 0.06	0.125	
1k (16)	<0.06 - 0.125	< 0.06	< 0.06	
11 (16)	<0.06 - 0.125	< 0.06	< 0.06	
1m (19)	0.5 - 2	1	2	
2a (16)	0.5 - 4	2	2	
2b (16)	1-8	4	8	
2c (16)	0.125 - 2	0.5	1	
Mtz (16)	0.25 - 1	0.5	1	
Other				
Bacteroides spp.				
and				
Parabacteroides ^a				
1a (13)	0.25 - 1	0.5	1	
1b (13)	0.5 - 2	1	1	
1c (13)	≤0.06 - 0.125	≤ 0.06	≤0.06	
1d (13)	0.5 - 2	1	2	
1e (13)	0.125 - 1	0.25	0.5	
1f (13)	≤0.06 - 0.125	≤ 0.06	≤0.06	
1g (13)	0.25 - 1	0.25	0.5	
1h (13)	1 - 4	1	4	
1i (13)	$\leq 0.06 - \leq 0.06$	≤0.06	≤0.06	
1j (13)	$\leq 0.06 - 0.125$	≤ 0.06	0.125	
1k (13)	$\le 0.06 - \le 0.06$	≤0.06	≤0.06	
11 (13)	$\leq 0.06 - 0.125$	≤0.06	≤0.06	
1m (13)	0.5 - 2	1	2	
2a (13)	1-4	2	4	

Table S1: In vitro activity of amidinoquinoxaline N-oxides 1, 2 against clinical isolates of relevant anaerobic species (complete version)

Organism (nº of	MIC (µg/mL)			
isolates) and	Range MIC ₅₀ M		MICaa	
compounds	Kunge	10110-50	10110.90	
2b (13)	2 - 8	4	8	
2c (13)	0.25 - 2	0.25	1	
Mtz (13)	0.25 - 1	1	1	
Prevotella spp.				
1a $(21)^{b}$	≤0.06 - 1	0.25	1	
1b (21) ^b	≤0.06 - 1	0.5	1	
$1c(21)^{b}$	$\leq 0.06 - 0.125$	≤ 0.06	0.125	
1d $(21)^{b}$	0.125 - 2	0.5	1	
1e $(14)^{c}$	0.125-0.5	0.25	0.5	
1f $(14)^{c}$	$\leq 0.06 - 0.125$	≤0.06	0.125	
$1g(14)^{c}$	$\leq 0.06 - 1$	0.125	0.5	
1h (14) ^c	0.5-4	1	4	
1i (14) ^c	$\leq 0.06 - \leq 0.06$	≤ 0.06	≤0.06	
1j (14) ^c	$\leq 0.06 - \leq 0.06$	≤ 0.06	≤0.06	
$1k(14)^{c}$	$\leq 0.06 - \leq 0.06$	≤ 0.06	≤0.06	
11 $(14)^{c}$	$\leq 0.06-0,25$	≤ 0.06	≤0.06	
$1m(21)^{b}$	0.125-0.5	0.5	0.5	
2a $(14)^{c}$	1-8	4	8	
2b (14) ^c	4-16	4	8	
$2c(14)^{c}$	$\leq 0.06-2$	0.5	1	
Mtz (21) ^b	0.25-2	0.5	1	
Fugalageterium				
F usobacterium				
nucleatum	0 125 1	0.25	1	
1a(7)	0.125-1	0.25	1	
ID (/)	0.25-1	0.25	1	
IC (7)	$\leq 0.06 - 0.125$	≤0.06	≤0.06	
10 (7)	0.5-2	0.5	2	
le (7)	0.25-1	0.25	0.25	
II (7)	≤0.06 – 0.25	0.125	0.125	
lg (/)	≤0.06 – 1	0.25	0.5	
Ih (7)	0.5-4	1	4	
II (/)	≤0.06 - 0.125	<u>≤0.06</u>	0.125	
lj (7)	≤0.06 - 0.125	≤0.06	0.125	
IK (7)	≤0.06 -≤0,06	≤0.06	≤0.06	
11 (7)	≤0.06 - 0.125	≤0.06	≤0.06	
1m (7)	0.25-0.5	0.5	0.5	
2a (7)	2-16	4	4	
2b (7)	4-16	4	8	
2c (7)	0.25-1	0.25	1	
Mtz (7)	$\leq 0.06 - 0.25$	≤ 0.06	0.25	

