[Supporting Information]

Tracing the Transition from Covalent to Non-covalent Functionalization of Pyrene through C-, N-, and O- based Ionic and Radical Substrates using Quantum Mechanical Calculations

Anwesh Pandey*, Nandan Kumar*

Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India

*Corresponding Authors Email: <u>apdapbbau@gmail.com</u>, <u>mr.kumarnandan@gmail.com</u>

List of Figures and Tables:

Figure S1. Geometric parameters of cationic, anionic, and radical substrates (H and CH₃) interacting with pyrene obtained at M06-2X/6-31G* level of theory.

Figure S2. Geometric parameters of cationic, anionic, and radical substrates ((CH₃)CH₂,

(CH₃)₂CH, and (CH₃)₃C) interacting with pyrene obtained at M06-2X/6-31G* level of theory.

Figure S3. Geometric parameters of cationic, anionic, and radical substrates ((C₆H₅)CH₂,

 $(C_6H_5)_2$ CH, and $(C_6H_5)_3$ C) interacting with pyrene obtained at M06-2X/6-31G* level of theory. **Figure S4.** Geometric parameters of cationic, anionic, and radical substrates (NH₂, (CH₃)NH, and (CH₃)₂N) interacting with pyrene obtained at M06-2X/6-31G* level of theory.

Figure S5. Geometric parameters of cationic, anionic, and radical substrates ($(C_6H_5)NH$, and $(C_6H_5)_2N$) interacting with pyrene obtained at M06-2X/6-31G* level of theory.

Figure S6. Geometric parameters of cationic, anionic, and radical substrates (OH, (CH₃)O, and $(C_6H_5)O$) interacting with pyrene obtained at M06-2X/6-31G* level of theory.

Figure S7. A schematic representation of pyrene and its geometrical parameters such as R_1 to R_{11} and R'_1 to R'_7 . The site of interaction is encircled in red.

Figure S8. Correlation between the deformation energy (DE; kcal/mol) and FSC bond distance, SSC bond distance, and beyond SSC bond distance.

Figure S9. NCI map of the complexes obtained by the interaction of H and CH_3 in cationic, anionic, and radical states with pyrene at M06-2X/6-311G** level of theory.

Figure S10. NCI map of the complexes obtained by the interaction of (CH₃)CH₂, (CH₃)₂CH, and (CH₃)C in cationic, and radical states with pyrene at M06-2X/6-311G** level of theory.

Figure S11. NCI map of the complexes obtained by the interaction of $(C_6H_5)CH_2$, $(C_6H_5)_2CH$, and $(C_6H_5)C$ in cationic, anionic, and radical states with pyrene at M06-2X/6-311G** level of theory.

Figure S12. NCI map of the complexes obtained by the interaction of NH₂, (CH₃)NH, and $(CH_3)_2N$ in cationic, and radical states with pyrene at M06-2X/6-311G** level of theory.

Figure S13. NCI map of the complexes obtained by the interaction of $(C_6H_5)NH$, and $(C_6H_5)_2N$ in cationic, anionic, and radical states with pyrene at M06-2X/6-311G** level of theory.

Figure S14. NCI map of the complexes obtained by the interaction of OH, $(CH_3)O$, and $(C_6H_5)O$ in cationic, anionic, and radical states with pyrene at M06-2X/6-311G** level of theory.

Table S1: Different methods used for the benchmark study of the interactions between pyrene $(C_{16}H_{10})$ with cationic, anionic, and radical substrates.

Table S2(A): Benchmarking of the geometrical parameters of pyrene-H complexes in cationic, anionic, and radical states at different levels of theories. Values are given in Å.

Table S2(B): Benchmarking of the geometrical parameters of pyrene-CH₃ complexes in cationic, anionic, and radical states at different levels of theories. Values are given in Å.

Table S2(C): Benchmarking of the geometrical parameters of pyrene- $(CH_3)_3C$ complexes in cationic, and radical states at different levels of theories. Values are given in Å.

Table S3(A): The geometrical parameters for cationic substrates interacting pyrene obtained at $M06-2X/6-31G^*$ level of theory.

Table S3(B): The geometrical parameters for anionic substrates interacting pyrene obtained at M06-2X/6-31G* level of theory.

Table S3(C): The geometrical parameters for radical substrates interacting with pyrene obtained at $M06-2X/6-31G^*$ level of theory.

Table S4(A): Benchmarking of the interaction energies (IE; kcal/mol) of pyrene-H complexes in cationic, anionic, and radical states at different levels of theories. The value obtained at M06-2X/6-311G**//M06-2X/6-31G* level of theory is considered as a reference (energy zero) to calculate the absolute relative energy (RE; kcal/mol).

Table S4(B): Benchmarking of the interaction energies (kcal/mol) of pyrene-CH₃ complexes in cationic, anionic, and radical states at different levels of theories. The value obtained at M06- $2X/6-311G^{**}//M06-2X/6-31G^*$ level of theory is considered as a reference (energy zero) to calculate the absolute relative energy (RE; kcal/mol).

Table S4(C): Benchmarking of the interaction energies (kcal/mol) of pyrene-(CH₃)₃C complexes in cationic, anionic, and radical states at different levels of theories. The value obtained at M06-2X/6-311G**//M06-2X/6-31G* level of theory is considered as a reference (energy zero) to calculate the absolute relative energy (RE; kcal/mol).

Table S5(A). Contribution of each energy component into the interaction energy (IE; kcal/mol) of cationic substrates-pyrene complexes obtained using LMOEDA scheme at M06-2X/6- $311G^{**}$ level of theory.

Table S5(B). Contribution of each energy component into the interaction energy (IE; kcal/mol) of anionic substrates-pyrene complexes obtained using LMOEDA scheme at M06-2X/6- $311G^{**}$ level of theory.

Table S5(C). Contribution of each energy component into the interaction energy (IE; kcal/mol) of cationic radical-pyrene complexes obtained using LMOEDA scheme at M06-2X/6-311G** level of theory.

Table S6(A). Percentage contribution of each energy component into the interaction energy of cationic substrates-pyrene complexes obtained using LMOEDA scheme at M06-2X/6-311G** level of theory.

Table S6(B). Percentage contribution of each energy component into the interaction energy of anionic substrates-pyrene complexes obtained using LMOEDA scheme at M06-2X/6-311G** level of theory.

Table S6(C). Percentage contribution of each energy component into the interaction energy of cationic substrates-pyrene complexes obtained using LMOEDA scheme at M06-2X/6-311G** level of theory.

Table S7(A): The variation of electron density (ρ), Laplacian of electron density ($\nabla^2 \rho$), total energy density (H(**r**)), and the ratio of kinetic energy density G(**r**), and potential energy density V(**r**), (-[G(**r**)/V(**r**)]) obtained at bond critical points for cationic substrates with pyrene.

Table S7(B): The variation of electron density (ρ), Laplacian of electron density ($\nabla^2 \rho$), total energy density (H(**r**)), and the ratio of kinetic energy density G(**r**), and potential energy density V(**r**), (-[G(**r**)/V(**r**)]) obtained at bond critical points for anionic substrates with pyrene.

Table S7(C): The variation of electron density (ρ), Laplacian of electron density ($\nabla^2 \rho$), total energy density (H(**r**)), and the ratio of kinetic energy density G(**r**), and potential energy density V(**r**), (-[G(**r**)/V(**r**)]) obtained at bond critical points for radical substrates with pyrene.

Figure S1. Geometric parameters of cationic, anionic, and radical substrates (H and CH₃) interacting with pyrene obtained at M06-2X/6-31G* level of theory.

