Supplementary Information:

Simulation of thermo-electrochemical cell with graphite rod electrodes

Jili Zheng ^a, Jun Li ^{a,b,*}, Liang Zhang ^{a,b}, Yang Yang ^{a,b}

^a Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030,

China

^b Key Laboratory of Low-grade Energy Utilization Technologies and Systems,

Chongqing University, Ministry of Education, Chongqing 400030, China

*Corresponding author. Tel.: +86-23-6510-2474; fax: +86-23-6510-2474; E-mail address: lijun@cqu.edu.cn (J. Li).

Experiment Section:

Potassium ferricyanide, potassium ferrocyanide, sodium sulfate, anhydrous ethanol, acetone were purchased from Tianjin Guangfu Co., Ltd. Sodium acetate were purchased from Shanghai Aladdin Reagent Co., Ltd. Graphite rod (99.9 %) was purchased from Shanghai Carbon Factory. All chemical reagents were of analytical grade without the need for further purification before use.

The voltage-current density curve of TEC was drawn by adjusting the resistance box from 5 to 10000 Ω at 0.4 mol/L Fe(CN)₆⁴⁻/Fe(CN)₆³⁻ and temperature difference 20 °C. The power density of the TEC was calculated according to Eq. (1):

$$P = UI/A \tag{1}$$

Where A is the anodes project area, I and U the sustainable current and cell voltage after the TEC reached steady-state, respectively.

Fig.S1 (a) Polarization and (b) power density curve of the TEC with graphite rod electrodes.

Parameter (Units)	Value
Cell diameter (mm)	7
Cell length (mm)	20
Density (kg m ⁻³) [1]	$\rho {=} 1063 {+} 0.546 {\times} T {-} 0.00147 {\times} T^2$
Diffusion coefficient (m ² s ⁻¹) [1]	$(62.66-0.5336T+1.1482 *10^{-3}T^2) * 10^{-10}$
Electrolyte density reference at 300 K (kg m ⁻³) [1]	ρ ₀ =1094.6
Charge transfer coefficient [2]	0.5
Electrode thermal conductivity (W m ⁻¹ K ⁻¹) [3]	<i>k</i> _s =0.6
Number of electrons transferred [4]	1
Anode temperature (K)	320
Cathode temperature (K)	300
Initial K ₃ Fe(CN) ₆ concentration (mol m ⁻³)	200
Initial K ₄ Fe(CN) ₆ concentration (mol m ⁻³)	200
Electrolyte heat capacity (J kg ⁻¹ K ⁻¹) [1]	C _p =4187
exchange current density (mA cm ⁻²) [5]	7.6
electron transfer coefficient (α)	0.5
electron transfer coefficient (β)	0.5
Thermal-to-voltage conversion (mV K ⁻¹) [6]	1.5

Table S1 Model parameters for TEC simulation.

[1] Sarac, H, Patrick MA, Wragg AA (1993) Physical properties of the ternary electrolyte potassium ferri-ferrocyanide in aqueous sodium hydroxide solution in the range 10–90 _C. J Appl Electrochem 23(1):51–55. I

[2] Spiro M (1964) Standard exchange current densities of redox systems at platinum electrodes. Electrochimica Acta 9(11):1531–1537

[3] keshoji T, Kimura S, de Nahui FNB, Yoneya M (1991) Computer analysis of natural convection in thin-layer thermocells with a soluble redox couple: Part 1. Method and the unsteady problem. J Electroanal Chem 307(1–2):29–45.

[4] Daum PH, Enke CG (1969) Electrochemical kinetics of the ferriferrocyanide couple on platinum. Anal Chem 41(4):653–656.

[5] Kim, J. H., Kang, T. J. (2019). Diffusion and current generation in porous electrodes for thermo-electrochemical cells. ACS applied materials interfaces, 11(32), 28894-28899.

[6] Salazar PF, Kumar S, Cola BA (2012) Nitrogen-and boron-doped carbon nanotube electrodes in a thermo-electrochemical cell. J Electrochem Soc 159(5):B483–B488.