Organism (nº of	MIC (µg/mL)			
isolates) and	Range	MIC ₅₀	MIC ₉₀	
compounds		- 50	- 70	
Gram positive				
bacilli				
Clostridium				
difficile				
1a (9)	2 - 4	2	4	
1b (9)	8 - 16	8	16	
1c (9)	≤0.06 - 1	0.25	0.5	
1d (9)	0.25 - 8	4	8	
1e (14)	1 - 8	2	8	
1f (14)	0.25 - 1	0.5	0.5	
1g (14)	2 - 4	2	2	
1h (14)	8 - 32	16	16	
1i (14)	0.125 - 1	0.5	0.5	
1j (14)	0.125 - 0.25	0.25	0.25	
1k (14)	≤0.06 - ≤0.06	≤ 0.06	≤ 0.06	
11 (14)	0.125 - 1	0.25	0.5	
1m (9)	0.25 - 4	2	4	
2a (14)	8 - 64	16	32	
2b (14)	4 - 32	32	32	
2c (14)	0.25 - 1	0.25	0.5	
Mtz (14)	≤0.06 - 0.5	0.25	0.25	
Clostridium				
perfringens				
1a (10)	4 - 32	8	16	
1b (10)	16 - 64	32	64	
1c (10)	0.25 - 2	0.5	2	
1d (10)	4 - 64	16	32	
1e (10)	1-16	4	8	
1f (10)	0.25 - 1	0.5	1	
1g (10)	2-8	4	8	
1h (10)	32 ->32	>32	>32	
1i (10)	0.5 - 1	0.5	1	
1j (10)	0.25 - 1	0.5	1	
1k (10)	$\leq 0.06 - 0.25$	≤0.06	0.125	
11 (10)	0.25 - 1	0.5	1	
1m (10)	4 - 64	16	32	
2a (10)	16-32	32	32	
2b (10)	16 ->32	32	32	
2c (10)	0.125 - 2	0.25	1	
Mtz (10)	0.5 - 2	0.5	1	

^a Includes 3 isolates of *Parabacteroides distasonis* and 10 corresponding to species of *Bacteroides*: 6 *Bacteroides* thetaiotaomicron/ovatus, 2 *Bacteroides uniformis*, 1 *Bacteroides vulgatus* and 1 *Bacteroides caccae*.

^b Includes 16 isolates of *Prevotella intermedia/nigrescens*, 2 of *Prevotella oralis group*, 2 of *Prevotella buccae* and 1 of *Prevotella bivia*.

^c Includes 5 isolates of *Prevotella intermedia/nigrescens*, 1 of *Prevotella corporis*, 1 of *Prevotella oralis group*, 1 of *Prevotella oris*, 1 of *Prevotella baroniae*, 2 of *Prevotella buccae*, 2 of *Prevotella bivia* and 1 of *Prevotella dentalis*.

MTZ = metronidazole.

Figure S1: ¹H NMR spectrum of compound **1j** (600 MHz, CDCl₃)

Figure S2: ¹³C NMR spectrum of compound 1j (151 MHz, CDCl₃)

Figure S3: ¹H NMR spectrum of compound **1k** (600 MHz, CDCl₃)

Figure S4: ¹³C NMR spectrum of compound 1k (151 MHz, CDCl₃)

Figure S5:¹H NMR spectrum of compound 3j (600 MHz, CDCl₃)

Figure S6: ¹³C NMR spectrum of compound 3j (151 MHz, CDCl₃)

Figure S7: ¹H NMR spectrum of compound **3k** (500 MHz, DMSO-*d*6)

Figure S8: ¹³C NMR spectrum of compound 3k (126 MHz, DMSO-*d*6)

Spectra of compounds 4j-l contain signals due to spontaneous rearrangement to the corresponding *N*-oxides 1.

