SUPPLEMENTARY MATERIAL

Potential Role of a Novel Biphenanthrene Derivative Isolated from *Aerides falcata* in Central Nervous System Diseases

Bachtiar Rivai^a, Hasriadi^b, Peththa Wadu Dasuni Wasana^c, Chaisak Chansriniyom^{d,e}, Pasarapa Towiwat^{b,f}, Yanyong Punpreuk^g, Kittisak Likhitwitayawuid^d, Pornchai Rojsitthisak^{f,h}, Boonchoo Sritularak^{d,f*}

^a Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand

^b Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand

^c Department of Pharmacy, Faculty of Allied Health Sciences, University of Ruhuna, Galle 80000, Sri Lanka

^d Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand

^eNatural products and Nanoparticles Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand

^fCenter of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok, 10330, Thailand.

^g Department of Agriculture, Ministry of Agriculture and Cooperatives, Bangkok, 10900, Thailand

^h Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand

CONTACT: Boonchoo Sritularak; boonchoo.sr@chula.ac.th

Contents	page
Figure S1. ¹ H NMR spectrum of 1 (400 MHz) in acetone- d_6	4
Figure S2. ¹³ C NMR spectrum of 1 (100 MHz) in acetone- d_6	4
Figure S3. ¹ H NMR spectrum of 1 (400 MHz) in acetone- d_6 (dried sample)	5
Figure S4. ¹³ C NMR spectrum of 1 (100 MHz) in acetone- d_6 (dried sample)	5
Figure S5. HSQC (1) correlation of 1 in acetone- d_6	6
Figure S6. HSQC (2) correlation of 1 in acetone- d_6	6
Figure S7. HSQC (3) correlation of 1 in acetone- d_6	7
Figure S8. HMBC (1) correlation of 1 in acetone- d_6	7
Figure S9. HMBC (2) correlation of 1 in acetone- d_6	8
Figure S10. HMBC (3) correlation of 1 in acetone- d_6	8
Figure S11. HMBC (4) correlation of 1 in acetone- d_6	9
Figure S12. COSY correlation of 1 in acetone- d_6	9
Figure S13. NOESY correlation of 1 in acetone- d_6	10
Figure S14. HRESIMS spectrum of 1	10
Table S1. NMR spectral data of 2 and n-eicosyl-trans ferulate	11
Figure S15. HRESIMS spectrum of 2	11
Table S2. NMR spectral data of 3 and denthyrsinin	12
Figure S16. HRESIMS spectrum of 3	12
Table S3. NMR spectral data of 4 and 2,4-dimethoxy-3,7 -	13
dihydroxyphenanthrene	
Figure S17. HRESIMS spectrum of 4	13
Table S4. NMR spectral data of 5 and 2,7-dihydroxy-3,4,6-	14
trimethoxyphenanthrene	
Figure S18. HRESIMS spectrum of 5	14
Table S5. NMR spectral data of 6 and 3,7-dihydroxy-2,4,6-	15
trimethoxyphenanthrene	
Figure S19. HRESIMS spectrum of 6	15
Table S6. NMR spectral data of 7 and agrostonin	16
Figure S20. HRESIMS spectrum of 7	16
Table S7. NMR spectral data of 8 and trans-n-coumaroyltyramine	17

KEYWORDS: Aerides falcata, Orchidaceae, biphenanthrene, CNS diseases,

Figure S21. HRESIMS spectrum of 8	17
Table S8. NMR spectral data of 9 and syringaresinol	18
Figure S22. HRESIMS spectrum of 9	18
Table S9. NMR spectral data of 10 and trans-n-feruloytyramine	19
Figure S23. HRESIMS spectrum of 10	19
Table S10. Effects of constituents of <i>Aerides falcata</i> on the viability of BV-2	20
microglial cells	
Table S11. Effects of compounds (1), (7), and (9) on the viability of C6	20
glioblastoma cells	