Figure S2. Geometric parameters of cationic, anionic, and radical substrates ((CH₃)CH₂, (CH₃)₂CH, and (CH₃)₃C) interacting with pyrene obtained at M06-2X/6-31G* level of theory.

Figure S3. Geometric parameters of cationic, and radical substrates ($(C_6H_5)CH_2$, $(C_6H_5)_2CH$, and $(C_6H_5)_3C$) interacting with pyrene obtained at M06-2X/6-31G* level of theory.

Figure S4. Geometric parameters of cationic, anionic, and radical substrates (NH_2 , (CH_3)NH, and (CH_3)₂N) interacting with pyrene obtained at M06-2X/6-31G* level of theory.

Figure S5. Geometric parameters of cationic, anionic, and radical substrates ($(C_6H_5)NH$, and $(C_6H_5)_2N$) interacting with pyrene obtained at M06-2X/6-31G* level of theory.

Figure S6. Geometric parameters of cationic, anionic, and radical substrates (OH, (CH₃)O, and (C₆H₅)O) interacting with pyrene obtained at M06- $2X/6-31G^*$ level of theory.

Figure S7. A schematic representation of pyrene and its geometrical parameters such as R_1 to R_{11} and R'_1 to R'_7 . The site of interaction is encircled in red.

Figure S8. Correlation between the deformation energy (DE; kcal/mol) and FSC bond distance, SSC bond distance, and beyond SSC bond distance.

Figure S9. NCI map of the complexes obtained by the interaction of H and CH_3 in cationic, anionic, and radical states with pyrene at M06-2X/6-311G** level of theory.

Figure S10. NCI map of the complexes obtained by the interaction of $(CH_3)CH_2$, $(CH_3)_2CH$, and $(CH_3)C$ in cationic, anionic, and radical states with pyrene at M06-2X/6-311G** level of theory.

Figure S11. NCI map of the complexes obtained by the interaction of $(C_6H_5)CH_2$, $(C_6H_5)_2CH$, and $(C_6H_5)C$ in cationic, anionic, and radical states with pyrene at M06-2X/6-311G** level of theory.

Figure S12. NCI map of the complexes obtained by the interaction of NH_2 , $(CH_3)NH$, and $(CH_3)_2N$ in cationic, anionic, and radical states with pyrene at M06-2X/6-311G** level of theory.

Figure S13. NCI map of the complexes obtained by the interaction of $(C_6H_5)NH$, and $(C_6H_5)_2N$ in cationic, anionic, and radical states with pyrene at M06-2X/6-311G** level of theory.

Figure S14. NCI map of the complexes obtained by the interaction of OH, $(CH_3)O$, and $(C_6H_5)O$ in cationic, anionic, and radical states with pyrene at M06-2X/6-311G** level of theory.

Method	Description	Reference
HF	Wave Function Based Method	а
MP2	Post HF Wave Function Based Method	b
BP86	GGA Density Functional Method	c, d
B3LYP	Hybrid-GGA Density Functional Method	e, f
M06	Hybrid Meta-GGA Density Functional Method	g, h
camB3LYP	Range-Separated Hybrid Density Functional Method	i
B3LYP-D3	Hybrid-GGA Density Functional Method with Grimme's Empirical Dispersion Corrections (D3)	j

Table S1: Different methods used for the benchmark study of the interactions between pyrene $(C_{16}H_{10})$ with cationic, anionic, and radical substrates.

References:

- a. The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part II. Some Results and Discussion by D. R. Hartree, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 24, 111–132, January 1928.
- b. The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part II. Some Results and Discussion by D. R. Hartree, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 24, 111–132, January 1928.
- c. Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. *Phys. Rev. A* 1988, *38*, 3098–3100.
- d. Perdew, J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 1986, 33, 8822.
- e. Becke, A. D. Density-functional thermochemistry. I. The effect of the exchange-only gradient correction. J. Chem. Phys. 1992, 96, 2155–2160.
- f. Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785.
- g. Zhao, Y.; Truhlar, D. G. A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J. Chem. Phys. 2006, 125, 194101.
- h. Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical chemistry accounts 2008, 120, 215–241.
- i. Yanai, T.; Tew, D. P.; Handy, N. C. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chemical physics letters 2004, 393, 51–57.
- j. Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys. 2010 Apr 21;132(15):154104.

Cation Radical Anion Methods Ro R₁ \mathbf{R}_2 R₃ Ro R₁ \mathbf{R}_2 R₃ Ro R₁ \mathbf{R}_2 R₃ M06-2X/6-31G* 1.130 1.485 1.485 1.485 1.119 1.522 1.524 1.524 1.120 1.508 1.508 1.508 camB3LYP/6-31G* 1.125 1.486 1.486 1.486 1.120 1.522 1.523 1.523 1.118 1.508 1.509 1.509 camB3LYP/6-311G** 1.126 1.519 1.521 1.483 1.482 1.482 1.119 1.521 1.117 1.506 1.506 1.506 camB3LYP/6-311+G** 1.126 1.483 1.482 1.482 1.121 1.517 1.519 1.519 1.117 1.506 1.506 1.506 B3LYP/6-31G* 1.126 1.491 1.496 1.496 1.123 1.527 1.532 1.532 1.121 1.512 1.517 1.517 B3LYP/6-311G** 1.126 1.488 1.492 1.492 1.121 1.525 1.530 1.530 1.510 1.514 1.119 1.514 B3LYP/6-311+G** 1.126 1.488 1.492 1.492 1.123 1.523 1.528 1.528 1.120 1.510 1.514 1.514 BP86/6-31G* 1.135 1.495 1.502 1.502 1.132 1.532 1.539 1.539 1.132 1.516 1.522 1.522 BP86/6-311G** 1.135 1.491 1.498 1.498 1.130 1.530 1.536 1.536 1.130 1.514 1.520 1.520 1.136 BP86/6-311+G** 1.491 1.498 1.498 1.131 1.528 1.535 1.535 1.131 1.513 1.519 1.519 1.128 1.482 1.485 1.126 1.517 1.521 1.521 1.123 1.503 1.506 M06/6-31G* 1.485 1.506 M06/6-311G** 1.129 1.478 1.481 1.481 1.126 1.514 1.517 1.517 1.123 1.503 1.501 1.503 M06/6-311+G** 1.130 1.478 1.481 1.481 1.127 1.512 1.516 1.516 1.124 1.500 1.503 1.503 B3LYP-D3/6-31G* 1.125 1.490 1.495 1.495 1.122 1.526 1.532 1.532 1.120 1.512 1.516 1.516 B3LYP-D3/6-311G** 1.125 1.492 1.492 1.120 1.524 1.529 1.529 1.514 1.487 1.119 1.510 1.514 B3LYP-D3/6-311+G** 1.126 1.487 1.491 1.491 1.122 1.522 1.528 1.528 1.120 1.509 1.513 1.513 1.112 1.495 1.488 1.488 1.108 1.524 1.521 1.521 HF/6-31G* 1.101 1.513 1.516 1.516 HF/6-311G** 1.113 1.492 1.486 1.486 1.110 1.521 1.519 1.519 1.102 1.511 1.515 1.515 HF/6-311+G** 1.114 1.492 1.485 1.520 1.517 1.517 1.103 1.112 1.514 1.485 1.511 1.514 MP2/6-31G* 1.132 1.478 1.481 1.481 1.122 1.518 1.525 1.525 1.118 1.508 1.507 1.507 MP2/6-311G** 1.136 1.477 1.482 1.482 1.124 1.518 1.525 1.525 1.118 1.509 1.507 1.507 MP2/6-311+G** 1.137 1.478 1.482 1.482 1.128 1.516 1.522 1.522 1.119 1.509 1.507 1.506

Table S2(A): Benchmarking of the geometrical parameters of pyrene-H complexes in cationic, and radical states at different levels of theories. Values are given in Å.

