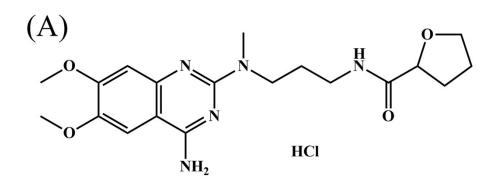
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2023


> Electronic Supplementary Information For

A novel smartphone HPTLC assaying platform *versus* traditional densitometric method for simultaneous quantification of Alfuzosin and Solifenacin in their dosage forms as well as monitoring content uniformity and drug residues on manufacturing equipment

Mina Wadie*, Ezzat M. Abdel-Moety, Mamdouh R. Rezk and Hoda M. Marzouk

Analytical Chemistry Department, Faculty of Pharmacy - Cairo University, Kasr El-Aini Street, ET-11562, Cairo - Egypt.

*Corresponding author: Mina Wadie e-mail address: <u>mina.wa.yousif@pharma.cu.edu.eg</u>

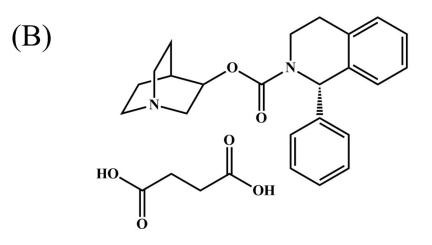
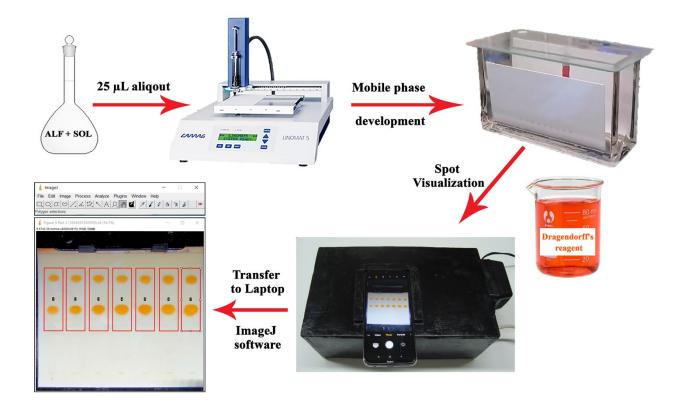
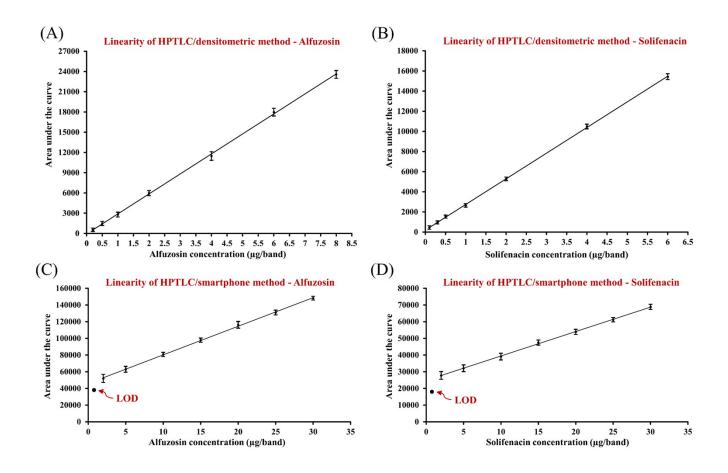




Fig. S1. Chemical structures of (A): Alfuzosin hydrochloride (ALF) and (B): Solifenacin succinate (SOL).

Fig. S2. Schematic illustration for different procedures of the proposed HPTLC/smartphone method for alfuzosin and solifenacin quantification.

Fig. S3. Linearity plots for (A, C) alfuzosin and (B, D) solifenacin determination by the proposed HPTLC/densitometric & HPTLC/smartphone methods, respectively.

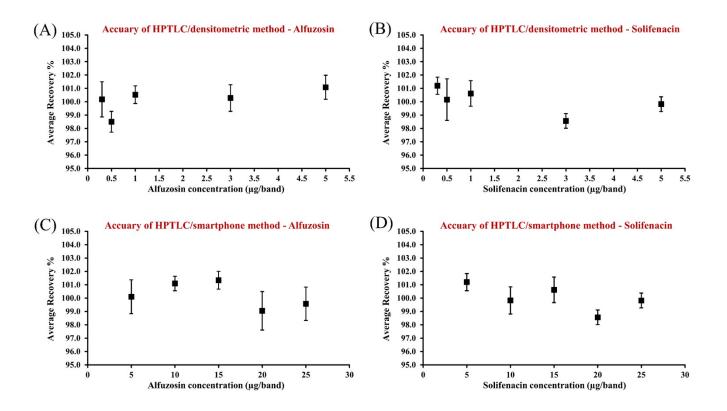
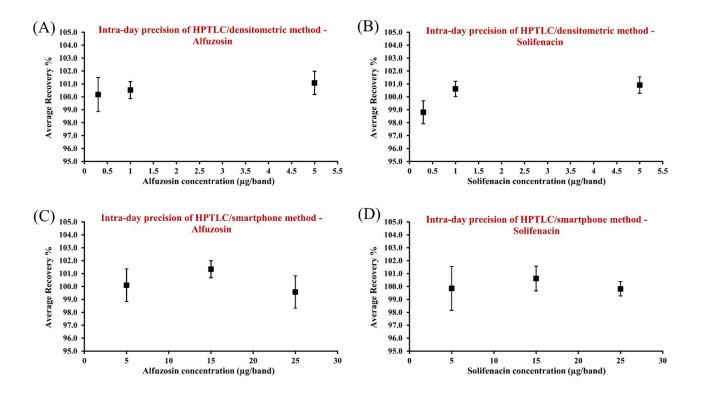
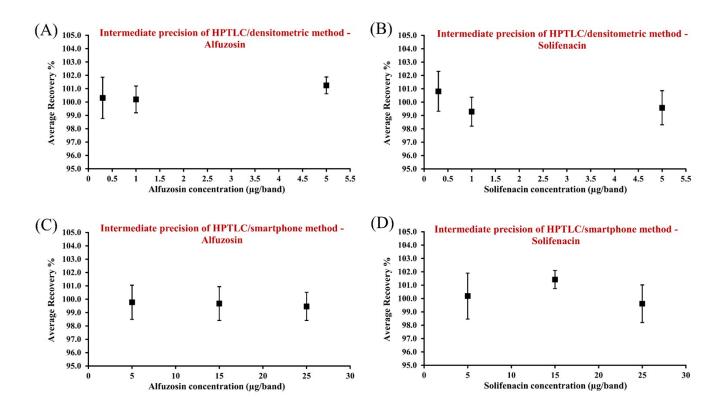