Figure S9: ¹H NMR spectrum of compound **4j** (600 MHz, CDCl₃)

Figure S10: ¹³C NMR spectrum of compound 4j (151 MHz, CDCl₃)

Figure S11: ¹H NMR spectrum of compound **4k** (600 MHz, CDCl₃)

Figure S12: ¹³C NMR spectrum of compound 4k (151 MHz, CDCl₃)

Figure S13: ¹H NMR spectrum of compound 4l (600 MHz, CDCl₃)

Figure S14: ¹³C NMR spectrum of compound 4l (151 MHz, CDCl₃)

Copies of IR Spectra

Figure S15: Diamond ATR-FTIR spectrum of 1j

Figure S16: Diamond ATR-FTIR spectrum of 1k

Figure S17: Overlapping Diamond ATR-FTIR spectrum of 1j and 1k

Copies of HRMS spectra

m/z experimental	Especie iónica detectada	Fórmula molecular de M	m/z	Error (mDa)	Error (ppm)
298,0747	[M+H]*	C16H12CIN3O	298,0743	0,4	1

Espectros de Masas

Especie iónica [M+H]*

Figure S18: HRMS spectrum of compound 1j

m/z experimental	Especie iónica detectada	Fórmula molecular de M	m/z	Error (mDa)	Error (ppm)
309,0985	[M+H]*	$C_{16}H_{12}N_4O_3$	309,0988	0,3	1

Espectros de Masas

Especie iónica [M+H]*

Figure S19: HRMS spectrum of compound 1k

m/z experimental	Especie iónica detectada	Fórmula molecular de M	m/z	Error (mDa)	Error (ppm)
334,0957	[M+H]⁺		334,0959	0,2	1
356,0776	[M+Na] ⁺	C16H16CIN3O3	334,0778	0,2	1

Espectros de Masas

Especie iónica [M+H]+

Figure S20: HRMS spectrum of compound 3j

m/z experimental	Especie iónica detectada	Fórmula molecular de M	m/z	Error (mDa)	Error (ppm)
345,1204	[M+H]*	C ₁₆ H ₁₆ N ₄ O ₅	345,1199	0,5	1

Espectros de Masas

Especie iónica [M+H]*

Figure S21: HRMS spectrum of compound 3k

Instituto de Química Física de los Materiales, Medio Ambiente y Energía

Servicio de Análisis Elemental

MA-20230719-172/II02

Análisis de C, H, N y S sobre muestras sólidas solicitado por, y rotuladas por:

Dra. Liliana Orelli (Nadia Gruber)

Sustancia Patrón utilizada para la determinación de C, H, N y S: Sulfanilamida Estandar Muestra utilizada en la determinación de C, H, N y S: Acido sulfanílico

# INQUIMAE	MUESTRA	N (%)	C (%)	H (%)	S (%)
#10139	N377	14,1	64,8	4,1	ND
#10140	N379	17,7	61,4	3,9	ND
	Patrón de Acido sulfanílico	8,09	41,61	4,07	18,56
	Ensayo de Control de Acido sulfanílico	8,0	41,8	4,3	18,4

ND: No detectado.

NOTA: El error típico para CHNS es ±0,2%.

El Análisis Elemental de CHNS se realizó en un equipo Carlo Erba EA 1108. Para el análisis se produce la combustión de la muestra en un tubo reactor donde los elementos a analizar son convertidos en CO₂, H₂O, N₂ y SO₂. La separación de los gases resultantes se realiza por cromatografía gaseosa con columna de porapac de longitud variable y para la detección se utiliza un detector de conductividad térmica. El método requiere una calibración previa con sustancia patrón de composición conocida.

Buenos Aires, 19 de Julio de 2023.