		Ca	tion			An	ion			Rac	lical	
Methods	Ro	R 1	R 2	R 3	R ₀	R 1	R ₂	R 3	Ro	R 1	R ₂	R 3
M06-2X/6-31G*	1.649	1.487	1.484	1.484	1.552	1.525	1.526	1.526	1.552	1.525	1.526	1.526
camB3LYP/6-31G*	1.636	1.491	1.487	1.487	1.555	1.527	1.527	1.527	1.576	1.514	1.513	1.513
camB3LYP/6-311G**	1.638	1.489	1.485	1.485	1.554	1.525	1.526	1.526	1.575	1.513	1.512	1.512
camB3LYP/6-311+G**	1.638	1.489	1.485	1.485	1.556	1.525	1.525	1.525	1.576	1.513	1.512	1.512
B3LYP/6-31G*	1.652	1.494	1.497	1.497	1.565	1.533	1.536	1.536	1.589	1.518	1.521	1.521
B3LYP/6-311G**	1.654	1.493	1.494	1.494	1.565	1.531	1.535	1.535	1.589	1.517	1.520	1.520
B3LYP/6-311+G**	1.655	1.493	1.494	1.494	1.567	1.531	1.535	1.535	1.590	1.517	1.519	1.519
BP86/6-31G*	1.655	1.498	1.503	1.503	1.569	1.537	1.543	1.543	1.595	1.521	1.526	1.526
BP86/6-311G**	1.655	1.496	1.501	1.501	1.568	1.536	1.541	1.541	1.594	1.520	1.525	1.525
BP86/6-311+G**	1.656	1.496	1.501	1.501	1.570	1.535	1.540	1.540	1.595	1.520	1.524	1.524
M06/6-31G*	1.632	1.485	1.486	1.486	1.548	1.522	1.525	1.525	1.570	1.508	1.511	1.511
M06/6-311G**	1.632	1.483	1.484	1.484	1.547	1.520	1.523	1.523	1.569	1.507	1.509	1.509
M06/6-311+G**	1.633	1.483	1.483	1.483	1.549	1.519	1.522	1.522	1.571	1.507	1.508	1.508
B3LYP-D3/6-31G*	1.653	1.493	1.496	1.496	1.563	1.531	1.535	1.535	1.588	1.516	1.520	1.520
B3LYP-D3/6-311G**	1.655	1.491	1.494	1.494	1.563	1.530	1.534	1.534	1.588	1.515	1.519	1.519
B3LYP-D3/6-311+G**	1.655	1.491	1.493	1.493	1.565	1.529	1.534	1.534	1.589	1.515	1.518	1.518
HF/6-31G*	1.629	1.501	1.491	1.491	1.555	1.530	1.526	1.526	1.567	1.520	1.522	1.522
HF/6-311G**	1.631	1.499	1.489	1.489	1.556	1.529	1.525	1.525	1.567	1.519	1.521	1.521
HF/6-311+G**	1.632	1.499	1.489	1.489	1.558	1.529	1.525	1.525	1.568	1.519	1.521	1.521
MP2/6-31G*	1.655	1.478	1.480	1.480	1.546	1.519	1.526	1.526	1.569	1.510	1.508	1.508
MP2/6-311G**	1.666	1.476	1.479	1.479	1.549	1.520	1.527	1.527	1.573	1.510	1.508	1.508
MP2/6-311+G**	1.661	1.478	1.480	1.480	1.554	1.520	1.526	1.526	1.577	1.510	1.508	1.508

Table S2(B): Benchmarking of the geometrical parameters of pyrene-CH₃ complexes in cationic, anionic, and radical states at different levels of theories. Values are given in Å.

N. A. L		Cat	tion			An	ion			Rac	lical	
Methods	Ro	R 1	R 2	R 3	Ro	R 1	R 2	R 3	Ro	R 1	R ₂	R 3
M06-2X/6-31G*	3.462	1.431	1.427	1.427	1.609	1.536	1.534	1.534	1.369	1.520	1.516	1.516
camB3LYP/6-31G*	3.360	1.429	1.421	1.423	1.619	1.537	1.535	1.535	1.667	1.523	1.520	1.520
camB3LYP/6-311G**	3.403	1.427	1.419	1.420	1.616	1.536	1.534	1.534	1.667	1.522	1.518	1.518
camB3LYP/6-311+G**	3.427	1.427	1.419	1.420	1.617	1.536	1.534	1.534	1.669	1.522	1.517	1.517
B3LYP/6-31G*	3.465	1.428	1.429	1.432	1.639	1.543	1.544	1.544	1.706	1.525	1.524	1.524
B3LYP/6-311G**	3.491	1.426	1.427	1.430	1.637	1.542	1.543	1.543	1.708	1.523	1.522	1.522
B3LYP/6-311+G**	3.512	1.427	1.427	1.430	1.638	1.542	1.542	1.542	1.711	1.523	1.522	1.522
BP86/6-31G*	3.471	1.431	1.437	1.441	1.642	1.546	1.549	1.549	1.721	1.525	1.527	1.527
BP86/6-311G**	3.450	1.430	1.435	1.438	1.639	1.545	1.548	1.548	1.721	1.523	1.525	1.525
BP86/6-311+G**	3.465	1.430	1.435	1.438	1.640	1.545	1.547	1.547	1.724	1.523	1.525	1.525
M06/6-31G*	3.133	1.425	1.425	1.428	1.611	1.533	1.533	1.533	1.666	1.517	1.516	1.516
M06/6-311G**	3.141	1.422	1.423	1.425	1.610	1.530	1531	1531	1.665	1.514	1.514	1.514
M06/6-311+G**	3.176	1.422	1.422	1.424	1.611	1.530	1.531	1.531	1.668	1.514	1.513	1.513
B3LYP-D3/6-31G*	3.253	1.428	1.429	1.433	1.634	1.540	1.543	1.543	1.701	1.522	1.523	1.523
B3LYP-D3/6-311G**	3.262	1.426	1.427	1.430	1.632	1.539	1.542	1.542	1.703	1.521	1.521	1.521
B3LYP-D3/6-311+G**	3.275	1.426	1.427	1.430	1.633	1.539	1.541	1.541	1.705	1.520	1.521	1.521
HF/6-31G*	3.623	1.435	1.414	1.414	1.619	1.544	1.536	1.536	1.645	1.533	1.532	1.532
HF/6-311G**	3.698	1.434	1.413	1.413	1.619	1.543	1.536	1.536	1.647	1.531	1.531	1.531
HF/6-311+G**	3.730	1.434	1.413	1.413	1.621	1.543	1.536	1.536	1.648	1.531	1.531	1.531
MP2/6-31G*	2.840	1.427	1.437	1.437	1.597	1.529	1.534	1.534	1.647	1.519	1.515	1.515
MP2/6-311G**	2.734	1.429	1.441	1.441	1.594	1.528	1.534	1.534	1.646	1.518	1.514	1.514
MP2/6-311+G**	2.814	1.428	1.440	1.440	1.599	1.528	1.534	1.534	1.653	1.518	1.514	1.514

Table S2(C): Benchmarking of the geometrical parameters of pyrene- $(CH_3)_3C$ complexes in cationic, and radical states at different levels of theories. Values are given in Å.