Fig. S4. Accuracy plots for (A, C) alfuzosin and (B, D) solifenacin determination by the proposed HPTLC/densitometric & HPTLC/smartphone methods, respectively.

Fig. S5. Intra-day precision plots for (A, C) alfuzosin and (B, D) solifenacin determination by the proposed HPTLC/densitometric & HPTLC/smartphone methods, respectively.

Fig. S6. Intermediate precision plots for (A, C) alfuzosin and (B, D) solifenacin determination by the proposed HPTLC/densitometric & HPTLC/smartphone methods, respectively.

All trades @ 215 nm

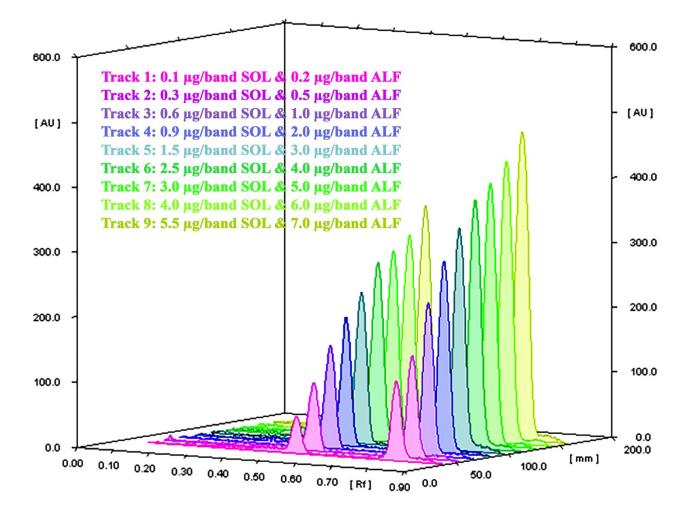


Fig. S7. Scanning 3D profiles of different laboratory prepared mixtures containing increasing concentration of the two studied drugs; solifenacin ($R_f \approx 0.50$) and alfuzosin ($R_f \approx 0.77$) in range of 0.1 - 5.5 µg/band and 0.2 - 7.0 µg/band, respectively.

	Label claim (%)					
Capsule no.	HPTLC/densite	ometric method	HPTLC/smartphone method			
	ALF	SOL	ALF	SOL		
1	99.61	99.48	99.42	99.89		
2	101.23	100.23	100.98	100.87		
3	99.32	98.52	99.11	98.78		
4	98.74	98.69	98.97	98.91		
5	100.95	101.21	101.27	101.84		
6	98.37	99.84	98.88	99.91		
7	98.96	100.87	99.45	101.24		
8	99.89	101.89	100.78	101.28		
9	101.58	99.27	101.89	99.53		
10	101.46	98.68	101.95	98.91		
Mean	100.01	99.87	100.27	100.12		
SD	1.202	1.162	1.228	1.120		
RSD%	1.201	1.163	1.225	1.119		
Acceptance value (AV)*	2.884	2.788	2.947	2.688		
Maxi. allowed AV (L1)	15	15	15	15		

Table S1. Results of content uniformity testing for determining alfuzosin and solifenacin in

 Solitral[®] capsules by the two proposed HPTLC methods

* Acceptance value = $2.4 \times SD$

Parameter	HPTLC/densitometric method		HPTLC/smartphone method		Official methods	
	ALF	SOL	ALF	SOL	ALF ^a	SOL ^b
Mean of recoveries	100.18	100.08	100.23	100.03	100.45	99.35
S.D.	0.962	1.140	0.978	1.216	0.410	1.695
Variance	0.926	1.301	0.956	1.478	0.168	2.874
n	5	5	5	5	5	5
Student's t-test (2.306) ^c	0.572	0.807	0.456	0.729	-	-
F-test (6.388) ^c	5.503	2.210	5.680	1.945	-	-

Table S2. Statistical comparison of the results obtained by the two proposed HPTLC methods and official methods for the analysis of alfuzosin and solifenacin.

^a ALF is determined by non-aqueous titration by dissolving 0.3 g in a mixture of 40 mL of anhydrous acetic acid and 40 mL of acetic anhydride and using 0.1 M perchloric acid as titrant with potentiometric detection of endpoint as per the British Pharmacopoeia.

^b SOL is determined by non-aqueous titration by dissolving 0.4 g in 50 mL of anhydrous acetic acid and using 0.1 M perchloric acid as titrant with potentiometric detection of endpoint as per the British Pharmacopoeia.

^c The values in parentheses represent the corresponding tabulated values of t and F at p=0.05.