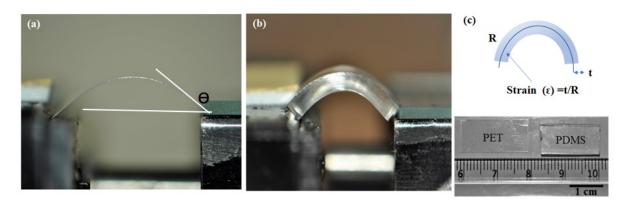
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

Strain relaxation in monolayer MoS₂ over flexible substrate

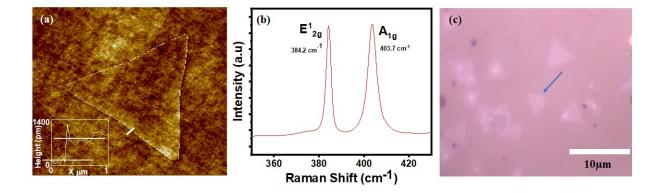
Nilanjan Basu^{1,2 #}, Ravindra Kumar^{1,2#}, D. Manikandan^{1,2,3}, Madhura Ghosh Dostidar^{1,2,4}, Praveen Hedge^{1,4}, Pramoda K. Nayak^{1,2,3,5 *}, Vidya Praveen Bhallamudi ^{1,4 *}

¹Department of Physics, Indian Institute of Technology Madras, Chennai 600 036, India ²2D Materials Research and Innovation Group, Indian Institute of Technology Madras, Chennai 600 036, India

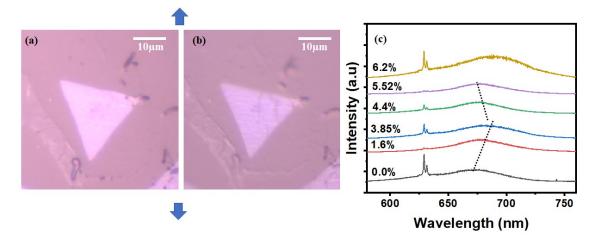

³ Micro Nano and Bio-Fluidics Group Indian Institute of Technology Madras, Chennai 600 036, India ⁴Quantum Centers in Diamond and Emerging Materials (QuCenDiEM) Group, Departments of Electrical Engineering, Indian Institute of Technology Madras, Chennai 600036, India.

⁵Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Ramanagaram, Bangalore 562112, India

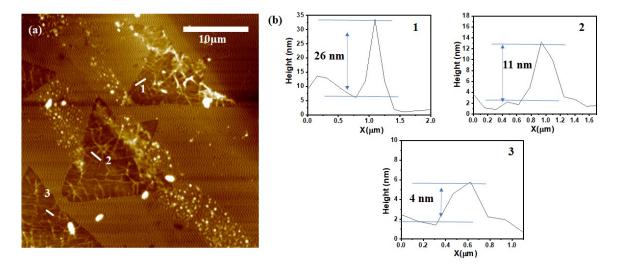
#Equally contributed to the work.


*Address all correspondence to: pramoda.iitm@gmail.com; praveen.bhallamudi@iitm.ac.in

S1. Strain modulation setup and characterization of as grown MoS₂


Figure S1. Strain modulation setup used for our experiments (a) 125 μ m thick PET under strain and (b) 2 mm thick PDMS under strain (c) Schematics showing calculation for strain measurement.

The % of strain was measured by bending the PET/PDMS. The t thickness of either PET/PDMS is known. The radius of curvature R is calculated by measuring the angle between the tangent and the horizontal for each applied strain from the formula - $R = \text{length of chord} / (2 \sin \theta)$. The chord length was measured from the sliding vernier callipers which was used to bend the PET/PDMS.


Figure S2. (a) AFM micrograph of 1L MoS₂ over SiO₂/Si substrate. Inset shows the height profile with 0.83 nm thickness. The measured thickness of the as-synthesized MoS₂ over SiO₂/Si shows that they are monolayer in nature. (b) Raman spectra of 1L MoS₂ over SiO₂/Si. The difference between the E_{2g}^{1} and A_{1g} peak is 19.5 cm⁻¹, which is consistent with the reported literature for 1 L MoS₂ on SiO₂/Si . (c) In-situ optical micrograph of the particular flake over PET whose Raman data is shown in figure 1 (a & b).

S2. Strain modulation in a single grain 1L MoS₂ flake

Figure S3. In-situ optical micrograph of another $1L \text{ MoS}_2$ flake over PDMS (a) before strain and (b) at 4.4% strain. (c) PL spectra of the particular flake marked in (a & b). The arrows indicate the strain axis.

There is a gradual redshift in PL spectra up to 3.85 % strain, further increasing the strain a blue shift is observed at 4.4 %, which indicates the start of the strain relaxation process which continues up to 5.52 %. For the single grain flake cracks appear along the strain axis which similar is like the double grain flake.

Figure S4. (a) Ex-situ AFM of other 1L MoS_2 flakes over PDMS after strain modulation. Cracks are clearly visible over all the flakes. (b) Height profile of the wrinkles marked in (a).

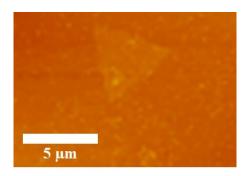


Figure S5. AFM micrograph of $1L MoS_2$ after transferring over PDMS and before the application of strain. Clearly no cracks or wrinkles are visible.

S3. Simulation of the variation of strain over pet

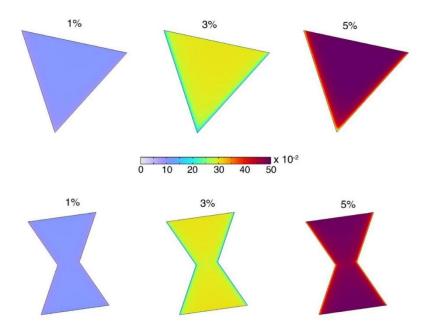


Figure S6. The strain variation on the single and double grain $1L MoS_2$ transferred over the PET substrate.

Materials	Young's Modulus (Pa)	Poisson ratio
PDMS	1.527 x 10 ⁶	0.483
PET	3.45 x 10 ⁹	0.43
MoS ₂	300 x 10 ⁹	0.25

a