Figure S1. ¹H NMR spectrum of **1** (400 MHz) in acetone- d_6

Figure S2. ¹³C NMR spectrum of **1** (100 MHz) in acetone- d_6

Figure S3. ¹H NMR spectrum of **1** (400 MHz) in acetone- d_6 (dried sample)

Figure S4. ¹³C NMR spectrum of **1** (100 MHz) in acetone- d_6 (dried sample)

AF36 4 1 D:\Boonchoo\data\root\nmr

Figure S9. HMBC (2) correlation of 1 in acetone- d_6

AF36 5 1 D:\Boonchoo\data\root\nmr

Figure S11. HMBC (4) correlation of $\mathbf{1}$ in acetone- d_6

Figure S12. COSY correlation of $\mathbf{1}$ in acetone- d_6

Figure S13. NOESY correlation of 1 in acetone- d_6

Figure S14. HRESIMS spectrum of 1

Position	Compound 2 (aceton	$(e-d_6)$	n-eicosyl-trans ferulat	n-eicosyl-trans ferulate* (CDCl ₃)	
	$\boldsymbol{\delta}_{\mathrm{H}}(\mathrm{mult.}, J \mathrm{in} \mathrm{Hz})$	δ _C	$\boldsymbol{\delta}_{\mathrm{H}}(\mathrm{mult.}, J \mathrm{in} \mathrm{Hz})$	δ _C	
1	-	127.9	-	127.1	
2	7.14 (dd, <i>J</i> = 2, 8 Hz)	124.0	7.07 (dd, <i>J</i> = 2,8 Hz)	122.9	
3	6.87 (d, <i>J</i> = 8.4 Hz)	116.1	6.91 (d, <i>J</i> = 8 Hz)	114.6	
4	-	150.3	-	146.7	
5	-	149.0	-	147.8	
6	7.34 (d, $J = 2$ Hz)	111.3	7.03 (d, $J = 2$ Hz)	109.3	
7	7.59 (d, <i>J</i> = 16 Hz)	145.6	7.61 (d, <i>J</i> = 16 Hz)	144.6	
8	6.39 (d, <i>J</i> = 16 Hz)	116.0	6.29 (d, <i>J</i> = 16 Hz)	115.6	
9	-	167.5	-	167.3	
1′	4.15 (t)	64.7	4.18 (t)	64.6	
2'	1.58 (m)	29.6	1.64 (m)	31.8	
3'	1.42 (m)	26.8	1.64 (m)	25.9	
-(CH ₂) ₁₄ -	1.28 (m)	23.4 -29.6	1.25 (m)	25.9-29.6	
n-2	1.28 (m)	32.7	1.25 (m)	31.9	
n-1	1.28 (m)	23.4	1.25 (m)	22.7	
Me	0.87 (t)	14.4	0.86 (t)	14.1	
MeO-5	3.92 (s)	56.42	3.92 (s)	55.9	

Table S1. NMR spectral data of 2 and n-eicosyl-trans ferulate

*A. M. Baldé, M. Claeys, L. A. Pieters, V. Wray and A. J. Vlietinck, Ferulic acid ester from stem bark of *Pavetta owariensis*, *Phytochemistry*., 1991, **30**, 1024-1026.

Figure S15. HRESIMS spectrum of 2

Table S2. NMR spectral data of 3 and denthyrsinin

PositionCompound 3 (acetone- d_6)	Denthyrsinin* (CDCl ₃)
--------------------------------------	------------------------------------

