Supplementary Data

Metabolic profiling and biological activity of two *Livistona* species: *L. chinensis* and *L. australis*

Seham S. El-hawary^{1#}, Ahlam Elwekeel^{2*#}, Sara O. Abo El-Ela², Usama Ramadan Abdelmohsen^{3,4}, and Asmaa I. Owis^{2,5}

¹Department of Pharmacognosy, Faculty of pharmacy, Cairo University, Cairo, Egypt ²Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt

³Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt

⁴Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minia, Egypt

⁵Department of Pharmacognosy, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt

[#] These authors contributed equally to this work

*Corresponding author Ahlam Elwekeel E-mail: Ahlam_hasham2000@yahoo.com Ahlam.hassanain@pharm.bsu.edu.eg

List of figures

Figure S1: LC-MS chromatogram of the Livistona australis leaves (Positive ion mode)

Figure S2: LC-MS chromatogram of the *Livistona australis* leaves (negative ion mode)

Figure S3: LC-MS chromatogram of the *Livistona australis* fruits (Positive ion mode)

Figure S4: LC-MS chromatogram of the *Livistona australis* fruits (negative ion mode)

Figure S5: LC-MS chromatogram of the *Livistona chinensis* leaves (Positive ion mode)

Figure S6: LC-MS chromatogram of the *Livistona chinensis* leaves (negative ion mode)

Figure S7: LC-MS chromatogram of the *Livistona chinensis* fruits (Positive ion mode).

Figure S8: LC-MS chromatogram of the *Livistona chinensis* fruits (negative ion mode)

Figure S9: ¹H-NMR spectrum of dodecanoic acid (CDCl₃)

Figure S10: DEPT-Q NMR spectrum of dodecanoic acid (DMSO)

Figure S11: ¹H-NMR spectrum of hyperoside (CD₃OD)

Figure S12: DEPT-Q NMR spectrum of hyperoside (CD₃OD)

Figure S13: ¹H-NMR spectrum of quercetin 3-*O*-α-D-arabinopyranoside (CD₃OD)

Figure S14: DEPT-Q NMR spectrum of quercetin 3-*O*-α-D-arabinopyranoside (CD₃OD)

Figure S15: ¹H-NMR spectrum of gallic acid (CD₃OD)

Figure S16: DEPT-Q NMR spectrum of gallic acid (CD₃OD)

Figure S17: ¹H-NMR spectrum of vanillic acid (CD₃OD)

Figure S18: DEPT-Q NMR spectrum of vanillic acid (CD₃OD)

Figure S19: ¹H-NMR spectrum of procatechuic acid (CD₃OD)

Figure S20: DEPT-Q NMR spectrum of procatechuic acid (CD₃OD)

Base peak plot, MS1, m/z: 0.0000 - 1200.2422

Base peak plot, MS1, m/z: 0.0000 - 1200.2422

Figure S3: LC-MS chromatogram of the *Livistona australis* fruits (Positive ion mode)

Figure S5: LC-MS chromatogram of the Livistona chinensis leaves (Positive ion mode)

Figure S6: LC-MS chromatogram of the *Livistona chinensis* leaves (negative ion mode)

Figure S11: ¹H-NMR spectrum of hyperoside, C₂₁H₂₀O₁₂ (CD₃OD)

Figure S12: DEPT-Q NMR spectrum of hyperoside; C₂₁H₂₀O₁₂ (CD₃OD)

Figure S13: ¹H-NMR spectrum of quercetin 3-O- α -D-arabinopyranoside; C₂₀H₁₈O₁₁ (CD₃OD)

Figure S14: DEPT-Q NMR spectrum of quercetin 3-O- α -D-arabinopyranoside; C₂₀H₁₈O₁₁ (CD₃OD)

Figure S16: DEPT-Q NMR spectrum of gallic acid; C₇H₆O₅ (CD₃OD)

Figure S18: DEPT-Q NMR spectrum of vanillic acid; C₈H₈O₄ (CD₃OD)

