Insulin-protected cobalt nanoparticles for their receptor-targeted bioimaging and diabetic wound healing

Deepinder Sharda¹, Diptiman Choudhury^{1,2*}

1; School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147004, Punjab, India.

2; Thapar Institute of Engineering and Technology-Virginia Tech (USA) Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab-147004, India.

*Corresponding E-mail: diptiman@thapar.edu; Phone: +91-8196949843

Fig. S1 (a) It shows the release kinetics data when the OD value was taken at 272 nm, which is the excitation value of tryptophan. It indicates a sustained drug release pattern, as was confirmed by using the Bradford assay. (b) It compares absorbance values between Insulin, ICoNPs, $CoCl_2$, and tyrosine (standard). (c) It compares the fluorescence intensity value of Insulin, ICoNPs, $CoCl_2$, and tyrosine (standard) to calculate the quantum yield enhancement in insulin and insulin cobalt core-shell nanoparticles.

Fig. S2 Median plots of (A) Co salt, (B) Insulin for finding the y-intercept and m values to calculate Dm to determine the combination index of cobalt and insulin.

Table S1	. It :	shows	the	binding	score	for	different	amino	acids	present	in	chain	В	of	insulin
with Ni ²⁺	ion.	Here	the l	oinding	score i	s ma	aximum f	or SER	and H	HIS ami	no	acids.			

Residue Number	Amino Acid	Score
1	PHE	-0.358
2	VAL	-0.358
3	ASN	-0.358
4	GLN	-0.358
5	HIS	1.270
6	LEU	-0.358
7	CYS	-0.358
8	GLY	3.037
9	SER	3.037
10	HIS	3.037
11	LEU	-0.358
12	VAL	-0.358
13	GLU	-0.358
14	ALA	-0.358
15	LEU	-0.358

Table S2. It shows the comparative data of variation in wound diameter in diabetic and normal conditions after treatment with 30 μ M of insulin, cobalt chloride, and the mixture of insulin and cobalt chloride and ICoNPs. The data was measured after a time duration of 6, 12, and 24 h.

% Change in diabetic wound diameter with time								
Time	CoCl ₂	Insulin	Insulin +CoCl ₂	ICoNPs				
6 h	7.88 ± 0.59 %	20.27 ± 0.35 %	27.12 ± 0.50 %	41.4 ± 1.08 %				
12 h	21.09 ± 0.47 %	37.08 ± 0.35 %	45.58 ± 1.26 %	54.94 ± 0.97 %				
24 h	24.83 ± 0.60 %	43.29 ± 0.33 %	54.45 ± 0.35 %	67.66 ± 0.28 %				
% Change in normal wound diameter with time								
Time	CoCl ₂	Insulin	Insulin +CoCl ₂	ICoNPs				
6 h	14.84 ± 0.60 %	30.33 ± 0.80 %	$40.65 \pm 0.35~\%$	56.13 ± 0.92 %				
12 h	31.75 ± 0.35 %	41.27 ± 0.70 %	50.8 ± 0.35 %	63.50 ± 0.70 %				
24 h	34.7 ± 0.70 %	48.98 ± 0.35 %	59.19 ± 0.35 %	71.43 ± 0.35 %				

Table S3. It shows the p values calculated for % variation in wound diameter in diabetic and normal conditions after treatment with 30 μ M of insulin, cobalt chloride, the mixture of both insulin and cobalt chloride, and ICoNPs. The statistical significance of data is considered when p < 0.05.

P value for checking the statistical significance of data for diabetic wound								
Time	CoCl ₂	Insulin	Insulin +CoCl ₂	ICoNPs				
6 h	0.10824	0.003371	0.001639	0.001567				
12 h	0.005436	0.000469	0.000585	0.000618				
24 h	0.023327	0.002122	0.000904	0.00038				
P value for checking the statistical significance of data for normal wound								
Time	CoCl ₂	Insulin	Insulin +CoCl ₂	ICoNPs				
6 h	0.005648	0.001751	0.000152	0.000222				
12 h	0.001058	1.33E-05	2.59E-05	0.000139				
24 h	0.000447	0.00012	7.07E-05	5.44E-06				

The Calculation of stoichiometry between cobalt and insulin protein

The stoichiometry was calculated and found out to be that one cobalt nanoparticles (13 nm diameter) is encapsulated by \sim 3791.66 insulin protein.

Volume of a particle = $4/3 \pi r^3$ Radius = 6.5 nm (13 nm diameter of cobalt nanoparticles from TEM data) = $4/3 \times 3.14 \times (6.5 \times 10^{-7} \text{ cm})^3$ = $1149.76 \times 10^{-21} \text{ cm}^3$ Atomic radius of Co atom = $200 \text{ pm} = 2 \times 10^{-8} \text{ cm}$ Volume of Co atom = $4/3 \times 3.14 \times (2 \times 10^{-8} \text{ cm})^3$ = $33.4933 \times 10^{-24} \text{ cm}^3$ $V_{nanoparticle} = N \times V_{atom}$ $N = V_{nanoparticle} / V_{atom}$ $= 1149.76 \times 10^{-21} \text{ cm}^3 / 33.493 \times 10^{-24} \text{ cm}^3$ $= 34.328 \times 10^{3}$ = 34328 number of atoms of cobalt in one nanoparticle = $10^6 \mu M$ of Co²⁺ in $10^6 \mu L$ = 6.023×10^{23} Therefore, = 1 μ M of Co²⁺ in 10⁶ μ L = 6.023 × 10²³/ 10⁶ = 1µM of Co²⁺ in 1µL = $6.023 \times 10^{23}/10^6 \times 10^6$ = $1.82 \ \mu M$ of Co²⁺ in $227 \mu L = 227 \times 1.82 \times 6.023 \times 10^{23} / 10^{12}$ $= 2.488 \times 10^{14}$ atoms Therefore, number of particles in total solution $= 2488 \times 10^{11} / 34328$ $= 0.724 \times 10^{12}$ Therefore 2.5 ml will have = 0.724×10^{12} particles Thus, 1000 ml will have = $0.724 \times 10^{12} \times 10^{3}/2.5$ $= 0.2896 \times 10^{15}$ $= 0.2896 \times 10^{15}$ number of particles / litre $= 0.2896 \times 10^{15} / 6.023 \times 10^{23} \text{ M}$ $= 0.48 \times 10^{-9} \,\mathrm{M}$ = 0.48 nMPer particle insulin = 1820 nM / 0.48 nM $= 3791.66 \sim 3792$