	$\boldsymbol{\delta}_{\mathrm{H}}(\mathrm{mult.}, J \mathrm{in} \mathrm{Hz})$	δ _C	$\boldsymbol{\delta}_{\mathrm{H}}(\mathrm{mult.}, J \mathrm{in} \mathrm{Hz})$	δ _C
1	7.25 (s)	105.9	7.09 (s)	104.9
2	-	148.7	-	146.8
3	-	141.2	-	139.4
4	-	145.4	-	144.0
4a	-	120.4	-	119.2
4b	-	124.8	-	124.2
5	9.15 (d, <i>J</i> = 9.2 Hz)	124.2	9.16 (d, J = 9.2 Hz)	124.0
6	7.24 (d, <i>J</i> = 9.2 Hz)	117.9	7.30 (d, $J = 9.2$ Hz)	116.1
7	-	147.3	-	145.6
8	-	142.2	-	140.8
8a	-	128.5	-	125.7
9	7.85 (d, $J = 9.2$ Hz)	118.6	7.82 (d, $J = 9.2$ Hz)	117.9
10	7.67 (d, $J = 8.8$ Hz)	128.7	7.63 (d, <i>J</i> = 9.2 Hz)	127.5
10a	-	126.4	-	126.6
MeO-2	3.99	56.3	4.05 (s)	56.1
MeO-4	3.91	59.6	3.94 (s)	59.8
MeO-8	3.92	61.3	3.98 (s)	61.9
HO-3	7.96 (s)	-	5.79 (s)	-
HO-7	8.31 (s)	-	6.01 (s)	-

* M. Ono, Y. Ito, C. Masuoka, H. Koga and T. Nohar, Antioxidative constituents from *Dendrobii herba* (stems of *Dendrobium* spp.), *Food. Sci. Technol. Int.*, 1995, **1**, 115-120.

Figure S16. HRESIMS spectrum of 3

Position	Compound 4 (acetone- d_6)		2,4-dimethoxy-3,7-dihydroxyph	enanthrene
			(CDCl3)	
	$\boldsymbol{\delta}_{\mathrm{H}}(\mathrm{mult.}, J \mathrm{in} \mathrm{Hz})$	$\delta_{\rm C}$	$\boldsymbol{\delta}_{\mathrm{H}}(\mathrm{mult.}, J \mathrm{in} \mathrm{Hz})$	δ _C
1	7.22 (s)	105.9	7.12 (s)	105.0
2	-	148.4	-	147.7
3	-	141.1	-	139.9
4	-	145.3	-	144.5
4a	-	120.0	-	119.1
4b	-	123.9	-	123.0
5	9.34 (d, <i>J</i> = 9.2 Hz)	129.1	9.27 (d, <i>J</i> = 9.0 Hz)	128.0
6	7.18 (dd, <i>J</i> = 9.2, 2.8Hz)	117.4	7.09 (dd, <i>J</i> = 9.0, 2.5Hz)	116.1
7	-	155.9	-	154.8
8	7.24 (d, $J = 2.8$ Hz)	112.2	7.14 (d, <i>J</i> = 2.5 Hz)	111.1
8a	-	135.0	-	134.2
9	7.45 (d, <i>J</i> = 8.8 Hz)	125.3	7.52 (d, <i>J</i> = 9.0 Hz)	124.3
10	7.59 (d, <i>J</i> = 8.8 Hz)	128.1	7.39 (d, <i>J</i> = 9.0 Hz)	127.0
10a	-	126.4	-	125.8
MeO-2	3.98 (s)	56.3	3.87 (s)	55.2
MeO-4	3.92 (s)	59.6	3.97 (s)	58.6

*K. W. Woo, J. E. Park, S. U, Choi, K. H. Kim and K. L. Lee, Phytochemical constituents of *Bletilla striata* and their cytotoxic activity, *Nat. Prod. Sci.*, 2014, **20**, 91-94.