System	R0	R1	R2	R2'	R3	R3'	R4	R4'	R5	R5'	R6	R6'	R7	R7'	R8	R8'	R9	R9'	R10	R11
Pristine	-	1.428	1.421	1.421	1.421	1.421	1.399	1.399	1.399	1.399	1.440	1.440	1.440	1.440	1.391	1.391	1.391	1.391	1.354	1.354
H^+	1.130	1.485	1.485	1.407	1.485	1.407	1.386	1.400	1.386	1.400	1.430	1.449	1.430	1.449	1.399	1.391	1.399	1.391	1.360	1.360
${\rm CH_3}^+$	1.649	1.487	1.484	1.407	1.484	1.407	1.386	1.400	1.386	1.400	1.431	1.407	1.431	1.449	1.399	1.391	1.399	1.400	1.390	1.390
$(CH_3)CH_2^+$	1.718	1.480	1.481	1.409	1.475	1.408	1.386	1.400	1.390	1.401	1.432	1.449	1.430	1.448	1.400	1.391	1.397	1.391	1.359	1.360
$(CH_3)_2CH^+$	1.884	1.468	1.468	1.411	1.469	1.411	1.390	1.400	1.390	1.400	1.432	1.447	1.432	1.447	1.398	1.391	1.398	1.391	1.358	1.358
$(CH_3)_3C^+$	3.462	1.431	1.427	1.421	1.427	1.421	1.399	1.399	1.400	1.400	1.442	1.443	1.441	1.444	1.394	1.392	1.395	1.392	1.357	1.357
$(C_6H_5)CH_2^+$	2.332	1.440	1.438	1.418	1.437	1.415	1.394	1.400	1.399	1.400	1.439	1.444	1.434	1.444	1.397	1.393	1.392	1.391	1.357	1.359
$(C_6H_5)_2CH^+$	3.035	1.429	1.420	1.424	1.422	1.423	1.400	1.398	1.401	1.399	1.442	1.441	1.442	1.441	1.392	1.393	1.393	1.392	1.355	1.357
$(C_6H_5)_3C^+$	3.919	1.428	1.421	1.421	1.422	1.421	1.399	1.400	1.400	1.400	1.441	1.441	1.441	1.441	1.392	1.393	1.392	1.393	1.356	1.354
$\mathrm{NH_2}^+$	1.526	1.504	1.507	1.401	1.505	1.401	1.382	1.400	1.383	1.401	1.424	1.452	1.431	1.455	1.403	1.391	1.402	1.390	1.361	1.360
(CH ₃)NH ⁺	1.544	1.500	1.509	1.400	1.499	1.403	1.374	1.400	1.393	1.401	1.429	1.456	1.423	1.450	1.412	1.392	1.392	1.390	1.357	1.363
$(CH_3)_2N^+$	1.581	1.499	1.510	1.407	1.510	1.407	1.380	1.401	1.380	1.401	1.425	1.450	1.425	1.450	1.402	1.390	1.402	1.390	1.361	1.361
$(C_6H_5)NH^+$	1.619	1.489	1.497	1.402	1.487	1.402	1.374	1.400	1.397	1.401	1.431	1.455	1.422	1.451	1.413	1.393	1.388	1.390	1.356	1.363
$(C_6H_5)_2N^+$	1.581	1.499	1.510	1.407	1.510	1.407	1.380	1.401	1.380	1.401	1.425	1.450	1.425	1.450	1.402	1.390	1.402	1.390	1.361	1.361
OH^+	1.449	1.510	1.518	1.398	1.518	1.398	1.380	1.400	1.380	1.400	1.423	1.455	1.423	1.454	1.405	1.391	1.405	1.391	1.362	1.362
$(CH_3)O^+$	1.156	1.510	1.523	1.401	1.516	1.399	1.379	1.399	1.376	1.402	1.422	1.455	1.428	1.458	1.401	1.392	1.407	1.390	1.362	1.360
$(C_6H_5)O^+$	1.506	1.501	1.512	1.401	1.507	1.400	1.374	1.400	1.384	1.401	1.427	1.456	1.421	1.454	1.408	1.393	1.398	1.390	1.358	1.364

Table S3(A): The geometrical parameters for cationic substrates interacting pyrene obtained at M06-2X/6-31G* level of theory.

System	R0	R1	R2	R2'	R3	R3'	R4	R4'	R5	R5'	R6	R6'	R7	R7'	R8	R8'	R9	R9'	R10	R11
Pristine	-	1.428	1.421	1.421	1.421	1.421	1.399	1.399	1.399	1.399	1.440	1.440	1.440	1.440	1.391	1.391	1.391	1.391	1.354	1.354
H-	1.119	1.522	1.524	1.409	1.524	1.409	1.383	4.404	1.383	1.404	1.423	1.453	1.423	1.453	1.405	1.391	1.405	1.391	1.365	1.365
CH ₃	1.552	1.525	1.526	1.411	1.526	1.411	1.384	1.403	1.384	4.404	1.424	1.452	1.424	1.452	1.404	1.391	1.404	1.391	1.364	1.364
(CH ₃)CH ₂	1.563	1.527	1.528	1.412	1.527	1.412	1.384	1.43	1.385	1.404	1.424	1.451	1.425	1.451	1.403	1.391	1.404	1.391	1.364	1.363
(CH ₃) ₂ CH ⁻	1.582	1.530	1.531	1.414	1.531	1.414	1.386	1.404	1.386	1.404	1.424	1.451	1.424	1.451	1.403	1.390	1.403	1.390	1.362	1.362
$(CH_3)_3C^-$	1.609	1.536	1.534	1.415	1.534	1.415	1.387	1.404	1.387	1.404	1.427	1.449	1.427	1.450	1.401	1.390	1.401	1.390	1.361	1.361
$(C_6H_5)CH_2$	1.594	1.519	1.522	1.412	1.520	1.411	1.387	1.404	1.382	1.403	1.422	1.451	1.428	1.451	1.401	1.391	1.407	1.391	1.365	1.360
$(C_6H_5)_2CH^-$	1.653	1.518	1.520	1.412	1.516	1.412	1.388	1.404	1.386	1.402	1.423	1.449	1.430	1.448	1.397	1.391	1.403	1.391	1.366	1.360
$(C_6H_5)_3C^-$	4.743	1.427	1.420	1.422	1.421	1.422	1.398	1.399	1.399	1.401	1.441	1.441	1.438	1.438	1.391	1.392	1.391	1.391	1.355	1.356
NH ₂	1.508	1.517	1.516	1.412	1.519	1.412	1.383	1.402	1.389	1.404	1.428	1.450	1.426	1.450	1.406	1.392	1.400	1.390	1.360	1.364
(CH ₃)NH ⁻	1.511	1.518	1.518	1.413	1.520	1.413	1.384	1.402	1.389	1.405	1.428	1.450	1.425	1.449	1.405	1.392	1.400	1.390	1.360	1.363
$(CH_3)_2N^2$	1.529	1.522	1.519	1.416	1.519	1.416	1.387	1.404	1.387	1.404	1.426	1.449	1.426	1.449	1.399	1.390	1.399	1.390	1.362	1.362
$(C_6H_5)NH^-$	1.572	1.504	1.507	1.413	1.508	1.413	1.386	1.403	1.388	1.403	1.426	1.448	1.428	1.447	1.402	1.392	1.402	1.390	1.361	1.360
$(C_6H_5)_2N^-$	3.602	1.428	1.419	1.420	1.420	1.419	1.397	1.397	1.401	1.400	1.440	1.441	1.440	1.440	1.393	1.391	1.390	1.390	1.353	1.355
OH-	1.476	1.505	1.507	1.412	1.507	1.412	1.388	1.403	1.388	1.403	1.429	1.449	1.429	1.449	1.402	1.391	1.402	1.391	1.360	1.360
(CH ₃)O ⁻	1.494	1.507	1.503	1.415	1.504	1.415	1.385	1.402	1.391	1.405	1.428	1.448	1.426	1.447	1.402	1.392	1.396	1.390	1.360	1.363
$(C_6H_5)O^-$	2.984	1.426	1.418	1.418	1.419	1.419	1.400	1.400	1.397	1.397	1.441	1.441	1.439	1.439	1.389	1.389	1.393	1.393	1.352	1.352

Table S3(B): The geometrical parameters for anionic substrates interacting pyrene obtained at M06-2X/6-31G* level of theory.

