Supporting information

Hybrid organic-inorganic nanoparticles with associated functionality for catalytic transformation of biomass substrates

Alicia Coloma,^a Alexandra Velty^{*a} and Urbano Díaz ^{*a}

Instituto de Tecnología Química, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain; e-mail: <u>avelty@itq.upv.es</u>; <u>udiaz@itq.upv.es</u>

Scheme S1. Hydrolysis and condensation reactions during the synthesis process of silica nanoparticles.

Scheme S2. Representation of multi-functional silica nanoparticles: a) NPs-SiO₂ -C₁₈-SH, b) NPs-SiO₂ -C₁₈- NH₂. c) Tri-functional material: NPs-SiO₂-C₁₈-SO₃H-NH₂.

Figure S1. N_2 adsorption isotherms of $\mathsf{NPs}\text{-}\mathsf{SiO}_2$ obtained with different $\mathsf{NH}_4\mathsf{OH}$ concentrations.

Figure S2. ²⁹Si BD MAS NMR spectra of NPs-SiO₂ when varying NH₄OH concentration. Inserted table: percentage of Q^3 -type and Q^4 -type silicon atoms obtained in the different materials obtained with different NH₄OH concentration.

Figure S3. Liquid ²⁹Si NMR spectra of monomeric organosilane precursors.

Figure S4. Thermogravimetrical analysis of a) NPs-SiO₂-C₁₈-NH₂, b) NPs-SiO₂-C₁₈-SO₃H materials.

Figure S5. TEM images of NPs-SiO₂-C₁₈-SO₃H. a) [NH₄OH] = 1.6 M, b) [NH₄OH] = 0.20 M.

Figure S6. Catalytic activity as a function of catalyst amount at 180 $^{\circ}$ C and 3 min. Yield to HMF (•), fructose conversion (•), HMF_{aqueous phase} (•) and HMF_{organic phase} (•). Reaction conditions: 300 mg fructose solution (44 wt%), 900 mg MIBK:BuOH 70:30 and 3.8 %wt catalyst NPs-SiO₂-C₁₈-SO₃H (1:4), particle size of ~30 nm.

Figure S7. Kinetic constants at different temperatures. Reaction conditions: 300 mg fructose solution, 900 mg MIBK:BuOH 70:30 and 3.8 %wt catalyst NPs-SiO₂-C₁₈-SO₃H 1:4 C₁₈/SH molar ratio, particle size of ~30 nm.

Figure S8. Determination Ea: linear fitting according to the Arrhenius equation.

Figure S9. Catalytic activity of NPs-SiO₂-NH₂, particle size of ~30 nm, for glucose isomerization when varying: a) reaction temperature and b) time. Glucose conversion (•), fructose selectivity (•) and glucose yield (•).

[NH ₄ OH], M	Diameter, nmª	S _{BET} , m²/g	S _{Ext} , mg/g ^b	S _{Micro} , cm ³ /g
2.8	415 ± 14	12	9.1	3.2
2.0	407 ± 16	10	9.0	1.4
1.6	421 ± 17	9.5	7.8	1.7
0.78	148 ± 9	25	23	2.1
0.39	66 ± 6	71	61	10
0.20	27 ± 3	120	99	21

Table S1. Textural properties obtained from the nitrogen adsorption isotherms of the NPs-SiO₂.

^a Average size of the different silica nanospheres estimated after the measurement of 100 – 130 individual particles from different TEM images. Error was calculated as standard deviation. ^b S_{EXT}= S_{BET} – S_{micro} from *t*-plot.

Table S2. Textural properties obtained from nitrogen adsorption isotherms of mono, bi and trifunctionalized NPs-SiO₂.

Entry	Catalyst		S _{bet} ,	S _{Ext} ,	S _{Micro} ,
Entry	Catalyst		m²/g	m²/g	cm ³ /g
1	NPs-SiO ₂ -SO ₃ H	1.6	34.6	31.9	2.7
2	NPs-SiO ₂ -C ₁₈	1.6	9.46	9.46	-
3	NPs-SiO ₂ -NH ₂	1.6	13.0	12.4	0.6
4	NPs-SiO ₂ -NH ₂	0.20	228	228	-
5	NPs-SiO ₂ -C ₁₈ -SO ₃ H	1.6	49.7	49.1	0.6
6	NPSi-SiO ₂ -C ₁₈ -SO ₃ H	0.20	281	281	-
7	NPs-SiO ₂ -C ₁₈ -NH ₂	1.6	16.3	16.3	-
8	NPs-SiO ₂ -C ₁₈ -NH ₂	0.20	94.8	94.8	-
9	$NPs\text{-}SiO_2\text{-}C_{18}\text{-}SO_3H\text{-}NH_2$	0.20	91.5	91.5	-

Table S3. Recycling tests for fructose dehydration. Reaction conditions: $180^{\circ}C$, 3 min, 3.8 wt% catalyst. Reaction composition: 300 mg fructose solution, 900 mg MIBK:BuOH 70:30 and catalyst NPs-SiO₂-C₁₈-SO₃H (1:4), particle size of ~30 nm.

Cycle	% Yield HMF Organic phase	% Yield HMF Aqueous phase	% Yield HMF Total	% Fructose conversion
1	45	15	60	98
2	29	13	42	81

Table S4. Elemental analysis (EA) of fresh and re-used cata				d catalyst.
Cycle	%N	%C	%Н	%S
1	0	13.2	3.3	3.9
2	0	14.0	3.1	2.7

 Table S5. Fructose dehydration into 5-hydroximethylfurfural.

Catalyst	Reaction	Salvant	% HMF	% Fructose	Pof	
Catalyst	conditions	Solvent	yield	conversion	Rei	
Amberlyst-70	180°C, 20min	H ₂ O	47	80	45	
Nb_2O_5	165°C, 3h	H ₂ O	57	76	46	
TiO ₂ -SO ₃ H	165°C, 3h	H ₂ O/secBuOH/MIBK	65	98	47	
SO ₄ ²⁻ /TiO ₂	150°C, 6h	H ₂ O/DMSO	75	100	48	
PrSO₃H/GF	120ºC, 1h	DMSO	87	-	49	
LDMCC	180ºC, 2h	DMSO	96	99	50	
PSSA–AICl ₃	150°C, 4h	H ₂ O /MIBK/BuOH	55	-	51	
PMO-1a	160°C, 45 min	H ₂ O /MIBK/BuOH	58	95	20	
SiO ₂ -C ₁₈ -SO ₃ H	180°C, 3 min	H₂O /MIBK/BuOH	60	98	This work ^a	

^a Reaction conditions: 300 mg fructose solution, 900 mg MIBK:BuOH 70:30 and 3.8 wt% catalyst, into a 2 mL microwave vial reactor. The reaction was carried out in a Biotage[®] Initiator + microwave apparatus.

Table S6. Glucose isomerization to fructose.

Catalyst	Reaction conditions	% Fructose yield	% Glucose conversion	Ref
Triethylamine	100°C, 20 min	32	51	21
CM-Molten	60°C, 1 h	12	20	52
SnMFI-NS	90°C, 12h	27	31	53
Bentonite	110°C, 1 h	39	45	54
MIL-101(AI)–NH ₂	120ºC, 2h	26	44	55
SiO ₂ -NH ₂	180ºC, 3 min	12	52	This work ^a

^a Reaction conditions: 5 g of water, 0.5 g of glucose and solid catalyst with 5 mol% N respect to glucose were added into a 5 mL microwave vial reactor. The reaction was carried out in a Biotage[®] Initiator + microwave apparatus with 2 min pre-stirring.