Figure S17. HRESIMS spectrum of 4

Position	Compound 5 (aceton	e- <i>d</i> ₆)	2,7-dihydroxy-3,4,6-
			trimethoxyphenanthrene*
	$\boldsymbol{\delta}_{\mathrm{H}}(\mathrm{mult.}, J \mathrm{in} \mathrm{Hz})$	δ _C	$\mathbf{\delta}_{\mathrm{H}}(\mathrm{mult.}, J \mathrm{in} \mathrm{Hz})$
1	7.14 (s)	109.7	2.78 (s)
2	-	150.0	-
3	-	142.6	-
4	-	152.1	-
4a	-	118.8	-
4b	-	124.7	-
5	9.04 (s)	108.2	1.09 (s)
6	-	148.7	-
7	-	146.5	-
8	7.25 (s)	112.7	2.91 (s)
8a	-	128.4	-
9	7.48 (d, $J = 8.8$ Hz)	126.7	2.63 (2H)
10	7.43 (d, $J = 8.8$ Hz)	125.4	2.63 (2H)
10a	-	130.7	-
MeO-3	4.01 (s)	61.3	5.96 (s)
MeO-4	4.02 (s)	60.4	6.00 (s)
MeO-6	4.04 (s)	56.1	6.07 (s)
НО-2	7.29 (s)	-	4.10 (s)
HO-7	8.28 (s)	-	4.10 (s)

*R. M. Letcher and L. R. M. Nhamo, Chemical constituents of the *Combretaceae*. part III. substituted phenanthrenes, 9,10-dihydrophenanthrenes, and bibenzyls from the heartwood of *Combreturn psidioides, J. Chem. Soc., Perkin. Trans. 1.*, 1972, 2941-2946.

Table S5. NMR s	spectral data of 6	and 3,7-dihydrox	xy-2,4,6-trimethox	yphenanthrene
-----------------	--------------------	------------------	--------------------	---------------

Position	Compound 6 (acetone- d_6)		3,7-dihydroxy-2	2,4,6-
			trimethoxyphenanthren	ne* (CDCl ₃)
	$\boldsymbol{\delta}_{\mathrm{H}}(\mathrm{mult.}, J \mathrm{in} \mathrm{Hz})$	$\delta_{\rm C}$	$\boldsymbol{\delta}_{\mathrm{H}}(\mathrm{mult.}, J \mathrm{in} \mathrm{Hz})$	δ _C
1	7.22 (s)	105.6	6.97 (s)	103.6
2	-	144.9	-	146.5
3	-	140.6	-	138.3
4	-	148.3	-	143.0
4a	-	126.7	-	117.4
4b	-	124.2	-	122.2
5	9.06 (s)	108.1	8.95 (s)	106.1
6	-	148.4	-	146.6
7	-	146.5	-	144.3
8	7.25 (s)	105.9	7.19 (s)	110.4
8a	-	128.8	-	126.9
9	7.45 (d, $J = 8.8$ Hz)	124.9	7.31(s)	122.8
10	7.51 (d, $J = 8.8$ Hz)	125.7	7.31(s)	123.7
10a	-	119.5	-	124.9
MeO-2	4.04 (s)	59.8	3.88 (s)	54.0
MeO-4	3.99 (s)	56.2	3.85 (s)	57.8
MeO-6	3.98 (s)	56.0	3.97 (s)	53.8

*Y. Chen, J. Xu, H. Yu, C. Qing, Y. Zhang, Y. Liu and J. Wang. 3,7-Dihydroxy-2,4^6-trimethoxyphenanthrene, A New Phenanthrene from *Bulbophyllum odoratissimum*, *J. Korean Chem. Soc.*, 2007, **51**, 352-355.