System	RO	R1	R2	R2'	R3	R3'	R4	R4'	R5	R5'	R6	R6'	R7	R7'	R8	R8'	R9	R9'	R10	R11
Pristine	-	1.428	1.421	1.421	1.421	1.421	1.399	1.399	1.399	1.399	1.440	1.440	1.440	1.440	1.391	1.391	1.391	1.391	1.354	1.354
\mathbf{H}°	1.120	1.508	1.508	1.404	1.508	1.404	1.380	1.401	1.380	1.401	1.431	1.455	1.431	1.455	1.405	1.391	1.405	1.391	1.358	1.358
CH ₃	1.578	1.511	1.511	1.405	1.511	1.405	1.381	1.401	1.381	1.401	1.431	1.454	1.431	1.454	1.404	1.390	1.405	1.390	1.358	1.358
(CH ₃)CH ₂	1.599	1.511	1.513	1.406	1.509	1.406	1.380	1.401	1.383	1.401	1.430	1.454	1.430	1.454	1.405	1.390	1.403	1.390	1.358	1.358
(CH ₃) ₂ CH°	1.630	1.511	1.514	1.408	1.514	1.408	1.383	1.401	1.382	1.401	1.430	1.454	1.430	1.454	1.404	1.390	1.404	1.390	1.357	1.357
$(CH_3)_3C^\circ$	1.369	1.520	1.516	1.409	1.516	1.409	1.383	1.401	1.382	1.401	1.433	1.453	1.433	1.453	1.402	1.389	1.402	1.389	1.355	1.355
$(C_6H_5)CH_2$	1.623	1.506	1.509	1.407	1.505	1.406	1.381	1.401	1.384	1.401	1.431	1.454	1.429	1.453	1.405	1.391	1.403	1.390	1.358	1.358
$(C_6H_5)_2CH^\circ$	1.682	1.509	1.507	1.408	1.502	1.406	1.380	1.401	1.383	1.400	1.433	1.454	1.433	1.452	1.402	1.391	1.402	1.390	1.358	1.356
$(C_6H_5)_3C^\circ$	4.091	1.430	1.420	1.420	1.421	1.422	1.399	1.398	1.398	1.399	1.441	1.441	1.440	1.441	1.390	1.390	1.390	1.391	1.361	1.358
NH ₂	1.509	1.512	1.513	1.404	1.514	1.404	1.379	1.400	1.383	1.402	1.431	1.454	1.432	1.456	1.407	1.391	1.403	1.390	1.356	1.358
(CH ₃)NH°	1.512	1.513	1.516	1.405	1.514	1.404	1.377	1.400	1.386	1.402	1.432	1.455	1.429	1.454	1.410	1.391	1.400	1.389	1.355	1.359
$(CH_3)_2N^\circ$	1.533	1.516	1.518	1.408	1.518	1.408	1.380	1.401	1.380	1.401	1.430	1.454	1.430	1.454	1.403	1.390	1.403	1.390	1.357	1.357
$(C_6H_5)NH^\circ$	1.543	1.506	1.512	1.405	1.510	1.404	1.377	1.400	1.387	1.401	1.432	1.454	1.428	1.453	1.410	1.392	1.399	1.390	1.355	1.358
$(C_6H_5)_2N^\circ$	1.540	1.514	1.514	1.405	1.513	1.404	1.375	1.400	1.386	1.401	1.435	1.455	1.432	1.453	1.408	1.391	1.399	1.389	1.355	1.357
OH°	1.458	1.508	1.513	1.403	1.513	1.403	1.381	1.400	1.381	1.400	1.432	1.455	1.432	1.455	1.405	1.390	1.405	1.390	1.356	1.356
(CH ₃)O°	1.465	1.511	1.514	1.406	1.512	1.405	1.377	1.399	1.381	1.402	1.431	1.455	1.431	1.455	1.405	1.392	1.403	1.389	1.356	1.358
$(C_6H_5)O^\circ$	1.508	1.503	1.507	1.406	1.504	1.404	1.376	1.400	1.385	1.401	1.432	1.454	1.429	1.453	1.407	1.392	1.399	1.390	1.356	1.358

Table S3(C): The geometrical parameters for radical substrates interacting with pyrene obtained at M06-2X/6-31G* level of theory.

Table S4(A): Benchmarking of the interaction energies (IE; kcal/mol) of pyrene-H complexes in cationic, anionic, and radical states at different levels of theories. The value obtained at M06-2X/6- $311G^{**}/M06-2X/6-31G^{*}$ level of theory is considered as a reference (energy zero) to calculate the absolute relative energy (RE; kcal/mol).

Methods	Cation	RE	Anion	RE	Radical	RE
M06-2X/6-311G**//M06-2X/6-31G*	-197.03	0.00	-74.44	0.00	-37.65	0.00
M06-2X/6-311G**//camB3LYP/6-31G*	-197.81	0.78	-73.63	0.81	-37.73	0.08
M06-2X/6-311G**//camB3LYP/6-311G**	-196.85	0.18	-73.17	1.27	-37.40	0.25
M06-2X/6-311G**//camB3LYP/6-311+G**	-196.83	0.20	-72.28	2.16	-37.13	0.52
M06-2X/6-311G**//B3LYP/6-31G*	-199.11	2.08	-74.39	0.05	-38.29	0.64
M06-2X/6-311G**//B3LYP/6-311G**	-198.20	1.17	-73.95	0.49	-37.96	0.31
M06-2X/6-311G**//B3LYP/6-311+G**	-198.19	1.16	-73.08	1.36	-37.68	0.03
M06-2X/6-311G**//BP86/6-31G*	-199.21	2.18	-75.74	1.30	-38.46	0.81
M06-2X/6-311G**//BP86/6-311G**	-198.18	1.15	-75.39	0.95	-38.10	0.45
M06-2X/6-311G**//BP86/6-311+G**	-198.19	1.16	-74.64	0.20	-37.84	0.19
M06-2X/6-311G**//M06/6-31G*	-197.44	0.41	-73.06	1.38	-36.65	1.00
M06-2X/6-311G**//M06/6-311G**	-196.51	0.52	-72.49	1.95	-36.37	1.28
M06-2X/6-311G**//M06/6-311+G**	-196.42	0.61	-71.67	2.77	-36.03	1.62
M06-2X/6-311G**//B3LYP-D3/6-31G*	-199.01	1.98	-74.30	0.14	-38.17	0.52
M06-2X/6-311G**//B3LYP-D3/6-311G**	-198.09	1.06	-73.86	0.58	-37.84	0.19
M06-2X/6-311G**//B3LYP-D3/6-311+G**	-198.08	1.05	-72.99	1.45	-37.57	0.08
M06-2X/6-311G**//HF/6-31G*	-200.71	3.68	-73.11	1.33	-39.67	2.02
M06-2X/6-311G**//HF/6-311G**	-200.04	3.01	-72.74	1.70	-39.49	1.84
M06-2X/6-311G**//HF/6-311+G**	-199.95	2.92	-71.79	2.65	-39.24	1.59
M06-2X/6-311G**//MP2/6-31G*	-196.18	0.85	-76.30	1.86	-39.12	1.47
M06-2X/6-311G**//MP2/6-311G**	-194.55	2.48	-76.62	2.18	-39.30	1.65
M06-2X/6-311G**//MP2/6-311+G**	-194.94	2.09	-75.27	0.83	-39.23	1.58

Table S4(B): Benchmarking of the interaction energies (IE, kcal/mol) of pyrene-CH₃ complexes in cationic, anionic, and radical states at different levels of theories. The value obtained at M06-2X/6-311G**//M06-2X/6-31G* level of theory is considered as a reference (energy zero) to calculate the absolute relative energy (RE; kcal/mol).