Figure S19. HRESIMS spectrum of 6

Position	Compound 7 (aceton	$(e-d_6)$	Agrostonin* (acetone	$(-d_6)$
_	$\boldsymbol{\delta}_{\mathrm{H}}(\mathrm{mult.}, J \mathrm{in} \mathrm{Hz})$	δ _C	$\boldsymbol{\delta}_{\mathrm{H}}(\mathrm{mult.}, J \mathrm{in} \mathrm{Hz})$	δ _C
1	-	109.1	-	109.8
2	-	154.1	-	155.1
3	7.02 (s)	99.1	7.00 (s)	100.0
4	-	159.3	-	160.2
4a	-	115.4	-	116.3
4b	-	125.0	-	125.8
5	9.27 (s)	159.0	9.25 (s)	109.7
6	-	147.7	-	148.5
7	-	145.2	-	146.0
8	7.21 (s)	111.3	7.19 (s)	112.2
8a	-	127.1	-	128.1
9	7.37 (d, <i>J</i> = 8.8 Hz)	127.0	7.36 (d, $J = 9.2$ Hz)	127.9
10	6.92 (d, <i>J</i> = 9.2 Hz)	122.5	6.93 (d, <i>J</i> = 9.2 Hz)	123.3
10a	-	134.6	-	135.4
1'	-	109.1	-	109.8
2'	-	154.1	-	155.1
3'	7.02 (s)	99.1	7.00 (s)	100.0
4′	-	159.3	-	160.2
4a'	-	115.4	-	116.3
4b′	-	125.0	-	125.8
5'	9.27 (s)	159.0	9.25 (s)	109.7
6'	-	147.7	-	148.5
7'	-	145.2	-	146.0

Table S6. NMR spectral data of 7 and agrostonin

8'	7.21 (s)	111.3	7.19 (s)	112.2
8a'	-	127.1	-	128.1
9'	7.37 (d, <i>J</i> = 8.8 Hz)	127.0	7.36 (d, <i>J</i> = 9.2 Hz)	127.9
10′	6.92 (d, <i>J</i> = 9.2 Hz)	122.5	6.93 (d, <i>J</i> = 9.2 Hz)	123.3
10a′	-	134.6	-	135.4
MeO-4	4.25 (s)	55.3	4.23 (s)	55.6
MeO-6	4.09 (s)	55.2	4.07 (s)	56.0
MeO-4'	4.25 (s)	55.3	4.23 (s)	56.1
MeO-6'	4.09 (s)	55.2	4.07 (s)	56.0

*C. Lin, T. Hwang, F. Chen, C. Huang, H. Hung and T. Wu, Chemical constituents of the rhizomes of *Bletilla formosana* and their potential anti-inflammatory activity, *J. Nat. Prod.*, 2016, **79**, 1911-1921.

Figure S20. HRESIMS spectrum of 7

Position	Compound 8 (acetone	-d ₆)	Trans-N-	
			coumaroyltyramine*(CD	₃ OD)
	$\boldsymbol{\delta}_{\mathrm{H}}(\mathrm{mult.}, J \mathrm{in} \mathrm{Hz})$	δ _C	$\boldsymbol{\delta}_{\mathrm{H}}(\mathrm{mult.}, J \mathrm{in} \mathrm{Hz})$	δ _C
1	-	127.8	-	127.7
2	7.41 (d, <i>J</i> = 6.8 Hz)	130.1	7.41 (d, <i>J</i> = 8.4 Hz)	130.5
3	6.85 (d, <i>J</i> = 6.8 Hz)	116.5	6.80 (d, J = 8.4 Hz)	116.2
4	-	160.0	-	160.5
5	6.85 (d, <i>J</i> = 6.8 Hz)	116.5	6.80 (d, <i>J</i> = 8.4 Hz)	116.2
6	7.41 (d, <i>J</i> = 6.8 Hz)	130.1	7.41 (d, <i>J</i> = 8.4 Hz)	130.5
7	7.45 (d, <i>J</i> = 15.6 Hz)	140.0	6.38 (d, <i>J</i> = 15.5 Hz)	141.8
8	6.47 (d, <i>J</i> = 15.6 Hz)	119.7	7.44 (d, <i>J</i> = 15.5 Hz)	118.4
9	-	166.4	-	169.2
1'	-	131.1	-	131.3
2'	7.06 (d, <i>J</i> = 7.2 Hz)	130.5	7.06 (d, $J = 8.6$ Hz)	130.7
3'	6.76 (d, <i>J</i> = 6.4 Hz)	116.0	6.73 (d, <i>J</i> = 8.6 Hz)	116.7
4'	-	156.7	-	156.9
5'	6.76 (d, <i>J</i> = 6.4 Hz)	116.0	6.73 (d, <i>J</i> = 8.6 Hz)	116.7
6'	7.06 (d, $J = 7.2$ Hz)	130.5	7.06 (d, $J = 8.6$ Hz)	130.7
	1	1	1	1