Methods	Cation	RE	Anion	RE	Radical	RE
M06-2X/6-311G**//M06-2X/6-31G*	-126.43	0.00	-82.07	0.00	-37.69	0.00
M06-2X/6-311G**//camB3LYP/6-31G*	-130.07	3.64	-82.23	0.16	-38.97	1.28
M06-2X/6-311G**//camB3LYP/6-311G**	-129.72	3.29	-82.03	0.04	-39.02	1.33
M06-2X/6-311G**//camB3LYP/6-311+G**	-129.6	3.17	-81.78	0.29	-38.91	1.22
M06-2X/6-311G**//B3LYP/6-31G*	-130.47	4.04	-83.32	1.25	-39.67	1.98
M06-2X/6-311G**//B3LYP/6-311G**	-130.05	3.62	-83.12	1.05	-39.54	1.85
M06-2X/6-311G**//B3LYP/6-311+G**	-129.91	3.48	-82.83	0.76	-39.44	1.75
M06-2X/6-311G**//BP86/6-31G*	-130.03	3.60	-84.30	2.23	-39.52	1.83
M06-2X/6-311G**//BP86/6-311G**	-129.66	3.23	-84.04	1.97	-39.31	1.62
M06-2X/6-311G**//BP86/6-311+G**	-129.46	3.03	-83.82	1.75	-39.22	1.53
M06-2X/6-311G**//M06/6-31G*	-129.43	3.00	-81.34	0.73	-37.85	0.16
M06-2X/6-311G**//M06/6-311G**	-129.00	2.57	-80.96	1.11	-37.69	0.00
M06-2X/6-311G**//M06/6-311+G**	-128.77	2.34	-80.64	1.43	-37.55	0.14
M06-2X/6-311G**//B3LYP-D3/6-31G*	-129.66	3.23	-82.72	0.65	-38.99	1.30
M06-2X/6-311G**//B3LYP-D3/6-311G**	-129.23	2.80	-82.52	0.45	-38.85	1.16
M06-2X/6-311G**//B3LYP-D3/6-311+G**	-129.09	2.66	-82.22	0.15	-38.75	1.06
M06-2X/6-311G**//HF/6-31G*	-134.64	8.21	-82.52	0.45	-42.09	4.40
M06-2X/6-311G**//HF/6-311G**	-134.14	7.71	-82.42	0.35	-42.00	4.31
M06-2X/6-311G**//HF/6-311+G**	-134.03	7.60	-82.13	0.06	-41.95	4.26
M06-2X/6-311G**//MP2/6-31G*	-123.57	2.86	-83.32	1.25	-38.58	0.89
M06-2X/6-311G**//MP2/6-311G**	-121.01	5.42	-82.79	0.72	-37.78	0.09
M06-2X/6-311G**//MP2/6-311+G**	-122.7	3.73	-82.49	0.42	-37.87	0.18

Table S4(C): Benchmarking of the interaction energies (IE, kcal/mol) of pyrene-(CH₃)₃C complexes in cationic, anionic, and radical states at different levels of theories. The value obtained at M06-2X/6-311G**//M06-2X/6-31G* level of theory is considered as a reference (energy zero) to calculate the absolute relative energy (RE; kcal/mol).

Methods	Cation	RE	Anion	RE	Radical	RE
M06-2X/6-311G**//M06-2X/6-31G*	-24.96	0.00	-85.11	0.00	-36.52	0.00
M06-2X/6-311G**//camB3LYP/6-31G*	-23.49	1.47	-85.69	0.58	-38.77	2.25
M06-2X/6-311G**//camB3LYP/6-311G**	-23.09	1.87	-85.64	0.53	-38.38	1.86
M06-2X/6-311G**//camB3LYP/6-311+G**	-22.90	2.06	-85.46	0.35	-38.25	1.73
M06-2X/6-311G**//B3LYP/6-31G*	-22.70	2.26	-86.41	1.30	-37.45	0.93
M06-2X/6-311G**//B3LYP/6-311G**	-22.32	2.64	-86.37	1.26	-36.91	0.39
M06-2X/6-311G**//B3LYP/6-311+G**	-22.10	2.86	-86.15	1.04	-36.70	0.18
M06-2X/6-311G**//BP86/6-31G*	-22.76	2.20	-86.44	1.33	-35.66	0.86
M06-2X/6-311G**//BP86/6-311G**	-22.87	2.09	-86.29	1.18	-34.99	1.53
M06-2X/6-311G**//BP86/6-311+G**	-22.71	2.25	-86.07	0.96	-34.72	1.80
M06-2X/6-311G**//M06/6-31G*	-24.46	0.50	-84.54	0.57	-36.88	0.36
M06-2X/6-311G**//M06/6-311G**	-24.36	0.60	-84.18	0.93	-36.52	0.00
M06-2X/6-311G**//M06/6-311+G**	-24.17	0.79	-83.82	1.29	-36.28	0.24
M06-2X/6-311G**//B3LYP-D3/6-31G*	-24.27	0.69	-85.77	0.66	-36.78	0.26
M06-2X/6-311G**//B3LYP-D3/6-311G**	-24.08	0.88	-85.72	0.61	-36.24	0.28
M06-2X/6-311G**//B3LYP-D3/6-311+G**	-24.05	0.91	-85.48	0.37	-36.03	0.49
M06-2X/6-311G**//HF/6-31G*	-20.41	4.55	-87.80	2.69	-43.91	7.39
M06-2X/6-311G**//HF/6-311G**	-19.69	5.27	-87.79	2.68	-43.72	7.20
M06-2X/6-311G**//HF/6-311+G**	-19.26	5.70	-87.64	2.53	-43.69	7.17
M06-2X/6-311G**//MP2/6-31G*	-25.99	1.03	-85.85	0.74	-38.22	1.70
M06-2X/6-311G**//MP2/6-311G**	-25.63	0.67	-84.64	0.47	-37.22	0.70
M06-2X/6-311G**//MP2/6-311+G**	-25.86	0.90	-84.24	0.87	-37.17	0.65