Table S7. NMR spectral data of 8 and trans-n-coumaroyltyramine

7′	2.74 (t, <i>J</i> = 7.2 Hz)	35.7	2.75 (t, $J = 7.5$ Hz)	35.8
8′	3.45 (t, <i>J</i> =7.2 Hz)	41.9	3.46 (t, <i>J</i> = 7.5 Hz)	42.5

*A. M. Al-Taweel, S. Perveen, A. M. El-Shafae, G. A. Fawzy, A. Malik, N. Afza, L. Iqbal and M. Latif, Bioactive phenolic amides from *Celtis africana*, *Molecules*, 2012, **17**, 2675-2682.

Figure S21. HRESIMS spectrum of 8

Position	Compound 9 (acetone- d_6)		Syringaresinol* (CDC	l ₃)
	$\boldsymbol{\delta}_{\mathrm{H}}(\mathrm{mult.}, J \mathrm{in} \mathrm{Hz})$	_H (mult., J in Hz) $\delta_{\rm C}$ $\delta_{\rm H}$ (mult., J in Hz)		$\mathbf{\delta}_{\mathrm{C}}$
1	-	113.2	-	132.1
2	6.68 (s)	104.4	6.59 (s)	102.8
3	-	148.6	-	147.2
4	-	136.2	-	134.4
5	-	148.6	-	147.2
6	6.68 (s)	104.4	6.59 (s)	102.8
7	4.67 (d, $J = 4$ Hz)	86.8	4.73 (d, <i>J</i> = 4.3 Hz)	86.0
8	3.09 (m)	55.3	3.10 (m)	54.3
9a	4.22 (dd)	72.3	4.28 (dd, <i>J</i> = 8.8, 6.4 Hz)	71.8
9b	3.84	72.3	3.92	71.8
1′	-	113.2	-	132.1
2'	6.68 (s)	104.4	6.59 (s)	102.8
3'	-	148.6	-	147.2
4'	-	136.2	-	134.4
5'	-	148.6	-	147.2
6′	6.68 (s)	104.4	6.59 (s)	102.8
7′	4.67 (d, J = 4 Hz)	86.8	4.73 (d, <i>J</i> = 4.3 Hz)	86.0

Table S8. NMR spectral data of 9 and syringaresinol

8′	3.09 (m)	55.3	3.10 (m)	54.3
9′a	4.22 (dd)	72.3	4.28 (dd, <i>J</i> = 8.8, 6.4 Hz)	71.8
9′b	3.84	72.3	3.92	71.8
MeO-3	3.83 (s)	56.6	3.89 (s)	56.4
MeO-5	3.82 (s)	56.6	3.89 (s)	56.4
MeO-3'	3.83 (s)	56.6	3.89 (s)	56.4
MeO-5'	3.82 (s)	56.6	3.89 (s)	56.4

*M. Ono, Y. Ito, C. Masuoka, H. Koga and T. Nohar, Antioxidative constituents from *Dendrobii herba* (stems of *Dendrobium* spp.), *Food. Sci. Technol. Int.*, 1995, **1**, 115-120.

Figure S22. HRESIMS spectrum of 9

	. 1	1, 014	1 1	C 1 /	•
I able S9. NMR	spectral	data of I	and frans-	n-feriilovtv	ramine/
1 4010 070 1 11111	speenar				1 4111111

Position
1
2
3
4
5
6
7
8
9
1′
2'
3'
4′
5'
6'
9 1' 2' 3' 4' 5' 6'

7′	2.74 (t, <i>J</i> = 7.6 Hz)	35.0	2.76 (t, <i>J</i> = 7.5 Hz)	35.8
8′	3.48 (t, <i>J</i> = 7.6 Hz)	41.9	3.47 (t, <i>J</i> = 7.5 Hz)	42.5
MeO-3	3.88 (s)	56.2	3.85 (s)	56.4

*A. M. Al-Taweel, S. Perveen, A. M. El-Shafae, G. A. Fawzy, A. Malik, N. Afza, L. Iqbal and M. Latif, Bioactive phenolic amides from *Celtis africana*, *Molecules*, 2012, **17**, 2675-2682.