Systems	Electrostatic	Exchange	Repulsion	Polarization	Dispersion	IE
H^+	35.790	0.000	0.000	-232.950	0.050	-197.120
$\mathrm{CH_3}^+$	-45.330	-68.910	217.240	-200.990	-28.470	-126.480
$(CH_3)CH_2^+$	-52.710	-75.420	231.380	-164.520	-33.390	-94.650
$(CH_3)_2CH^+$	-46.600	-62.210	189.690	-110.800	-37.560	-67.480
$(CH_{3})_{3}C^{+}$	-18.250	-13.730	47.720	-12.550	-28.240	-25.050
$(C_6H_5)CH_2^+$	-27.530	-31.200	96.280	-31.730	-33.190	-27.370
$(C_6H_5)_2CH^+$	-15.580	-15.830	54.530	-7.560	-34.500	-18.940
$(C_6H_5)_3C^+$	-12.450	-12.740	47.090	-4.150	-32.740	-14.990
${ m NH_2}^+$	-101.410	-128.560	419.860	-320.420	-29.890	-160.420
$(CH_3)NH^+$	-121.220	-148.460	472.270	-281.490	-35.180	-114.070
$(CH_3)_2N^+$	-125.790	-155.120	483.910	-248.170	-42.070	-87.230
$(C_6H_5)NH^+$	-112.610	-145.080	439.970	-197.030	-41.390	-56.140
$(C_6H_5)_2N^+$	-120.830	-158.370	477.320	-195.810	-54.270	-51.950
OH^+	-76.790	-116.230	400.250	-418.360	-29.860	-241.000
$(CH_3)O^+$	-108.910	-149.300	492.000	-363.560	-33.910	-163.670
$(C_{6}H_{5})O^{+}$	-123.790	-161.910	505.390	-251.470	-40.320	-72.110

Table S5(A). Contribution of each energy component into the interaction energy (IE; kcal/mol) of cationic substrates-pyrene complexes obtained using LMOEDA scheme at M06-2X/6-311G** level of theory.

Systems	Electrostatic	Exchange	Repulsion	Polarization	Dispersion	IE
H	-208.570	-272.840	724.780	-287.610	-30.090	-74.320
CH_3	-292.220	-320.910	904.180	-334.550	-38.190	-81.690
$(CH_3)CH_2$	-295.310	-321.290	909.360	-336.440	-43.100	-86.780
$(CH_3)_2CH^-$	-283.020	-310.400	879.020	-324.340	-48.760	-87.500
$(CH_3)_3C^-$	-261.590	-293.530	828.330	-303.840	-54.330	-84.970
$(C_6H_5)CH_2$	-217.130	-253.600	715.440	-256.130	-44.880	-56.300
$(C_6H_5)_2CH^-$	-175.230	-219.020	615.880	-209.770	-52.790	-40.920
$(C_{6}H_{5})_{3}C^{-}$	-9.520	-17.010	52.550	-6.770	-30.870	-11.620
$\overline{\mathrm{NH}_2}$	-265.400	-299.430	843.730	-312.150	-36.040	-69.280
(CH ₃)NH ⁻	-255.080	-287.240	816.060	-303.480	-41.370	-71.100
$(CH_3)_2N^-$	-229.340	-267.100	760.340	-280.970	-48.010	-65.070
$(C_6H_5)NH^-$	-177.400	-221.980	629.230	-218.510	-41.690	-30.350
$(C_6H_5)_2N^-$	-5.060	-17.610	52.380	-8.020	-28.780	-7.080
OH-	-229.770	-268.770	756.310	-280.920	-32.080	-55.230
$(CH_3)O^-$	-201.820	-241.020	682.700	-250.840	-37.600	-48.580
$(C_6H_5)O^-$	-2.000	-18.220	51.730	-11.310	-24.140	-3.940

Table S5(B). Contribution of each energy component into the interaction energy (IE; kcal/mol) of anionic substrates-pyrene complexes obtained using LMOEDA scheme at M06-2X/6-311G** level of theory.

Systems	Electrostatic	Exchange	Repulsion	Polarization	Dispersion	IE
H°	-	-	-	-	-	-350.330
CH ₃ °	-133.930	-162.680	480.620	-187.210	-34.450	-37.650
(CH ₃)CH ₂ °	-135.430	-164.530	483.540	-180.590	-39.830	-36.840
$(CH_3)_2 CH^\circ$	-131.790	-162.340	473.640	-170.240	-45.760	-36.480
$(CH_3)_3C^\circ$	-125.140	-157.690	456.200	-158.500	-51.350	-36.480
$(C_6H_5)CH_2^{\circ}$	-128.300	-161.700	472.100	-167.780	-45.260	-30.930
$(C_6H_5)_2CH^\circ$	-116.430	-153.820	444.360	-146.120	-54.370	-26.380
$(C_6H_5)_3C^\circ$	-7.520	-13.070	45.760	-2.780	-30.820	-8.440
$\widetilde{\mathrm{NH}_2}^\circ$	-156.020	-190.760	572.440	-217.890	-35.080	-27.310
$(CH_3)NH^{\circ}$	-167.730	-201.700	605.260	-219.020	-40.530	-23.730
$(CH_3)_2 N^\circ$	-169.910	-205.840	613.880	-210.590	-47.280	-19.740
$(C_6H_5)NH^\circ$	-154.120	-192.460	573.410	-198.870	-44.460	-16.500
$(C_6H_5)_2N^\circ$	-166.750	-204.610	617.460	-206.900	-56.050	-16.850
\mathbf{OH}°	-127.480	-169.350	516.810	-218.810	-33.290	-32.120
$(CH_3)O^{\circ}$	-136.760	-178.970	544.980	-213.850	-38.720	-23.320
$(C_6H_5)O^{\circ}$	-131.600	-174.590	523.730	-186.510	-41.390	-10.350

Table S5(C). Contribution of each energy component into the interaction energy (IE; kcal/mol) of cationic radical-pyrene complexes obtained using LMOEDA scheme at M06-2X/6-311G** level of theory.

Systems	Electrostatic	Exchange	Polarization	Dispersion
H^+	-18.16	0.00	118.18	-0.03
$\mathrm{CH_3}^+$	13.19	20.05	58.48	8.28
$(CH_3)CH_2^+$	16.17	23.13	50.46	10.24
$(CH_3)_2CH^+$	18.12	24.19	43.08	14.61
$(CH_3)_3C^+$	25.08	18.87	17.25	38.81
$(C_6H_5)CH_2^+$	22.26	25.23	25.66	26.84
$(C_{6}H_{5})_{2}CH^{+}$	21.21	21.55	10.29	46.96
$(C_{6}H_{5})_{3}C^{+}$	20.05	20.52	6.68	52.74
$\mathrm{NH_2}^+$	17.48	22.15	55.22	5.15
$(CH_3)NH^+$	20.67	25.32	48.01	6.00
$(CH_3)_2N^+$	22.02	27.16	43.45	7.37
$(C_6H_5)NH^+$	22.70	29.24	39.71	8.34
$(C_{6}H_{5})_{2}N^{+}$	22.83	29.92	37.00	10.25
OH^+	11.98	18.13	65.24	4.66
$(CH_3)O^+$	16.61	22.77	55.45	5.17
$(C_6H_5)O^+$	21.44	28.04	43.55	6.98

Table S6(A). Percentage contribution of each energy component into the interaction energy of cationic substrates-pyrene complexes obtained using LMOEDA scheme at $M06-2X/6-311G^{**}$ level of theory.

Systems	Electrostatic	Exchange	Polarization	Dispersion
H	26.10	34.14	35.99	3.77
CH ₃	29.64	32.55	33.93	3.87
$(CH_3)CH_2$	29.65	32.25	33.77	4.33
$(CH_3)_2CH^2$	29.28	32.12	33.56	5.04
$(CH_3)_3C^-$	28.64	32.14	33.27	5.95
$(C_6H_5)CH_2$	28.14	32.86	33.19	5.82
$(C_6H_5)_2CH^-$	26.68	33.35	31.94	8.04
$(C_{6}H_{5})_{3}C^{-}$	14.84	26.51	10.55	48.11
$\overline{\mathrm{NH}_2}$	29.07	32.80	34.19	3.95
(CH ₃)NH ⁻	28.75	32.38	34.21	4.66
$(CH_3)_2N^-$	27.78	32.36	34.04	5.82
$(C_6H_5)NH^-$	26.90	33.65	33.13	6.32
$(C_6H_5)_2N^-$	8.51	29.61	13.49	48.39
OH	28.31	33.12	34.62	3.95
$(CH_3)O^-$	27.60	32.96	34.30	5.14
$(C_6H_5)O^-$	3.59	32.73	20.32	43.36

Table S6(B). Percentage contribution of each energy component into the interaction energy of anionic substrates-pyrene complexes obtained using LMOEDA scheme at $M06-2X/6-311G^{**}$ level of theory.