Figure S23. HRESIMS spectrum of 10

Comp.	Percentage cell viability (mean ± SD) (%)					
	Vehicle	5 μΜ	10 µM	20 µM	40 µM	80 µM
1	100.0 ± 0.0	102.2 ± 4.1	44.1 ± 11.7***	19.9 ± 2.7***	15.3 ± 1.0***	13.4 ± 0.6 ***
2	100.0 ± 0.0	100.7 ± 1.9	97.3 ± 5.5	99.5 ± 3.9	101.3 ± 2.6	103.1 ± 0.6
3	100.0 ± 0.0	97.9 ± 3.1	101.9 ± 5.0	109.2 ± 3.5	122.7 ± 4.7	77.6 ± 7.2 ***
4	100.0 ± 0.0	$102.3 \pm 7.$	104.9 ± 2.8	98.4 ± 6.4	96.1 ± 6.9	70.0 ± 1.8 ***
5	100.0 ± 0.0	102.2 ± 3.0	100.2 ± 5.5	102.3 ± 4.1	85.4 ± 1.4***	83.8 ± 0.2***
6	100.0 ± 0.0	100.7 ± 3.6	103.0 ± 3.6	99.2 ± 3.1	98.6 ± 5.7	84.9 ± 2.7 ***
7	100.0 ± 0.0	100.7 ± 4.6	94.5 ± 2.3	$72.8 \pm 9.1***$	36.9 ± 7.3***	$32.9 \pm 8.6^{***}$
9	100.0 ± 0.0	98.1 ± 0.5	86.1 ± 4.4**	79.7 ± 4.3***	73.7 ± 2.8***	58.1 ± 8.3***
10	100.0 ± 0.0	99.0 ± 2.7	100.4 ± 6.6	98.5 ± 7.3	100.0 ± 2.1	$82.3 \pm 5.6 **$

Table S10. Effects of constituents of Aerides falcata on the viability of BV-2 microglial cells

The statical differences were analyzed using one-way ANOVA followed by Dunnett's post-hoc test. **p< 0.01, ***p<0.001 denote significantly reduced cell viability; vehicle (0.5% DMSO) vs. other groups of treatments.

Table S11. Effects of compounds 1, 7, and 9 on the viability of C6 glioblastoma cells

Comp.	Percentage cell viability (mean ± SD) (%)							
	Vehicle	2.5 μM	5 μΜ	10 µM	20 µM	40 µM	80 µM	160 µM
1	$100.0 \pm$	96.4 ± 3.5	84.6 ±	85.0 ±	62.1 ±	39.7 ±	9.6 ±	$7.9 \pm$
	0.0		2.2***	3.2***	6.3***	6.8***	0.5***	1.0***
7	$100.0 \pm$	96.4 ± 0.9	$79.6 \pm$	$63.0 \pm$	$58.7 \pm$	$42.0 \pm$	$36.3 \pm$	29.9 ±
	0.0		8.3**	8.4***	8.4***	0.2***	3.4***	1.7***
9	$100.0 \pm$	98.2 ± 6.5	82.5 ±	74.5 ±	71.7 ±	$61.8 \pm$	55.5 ±	45.1 ±
	0.0		3.8**	9.2***	3.7***	3.6***	5.7***	3.0***

The statical differences were analyzed using one-way ANOVA followed by Dunnett's post-hoc test. *p < 0.001, ***p < 0.001 denote significantly reduced cell viability; vehicle (0.5% DMSO) vs. other groups of treatments.