Systems	Electrostatic	Exchange	Polarization	Dispersion
$ m H^\circ$	-	-	-	-
°CH3	25.84	31.39	36.12	6.65
(CH ₃)CH ₂ °	26.03	31.62	34.70	7.65
$(CH_3)_2 CH^\circ$	25.83	31.82	33.37	8.97
$(CH_3)_3C^\circ$	25.40	32.01	32.17	10.42
(C ₆ H ₅)CH ₂ °	25.50	32.14	33.35	9.00
$(C_6H_5)_2CH^\circ$	24.73	32.68	31.04	11.55
$(C_6H_5)_3C^\circ$	13.88	24.12	5.13	56.87
$ {NH_2}^{\circ}$	26.01	31.81	36.33	5.85
(CH ₃)NH°	26.67	32.07	34.82	6.44
$(CH_3)_2 N^\circ$	26.82	32.49	33.24	7.46
$(C_6H_5)NH^\circ$	26.13	32.63	33.71	7.54
$(C_6H_5)_2N^\circ$	26.29	32.26	32.62	8.84
\mathbf{OH}°	23.22	30.85	39.86	6.06
$(CH_3)O^{\circ}$	24.06	31.49	37.63	6.81
$(C_6H_5)O^{\circ}$	24.64	32.69	34.92	7.75

Table S6(C). Percentage contribution of each energy component into the interaction energy of cationic substrates-pyrene complexes obtained using LMOEDA scheme at $M06-2X/6-311G^{**}$ level of theory.

System	ρ	$\nabla^2 ho$	H(r)	(-[G(r)/V(r)])
H^+	0.23836	-0.70453	-0.21889	0.16343
$\mathrm{CH_{3}^{+}}$	0.17185	-0.23997	-0.10953	0.31141
$(CH_3)CH_2^+$	0.14761	-0.15500	-0.08277	0.34719
$(CH_3)_2CH^+$	0.02921	0.02090	-0.00737	0.63083
$(CH_{3})_{3}C^{+}$	0.01050	0.03085	0.00133	1.26408
$(C_6H_5)CH_2^+$	0.01912	0.03610	-0.00101	0.90820
$(C_{6}H_{5})_{2}CH^{+}$	0.00885	0.02707	0.00118	1.26881
$(C_6H_5)_3C^+$	0.00829	0.02737	0.00125	1.28904
$\mathrm{NH_2^+}$	0.22744	-0.42137	-0.19288	0.31216
$(CH_3)NH^+$	0.11411	-0.16514	-0.08679	0.34397
$(CH_3)_2N^+$	0.07423	-0.07267	-0.04835	0.38433
$(C_6H_5)NH^+$	0.09614	-0.08058	-0.06016	0.39945
$(C_6H_5)_2N^+$	0.06668	-0.04320	-0.03902	0.41968
OH^+	0.24376	-0.50914	-0.28911	0.35887
$(CH_3)O^+$	0.24060	-0.49276	-0.27343	0.35462
$(C_{6}H_{5})O^{+}$	0.21252	-0.33722	-0.20419	0.36992

Table S7(A): The variation of electron density (ρ), Laplacian of electron density ($\nabla^2 \rho$), total energy density (H(**r**)), and the ratio of kinetic energy density G(**r**), and potential energy density V(**r**), (- [G(**r**)/V(**r**)]) obtained at bond critical points for cationic substrates with pyrene.

System	ρ	$\nabla^2 ho$	H(r)	(-[G(r)/V(r)])
H-	0.25984	-0.81513	-0.24641	0.14747
CH ₃ ⁻	0.23164	-0.48750	-0.17743	0.23846
$(CH_3)CH_2^-$	0.22809	-0.46717	-0.17104	0.24080
$(CH_3)_2CH^-$	0.22063	-0.43137	-0.15934	0.24425
$(CH_3)_3C^-$	0.07720	-0.10440	-0.04713	0.30853
$(C_6H_5)CH_2^-$	0.21092	-0.38417	-0.14861	0.26131
$(C_6H_5)_2CH^-$	0.05388	-0.04692	-0.02839	0.36978
$(C_6H_5)_3C^-$	0.00744	0.02340	0.00098	1.25298
NH_2^-	0.24072	-0.54063	-0.23454	0.29762
(CH ₃)NH ⁻	0.23901	-0.52545	-0.23060	0.30088
$(CH_3)_2N^-$	0.22908	-0.46986	-0.21112	0.30729
$(C_6H_5)NH^-$	0.10747	-0.15210	-0.08496	0.35585
$(C_6H_5)_2N^-$	0.00750	0.02230	0.00088	1.23124
OH-	0.22776	-0.41982	-0.26103	0.37419
$(CH_3)O^-$	0.21746	-0.36548	-0.23431	0.37890
$(C_6H_5)O^-$	0.00926	0.02865	0.00103	1.20288

Table S7(B): The variation of electron density (ρ), Laplacian of electron density ($\nabla^2 \rho$), total energy density (H(**r**)), and the ratio of kinetic energy density G(**r**), and potential energy density V(**r**), (- [G(**r**)/V(**r**)]) obtained at bond critical points for anionic substrates with pyrene.

System	ρ	$\nabla^2 ho$	H(r)	(-[G(r)/V(r)])
H°	0.25433	-0.78691	-0.23932	0.15108
$\mathrm{CH_3}^\circ$	0.21272	-0.40034	-0.15395	0.25919
(CH ₃)CH ₂ °	0.20452	-0.36193	-0.14221	0.26674
$(CH_3)_2CH^\circ$	0.07190	-0.07701	-0.04090	0.34608
$(CH_3)_3C^\circ$	0.04476	-0.02285	-0.02064	0.41968
$(C_6H_5)CH_2^{\circ}$	0.19315	-0.31008	-0.12771	0.28213
$(C_6H_5)_2CH^\circ$	0.06332	-0.05614	-0.03289	0.36435
$(C_6H_5)_3C^\circ$	0.00745	0.02263	0.00099	1.26895
${ m NH_2}^\circ$	0.23903	-0.50802	-0.22198	0.29965
$(CH_3)NH^{\circ}$	0.23709	-0.48911	-0.21629	0.30297
$(CH_3)_2 N^{\circ}$	0.22709	-0.43455	-0.19677	0.30935
$(C_6H_5)NH^\circ$	0.11458	-0.17981	-0.09261	0.33976
$(C_6H_5)_2N^\circ$	0.07802	-0.11392	-0.06166	0.34985
OH°	0.23805	-0.47118	-0.28191	0.36795
$(CH_3)O^{\circ}$	0.23378	-0.44906	-0.26837	0.36776
$(C_6H_5)O^{\circ}$	0.20874	-0.32340	-0.20873	0.37991

Table S7(C): The variation of electron density (ρ), Laplacian of electron density ($\nabla^2 \rho$), total energy density (H(**r**)), and the ratio of kinetic energy density G(**r**), and potential energy density V(**r**), (- [G(**r**)/V(**r**)]) obtained at bond critical points for radical substrates with pyrene.